
Chapter 3

Hamiltonian Mechanics

3.1 The Hamiltonian

Recall that L = L(q, q̇, t), and

pσ =
∂L

∂q̇σ
. (3.1)

The Hamiltonian, H(q, p) is obtained by a Legendre transformation,

H(q, p) =
n∑
σ=1

pσ q̇σ − L . (3.2)

Note that

dH =
n∑
σ=1

(
pσ dq̇σ + q̇σ dpσ −

∂L

∂qσ
dqσ −

∂L

∂q̇σ
dq̇σ

)
− ∂L

∂t
dt

=
n∑
σ=1

(
q̇σ dpσ −

∂L

∂qσ
dqσ

)
− ∂L

∂t
dt . (3.3)

Thus, we obtain Hamilton’s equations of motion,

∂H

∂pσ
= q̇σ ,

∂H

∂qσ
= − ∂L

∂qσ
= −ṗσ (3.4)

and
dH

dt
=
∂H

∂t
= −∂L

∂t
. (3.5)

Some remarks:

• As an example, consider a particle moving in three dimensions, described by spherical
polar coordinates (r, θ, φ). Then

L = 1
2m
(
ṙ2 + r2 θ̇2 + r2 sin2θ φ̇2

)
− U(r, θ, φ) . (3.6)

We have

pr =
∂L

∂ṙ
= mṙ , pθ =

∂L

∂θ̇
= mr2 θ̇ , pφ =

∂L

∂φ̇
= mr2 sin2θ φ̇ , (3.7)
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and thus

H = pr ṙ + pθ θ̇ + pφ φ̇− L

=
p2
r

2m
+

p2
θ

2mr2
+

p2
φ

2mr2 sin2θ
+ U(r, θ, φ) . (3.8)

Note that H is time-independent, hence ∂H
∂t = dH

dt = 0, and therefore H is a constant
of the motion.

• In order to obtain H(q, p) we must invert the relation pσ = ∂L
∂q̇σ

= pσ(q, q̇) to obtain

q̇σ(q, p). This is possible if the Hessian,

∂pα
∂q̇β

=
∂2L

∂q̇α ∂q̇β
(3.9)

is nonsingular. This is the content of the ‘inverse function theorem’ of multivariable
calculus.

• Define the rank 2n vector, ξ, by its components,

ξi =

{
qi if 1 ≤ i ≤ n
pi−n if n ≤ i ≤ 2n .

(3.10)

Then we may write Hamilton’s equations compactly as

ξ̇i = Jij
∂H

∂ξj
, (3.11)

where

J =

(
0n×n 1n×n
−1n×n 0n×n

)
(3.12)

is a rank 2n matrix. Note that J t = −J , i.e. J is antisymmetric, and that J2 =
−12n×2n. We shall utilize this ‘symplectic structure’ to Hamilton’s equations shortly.

3.2 Modified Hamilton’s Principle

We have that

0 = δ

tb∫
ta

dtL = δ

tb∫
ta

dt
(
pσ q̇σ −H

)
(3.13)

=

tb∫
ta

dt

{
pσ δq̇σ + q̇σ δpσ −

∂H

∂qσ
δqσ −

∂H

∂pσ
δpσ

}

=

tb∫
ta

dt

{
−
(
ṗσ +

∂H

∂qσ

)
δqσ +

(
q̇σ −

∂H

∂pσ

)
δpσ

}
+
(
pσ δqσ

)∣∣∣tb
ta
,

assuming δqσ(ta) = δqσ(tb) = 0. Setting the coefficients of δqσ and δpσ to zero, we recover
Hamilton’s equations.
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3.3 Phase Flow is Incompressible

A flow for which ∇ · v = 0 is incompressible – we shall see why in a moment. Let’s check
that the divergence of the phase space velocity does indeed vanish:

∇ · ξ̇ =
n∑
σ=1

{
∂q̇σ
∂qσ

+
∂ṗσ
∂pσ

}

=
2n∑
i=1

∂ξ̇i
∂ξi

=
∑
i,j

Jij
∂2H

∂ξi ∂ξj
= 0 . (3.14)

Now let ρ(ξ, t) be a distribution on phase space. Continuity implies

∂ρ

∂t
+ ∇ · (ρ ξ̇) = 0 . (3.15)

Invoking ∇ · ξ̇ = 0, we have that

Dρ

Dt
=
∂ρ

∂t
+ ξ̇ ·∇ρ = 0 , (3.16)

where Dρ/Dt is sometimes called the convective derivative – it is the total derivative of the
function ρ

(
ξ(t), t

)
, evaluated at a point ξ(t) in phase space which moves according to the

dynamics. This says that the density in the “comoving frame” is locally constant.

3.4 Poincaré Recurrence Theorem

Let gτ be the ‘τ -advance mapping’ which evolves points in phase space according to Hamil-
ton’s equations

q̇i = +
∂H

∂pi
, ṗi = − ∂H

∂qi
(3.17)

for a time interval ∆t = τ . Consider a region Ω in phase space. Define gnτΩ to be the
nth image of Ω under the mapping gτ . Clearly gτ is invertible; the inverse is obtained by
integrating the equations of motion backward in time. We denote the inverse of gτ by g−1

τ .
By Liouville’s theorem, gτ is volume preserving when acting on regions in phase space, since
the evolution of any given point is Hamiltonian. This follows from the continuity equation
for the phase space density,

∂%

∂t
+∇ · (u%) = 0 (3.18)

where u = {q̇, ṗ} is the velocity vector in phase space, and Hamilton’s equations, which
say that the phase flow is incompressible, i.e. ∇ · u = 0:

∇ · u =
n∑
i=1

{
∂q̇i
∂qi

+
∂ṗi
∂pi

}

=
n∑
i=1

{
∂

∂qi

(
∂H

∂pi

)
+

∂

∂pi

(
− ∂H

∂qi

)}
= 0 . (3.19)
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Thus, we have that the convective derivative vanishes, viz.

D%

Dt
≡ ∂%

∂t
+ u · ∇% = 0 , (3.20)

which guarantees that the density remains constant in a frame moving with the flow.
The proof of the recurrence theorem is simple. Assume that gτ is invertible and volume-

preserving, as is the case for Hamiltonian flow. Further assume that phase space volume
is finite. Since the energy is preserved in the case of time-independent Hamiltonians, we
simply ask that the volume of phase space at fixed total energy E be finite, i.e.∫

dµ δ
(
E −H(q,p)

)
<∞ , (3.21)

where dµ = dq dp is the phase space uniform integration measure.

Theorem: In any finite neighborhood Ω of phase space there exists a point ϕ0 which will
return to Ω after n applications of gτ , where n is finite.

Proof: Assume the theorem fails; we will show this assumption results in a contradiction.
Consider the set Υ formed from the union of all sets gmτ Ω for all m:

Υ =
∞⋃
m=0

gmτ Ω (3.22)

We assume that the set {gmτ Ω |m ∈ Z ,m ≥ 0} is disjoint. The volume of a union of disjoint
sets is the sum of the individual volumes. Thus,

vol(Υ) =
∞∑
m=0

vol(gmτ Ω)

= vol(Ω) ·
∞∑
m=1

1 =∞ , (3.23)

since vol(gmτ Ω) = vol(Ω) from volume preservation. But clearly Υ is a subset of the entire
phase space, hence we have a contradiction, because by assumption phase space is of finite
volume.

Thus, the assumption that the set {gmτ Ω |m ∈ Z ,m ≥ 0} is disjoint fails. This means
that there exists some pair of integers k and l, with k 6= l, such that gkτ Ω ∩ glτ Ω 6= ∅.
Without loss of generality we may assume k > l. Apply the inverse g−1

τ to this relation l
times to get gk−lτ Ω ∩ Ω 6= ∅. Now choose any point ϕ ∈ gnτ Ω ∩ Ω, where n = k − l, and
define ϕ0 = g−nτ ϕ. Then by construction both ϕ0 and gnτ ϕ0 lie within Ω and the theorem
is proven.

Each of the two central assumptions – invertibility and volume preservation – is crucial.
Without either of them, the proof fails. Consider, for example, a volume-preserving map
which is not invertible. An example might be a mapping f : R → R which takes any real
number to its fractional part. Thus, f(π) = 0.14159265 . . .. Let us restrict our attention
to intervals of width less than unity. Clearly f is then volume preserving. The action of f
on the interval [2, 3) is to map it to the interval [0, 1). But [0, 1) remains fixed under the
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action of f , so no point within the interval [2, 3) will ever return under repeated iterations
of f . Thus, f does not exhibit Poincaré recurrence.

Consider next the case of the damped harmonic oscillator. In this case, phase space
volumes contract. For a one-dimensional oscillator obeying ẍ + 2βẋ + Ω2

0x = 0 one has
∇ · u = −2β < 0 (β > 0 for damping). Thus the convective derivative obeys Dt% =
−(∇ · u)% = +2β% which says that the density increases exponentially in the comoving
frame, as %(t) = e2βt %(0). Thus, phase space volumes collapse, and are not preserved by
the dynamics. In this case, it is possible for the set Υ to be of finite volume, even if it
is the union of an infinite number of sets gnτ Ω, because the volumes of these component
sets themselves decrease exponentially, as vol(gnτ Ω) = e−2nβτ vol(Ω). A damped pendulum,
released from rest at some small angle θ0, will not return arbitrarily close to these initial
conditions.

3.5 Kac Ring Model

The implications of the Poincaré recurrence theorem are surprising – even shocking. If one
takes a bottle of perfume in a sealed, evacuated room and opens it, the perfume molecules
will diffuse throughout the room. The recurrence theorem guarantees that after some finite
time T all the molecules will go back inside the bottle (and arbitrarily close to their initial
velocities as well). The hitch is that this could take a very long time, e.g. much much longer
than the age of the Universe.

On less absurd time scales, we know that most systems come to thermodynamic equi-
librium. But how can a system both exhibit equilibration and Poincaré recurrence? The
two concepts seem utterly incompatible!

A beautifully simple model due to Kac shows how a recurrent system can exhibit the
phenomenon of equilibration. Consider a ring with N sites. On each site, place a ‘spin’
which can be in one of two states: up or down. Along the N links of the system, F of

Figure 3.1: A configuration of the Kac ring with N = 16 sites and F = 4 flippers. The
flippers, which live on the links, are represented by blue dots.
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Figure 3.2: The ring system after one time step. Evolution proceeds by clockwise rotation.
Spins passing through flippers are flipped.

them contain ‘flippers’. The configuration of the flippers is set at the outset and never
changes. The dynamics of the system are as follows: during each time step, every spin
moves clockwise a distance of one lattice spacing. Spins which pass through flippers reverse
their orientation: up becomes down, and down becomes up.

The ‘phase space’ for this system consists of 2N discrete configurations. Since each
configuration maps onto a unique image under the evolution of the system, phase space
‘volume’ is preserved. The evolution is invertible; the inverse is obtained simply by rotating
the spins counterclockwise. Figures 3.1 and 3.2 depict an example configuration for the
system, and its first iteration under the dynamics.

Suppose the flippers were not fixed, but moved about randomly. In this case, we could
focus on a single spin and determine its configuration probabilistically. Let pn be the
probability that a given spin is in the up configuration at time n. The probability that it
is up at time (n+ 1) is then

pn+1 = (1− x) pn + x (1− pn) , (3.24)

where x = F/N is the fraction of flippers in the system. In words: a spin will be up at
time (n + 1) if it was up at time n and did not pass through a flipper, or if it was down
at time n and did pas through a flipper. If the flipper locations are randomized at each
time step, then the probability of flipping is simply x = F/N . Equation 3.24 can be solved
immediately:

pn = 1
2 + (1− 2x)n (p0 − 1

2) , (3.25)

which decays exponentially to the equilibrium value of peq = 1
2 with time scale τ =

−1/ ln |1 − 2x|. If we define the magnetization m ≡ (N↑ − N↓)/N , then m = 2p − 1,

so mn = (1− 2x)nm0. The equilibrium magnetization is meq = 0. Note that for 1
2 < x < 1

that the magnetization reverses sign each time step, as well as decreasing exponentially in
magnitude.
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Figure 3.3: Two simulations of the Kac ring model, each with N = 1000 sites and with
F = 100 flippers (top panel) and F = 24 flippers (bottom panel). The red line shows the
magnetization as a function of time, starting from an initial configuration in which 90% of
the spins are up. The blue line shows the prediction of the Stosszahlansatz , which yields
an exponentially decaying magnetization with time constant τ .

The assumption that leads to equation 3.24 is called the Stosszahlansatz . The resulting
dynamics are irreversible: the magnetization inexorably decays to zero. However, the Kac
ring model is purely deterministic, and the Stosszahlansatz can at best be an approximation
to the true dynamics. Clearly the Stosszahlansatz fails to account for correlations such as
the following: if spin i is flipped at time n, then spin i+1 will have been flipped at time n−1.
Indeed, since the dynamics of the Kac ring model are invertible and volume preserving, it
must exhibit Poincaré recurrence.

The model is trivial to simulate. The results of such a simulation are shown in figure 3.3
for a ring of N = 1000 sites, with F = 100 and F = 24 flippers. Note how the magnetization
decays and fluctuates about the equilibrium value eq = 0, but that after N iterations m
recovers its initial value: mN = m0. The recurrence time for this system is simply N if F is
even, and 2N if F is odd, since every spin will then have flipped an even number of times.

In figure 3.4 we plot two other simulations. The top panel shows what happens when
x > 1

2 , so that the magnetization wants to reverse its sign with every iteration. The bottom
panel shows a simulation for a larger ring, with N = 25000 sites. Note that the fluctuations
in m about equilibrium are smaller than in the cases with N = 1000 sites. Why?
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Figure 3.4: Simulations of the Kac ring model. Top: N = 1000 sites with F = 900 flippers.
The flipper density x = F/N is greater than 1

2 , so the magnetization reverses sign every
time step. Only 100 iterations are shown, and the blue curve depicts the absolute value of
the magnetization within the Stosszahlansatz . Bottom: N = 25, 000 sites with F = 1000
flippers. Note that the fluctuations about the ‘equilibrium’ magnetization m = 0 are much
smaller than in the N = 1000 site simulations.

3.6 Poisson Brackets

The time evolution of any function F (q, p) over phase space is given by

d

dt
F
(
q(t), p(t), t

)
=
∂F

∂t
+

n∑
σ=1

{
∂F

∂qσ
q̇σ +

∂F

∂pσ
ṗσ

}
≡ ∂F

∂t
+
{
F,H

}
, (3.26)

where the Poisson bracket {· , ·} is given by

{
A,B

}
≡

n∑
σ=1

(
∂A

∂qσ

∂B

∂pσ
− ∂A

∂pσ

∂B

∂qσ

)
(3.27)

=
2n∑
i,j=1

Jij
∂A

∂ξi

∂B

∂ξj
. (3.28)

Properties of the Poisson bracket:
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• Antisymmetry: {
f, g
}

= −
{
g, f
}
. (3.29)

• Bilinearity: if λ is a constant, and f , g, and h are functions on phase space, then{
f + λ g, h

}
=
{
f, h
}

+ λ{g, h
}
. (3.30)

Linearity in the second argument follows from this and the antisymmetry condition.

• Associativity: {
fg, h

}
= f

{
g, h
}

+ g
{
f, h
}
. (3.31)

• Jacobi identity: {
f, {g, h}

}
+
{
g, {h, f}

}
+
{
h, {f, g}

}
= 0 . (3.32)

Some other useful properties:

◦ If {A,H} = 0 and ∂A
∂t = 0, then dA

dt = 0, i.e. A(q, p) is a constant of the motion.

◦ If {A,H} = 0 and {B,H} = 0, then
{
{A,B},H

}
= 0. If in addition A and B have

no explicit time dependence, we conclude that {A,B} is a constant of the motion.

◦ It is easily established that

{qα, qβ} = 0 , {pα, pβ} = 0 , {qα, pβ} = δαβ . (3.33)

3.7 Canonical Transformations

3.7.1 Point Transformations in Lagrangian Mechanics

In Lagrangian mechanics, we are free to redefine our generalized coordinates, viz.

Qσ = Qσ(q1, . . . , qn, t) . (3.34)

This is called a “point transformation.” The transformation is invertible if

det
(
∂Qα
∂qβ

)
6= 0 . (3.35)

The transformed Lagrangian, L̃, written as a function of the new coordinates Q and veloc-
ities Q̇, is

L̃
(
Q, Q̇, t) = L

(
q(Q, t), q̇(Q, Q̇, t)

)
. (3.36)

Finally, Hamilton’s principle,

δ

tb∫
t1

dt L̃(Q, Q̇, t) = 0 (3.37)
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with δQσ(ta) = δQσ(tb) = 0, still holds, and the form of the Euler-Lagrange equations
remains unchanged:

∂L̃

∂Qσ
− d

dt

(
∂L̃

∂Q̇σ

)
= 0 . (3.38)

The invariance of the equations of motion under a point transformation may be verified
explicitly. We first evaluate

d

dt

(
∂L̃

∂Q̇σ

)
=

d

dt

(
∂L

∂q̇α

∂q̇α

∂Q̇σ

)
=

d

dt

(
∂L

∂q̇α

∂qα
∂Qσ

)
, (3.39)

where the relation
∂q̇α

∂Q̇σ
=

∂qα
∂Qσ

(3.40)

follows from
q̇α =

∂qα
∂Qσ

Q̇σ +
∂qα
∂t

. (3.41)

Now we compute

∂L̃

∂Qσ
=

∂L

∂qα

∂qα
∂Qσ

+
∂L

∂q̇α

∂q̇α
∂Qσ

=
∂L

∂qα

∂qα
∂Qσ

+
∂L

∂q̇α

(
∂2qα

∂Qσ ∂Qσ′
Q̇σ′ +

∂2qα
∂Qσ ∂t

)

=
d

dt

(
∂L

∂q̇σ

)
∂qα
∂Qσ

+
∂L

∂q̇α

d

dt

(
∂qα
∂Qσ

)

=
d

dt

(
∂L

∂q̇σ

∂qα
∂Qσ

)
=

d

dt

(
∂L̃

∂Q̇σ

)
, (3.42)

where the last equality is what we obtained earlier in eqn. 3.39.

3.7.2 Canonical Transformations in Hamiltonian Mechanics

In Hamiltonian mechanics, we will deal with a much broader class of transformations – ones
which mix all the q′s and p′s. The general form for a canonical transformation (CT) is

qσ = qσ
(
Q1, . . . , Qn;P1, . . . , Pn; t

)
(3.43)

pσ = pσ
(
Q1, . . . , Qn;P1, . . . , Pn; t

)
, (3.44)

with σ ∈ {1, . . . , n}. We may also write

ξi = ξi
(
Ξ1, . . . , Ξ2n; t

)
, (3.45)

with i ∈ {1, . . . , 2n}. The transformed Hamiltonian is H̃(Q,P, t).
What sorts of transformations are allowed? Well, if Hamilton’s equations are to remain

invariant, then

Q̇σ =
∂H̃

∂Pσ
, Ṗσ = − ∂H̃

∂Qσ
, (3.46)
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which gives
∂Q̇σ
∂Qσ

+
∂Ṗσ
∂Pσ

= 0 =
∂Ξ̇i
∂Ξi

. (3.47)

I.e. the flow remains incompressible in the new (Q,P ) variables. We will also require that
phase space volumes are preserved by the transformation, i.e.

det
(
∂Ξi
∂ξj

)
=
∣∣∣∣∣∣∣∣∂(Q,P )
∂(q, p)

∣∣∣∣∣∣∣∣ = 1 . (3.48)

Additional conditions will be discussed below.

3.7.3 Hamiltonian Evolution

Hamiltonian evolution itself defines a canonical transformation. Let ξi = ξi(t) and ξ′i =
ξi(t+ dt). Then from the dynamics ξ̇i = Jij

∂H
∂ξj

, we have

ξi(t+ dt) = ξi(t) + Jij
∂H

∂ξj
dt+O

(
dt2
)
. (3.49)

Thus,

∂ξ′i
∂ξj

=
∂

∂ξj

(
ξi + Jik

∂H

∂ξk
dt+O

(
dt2
))

= δij + Jik
∂2H

∂ξj ∂ξk
dt+O

(
dt2
)
. (3.50)

Now, using the result
det
(
1 + εM

)
= 1 + εTrM +O(ε2) , (3.51)

we have ∣∣∣∣∣∣∣∣∂ξ′i∂ξj

∣∣∣∣∣∣∣∣ = 1 + Jjk
∂2H

∂ξj ∂ξk
dt+O

(
dt2
)

(3.52)

= 1 +O
(
dt2
)
. (3.53)

3.7.4 Symplectic Structure

We have that
ξ̇i = Jij

∂H

∂ξj
. (3.54)

Suppose we make a time-independent canonical transformation to new phase space coordi-
nates, Ξa = Ξa(ξ). We then have

Ξ̇a =
∂Ξa
∂ξj

ξ̇j =
∂Ξa
∂ξj

Jjk
∂H

∂ξk
. (3.55)
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But if the transformation is canonical, then the equations of motion are preserved, and we
also have

Ξ̇a = Jab
∂H̃

∂Ξb
= Jab

∂ξk
∂Ξb

∂H

∂ξk
. (3.56)

Equating these two expressions, we have

Maj Jjk
∂H

∂ξk
= JabM

−1
kb

∂H

∂ξk
, (3.57)

where
Maj ≡

∂Ξa
∂ξj

(3.58)

is the Jacobian of the transformation. Since the equality must hold for all ξ, we conclude

MJ = J
(
M t
)−1 =⇒ MJM t = J . (3.59)

A matrix M satisfying MM t = 1 is of course an orthogonal matrix. A matrix M satisfying
MJM t = J is called symplectic. We write M ∈ Sp(2n), i.e. M is an element of the group
of symplectic matrices1 of rank 2n.

The symplectic property of M guarantees that the Poisson brackets are preserved under
a canonical transformation: {

A,B
}
ξ

= Jij
∂A

∂ξi

∂B

∂ξj

= Jij
∂A

∂Ξa

∂Ξa
∂ξi

∂B

∂Ξb

∂Ξb
∂ξj

=
(
Mai JijM

t
jb

) ∂A
∂Ξa

∂B

∂Ξb

= Jab
∂A

∂Ξa

∂B

∂Ξb

=
{
A,B

}
Ξ
. (3.60)

3.7.5 Generating Functions for Canonical Transformations

For a transformation to be canonical, we require

δ

tb∫
ta

dt
{
pσ q̇σ −H(q, p, t)

}
= 0 = δ

tb∫
ta

dt
{
Pσ Q̇σ − H̃(Q,P, t)

}
. (3.61)

This is satisfied provided{
pσ q̇σ −H(q, p, t)

}
= λ

{
Pσ Q̇σ − H̃(Q,P, t) +

dF

dt

}
, (3.62)

1Note that the rank of a symplectic matrix is always even. Note also MJM t = J implies M tJM = J .
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where λ is a constant. For canonical transformations, λ = 1.2 Thus,

H̃(Q,P, t) = H(q, p, t) + Pσ Q̇σ − pσ q̇σ +
∂F

∂qσ
q̇σ +

∂F

∂Qσ
Q̇σ

+
∂F

∂pσ
ṗσ +

∂F

∂Pσ
Ṗσ +

∂F

∂t
. (3.63)

Thus, we require

∂F

∂qσ
= pσ ,

∂F

∂Qσ
= −Pσ ,

∂F

∂pσ
= 0 ,

∂F

∂Pσ
= 0 . (3.64)

The transformed Hamiltonian is

H̃(Q,P, t) = H(q, p, t) +
∂F

∂t
. (3.65)

There are four possibilities, corresponding to the freedom to make Legendre transformations
with respect to each of the arguments of F (q,Q) :

F (q,Q, t) =



F1(q,Q, t) ; pσ = +∂F1
∂qσ

, Pσ = − ∂F1
∂Qσ

(type I)

F2(q, P, t)− Pσ Qσ ; pσ = +∂F2
∂qσ

, Qσ = + ∂F2
∂Pσ

(type II)

F3(p,Q, t) + pσ qσ ; qσ = −∂F3
∂pσ

, Pσ = − ∂F3
∂Qσ

(type III)

F4(p, P, t) + pσ qσ − Pσ Qσ ; qσ = −∂F4
∂pσ

, Qσ = + ∂F4
∂Pσ

(type IV)

In each case (γ = 1, 2, 3, 4), we have

H̃(Q,P, t) = H(q, p, t) +
∂Fγ
∂t

. (3.66)

Let’s work out some examples:

• Consider the type-II transformation generated by

F2(q, P ) = Aσ(q)Pσ , (3.67)

where Aσ(q) is an arbitrary function of the {qσ}. We then have

Qσ =
∂F2

∂Pσ
= Aσ(q) , pσ =

∂F2

∂qσ
=
∂Aα
∂qσ

Pα . (3.68)

Thus,

Qσ = Aσ(q) , Pσ =
∂qα
∂Qσ

pα . (3.69)

2Solutions of eqn. 3.62 with λ 6= 1 are known as extended canonical transformations. We can always
rescale coordinates and/or momenta to achieve λ = 1.
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This is a general point transformation of the kind discussed in eqn. 3.34. For a general
linear point transformation, Qα = Mαβ qβ , we have Pα = pβM

−1
βα , i.e. Q = Mq,

P = pM−1. If Mαβ = δαβ , this is the identity transformation. F2 = q1P3 + q3P1

interchanges labels 1 and 3, etc.

• Consider the type-I transformation generated by

F1(q,Q) = Aσ(q)Qσ . (3.70)

We then have

pσ =
∂F1

∂qσ
=
∂Aα
∂qσ

Qα (3.71)

Pσ = − ∂F1

∂Qσ
= −Aσ(q) . (3.72)

Note that Aσ(q) = qσ generates the transformation(
q
p

)
−→

(
−P
+Q

)
. (3.73)

• A mixed transformation is also permitted. For example,

F (q,Q) = q1Q1 + (q3 −Q2)P2 + (q2 −Q3)P3 (3.74)

is of type-I with respect to index σ = 1 and type-II with respect to indices σ = 2, 3.
The transformation effected is

Q1 = p1 Q2 = q3 Q3 = q2 (3.75)

P1 = −q1 P2 = p3 P3 = p2 . (3.76)

• Consider the harmonic oscillator,

H(q, p) =
p2

2m
+ 1

2kq
2 . (3.77)

If we could find a time-independent canonical transformation such that

p =
√

2mf(P ) cosQ , q =

√
2 f(P )
k

sinQ , (3.78)

where f(P ) is some function of P , then we’d have H̃(Q,P ) = f(P ), which is cyclic in
Q. To find this transformation, we take the ratio of p and q to obtain

p =
√
mk q ctnQ , (3.79)

which suggests the type-I transformation

F1(q,Q) = 1
2

√
mk q2 ctnQ . (3.80)
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This leads to

p =
∂F1

∂q
=
√
mk q ctnQ , P = −∂F1

∂Q
=

√
mk q2

2 sin2Q
. (3.81)

Thus,

q =
√

2P
4
√
mk

sinQ =⇒ f(P ) =

√
k

m
P = ωP , (3.82)

where ω =
√
k/m is the oscillation frequency. We therefore have

H̃(Q,P ) = ωP , (3.83)

whence P = E/ω. The equations of motion are

Ṗ = −∂H̃
∂Q

= 0 , Q̇ =
∂H̃

∂P
= ω , (3.84)

which yields

Q(t) = ωt+ ϕ0 , q(t) =

√
2E
mω2

sin
(
ωt+ ϕ0

)
. (3.85)

3.8 Hamilton-Jacobi Theory

We’ve stressed the great freedom involved in making canonical transformations. Coordi-
nates and momenta, for example, may be interchanged – the distinction between them is
purely a matter of convention! We now ask: is there any specially preferred canonical trans-
formation? In this regard, one obvious goal is to make the Hamiltonian H̃(Q,P, t) and the
corresponding equations of motion as simple as possible.

Recall the general form of the canonical transformation:

H̃(Q,P ) = H(q, p) +
∂F

∂t
, (3.86)

with

∂F

∂qσ
= pσ

∂F

∂pσ
= 0 (3.87)

∂F

∂Qσ
= −Pσ

∂F

∂Pσ
= 0 . (3.88)

We now demand that this transformation result in the simplest Hamiltonian possible, that
is, H̃(Q,P, t) = 0. This requires we find a function F such that

∂F

∂t
= −H ,

∂F

∂qσ
= pσ . (3.89)

The remaining functional dependence may be taken to be either on Q (type I) or on P
(type II). As it turns out, the generating function F we seek is in fact the action, S, which
is the integral of L with respect to time, expressed as a function of its endpoint values.
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3.8.1 The Action as a Function of Coordinates and Time

We have seen how the action S[η(τ)] is a functional of the path η(τ) and a function of the
endpoint values {qa, ta} and {qb, tb}. Let us define the action function S(q, t) as

S(q, t) =

t∫
ta

dτ L
(
η, η̇, τ) , (3.90)

where η(τ) starts at (qa, ta) and ends at (q, t). We also require that η(τ) satisfy the Euler-
Lagrange equations,

∂L

∂ησ
− d

dτ

(
∂L

∂η̇σ

)
= 0 (3.91)

Let us now consider a new path, η̃(τ), also starting at (qa, ta), but ending at (q+dq, t+dt),
and also satisfying the equations of motion. The differential of S is

dS = S
[
η̃(τ)

]
− S

[
η(τ)

]
=

t+dt∫
ta

dτ L(η̃, ˙̃η, τ)−
t∫

ta

dτ L
(
η, η̇, τ) (3.92)

=

t∫
ta

dτ

{
∂L

∂ησ

[
η̃σ(τ)− ησ(τ)

]
+
∂L

∂η̇σ

[
˙̃ησ(τ)− η̇σ(τ)

]}
+ L

(
η̃(t), ˙̃η(t), t

)
dt

=

t∫
ta

dτ

{
∂L

∂ησ
− d

dτ

(
∂L

∂η̇σ

)}[
η̃σ(τ)− ησ(τ)

]
+
∂L

∂η̇σ

∣∣∣∣
t

[
η̃σ(t)− ησ(t)

]
+ L

(
η̃(t), ˙̃η(t), t

)
dt

= 0 + πσ(t) δησ(t) + L
(
η(t), η̇(t), t

)
dt+O(δq · dt) , (3.93)

where we have defined
πσ =

∂L

∂η̇σ
, (3.94)

and
δησ(τ) ≡ η̃σ(τ)− ησ(τ) . (3.95)

Note that the differential dqσ is given by

dqσ = η̃σ(t+ dt)− ησ(t) (3.96)

= η̃σ(t+ dt)− η̃σ(t) + η̃σ(t)− ησ(t)
= ˙̃ησ(t) dt+ δησ(t)

= q̇σ(t) dt+ δησ(t) +O(δq · dt) . (3.97)

16



Figure 3.5: A one-parameter family of paths q(s; ε).

Thus, with πσ(t) ≡ pσ, we have

dS = pσ dqσ +
(
L− pσ q̇σ

)
dt

= pσ dqσ −H dt . (3.98)

We therefore obtain
∂S

∂qσ
= pσ ,

∂S

∂t
= −H ,

dS

dt
= L . (3.99)

What about the lower limit at ta? Clearly there are n+1 constants associated with this
limit:

{
q1(ta), . . . , qn(ta); ta

}
. Thus, we may write

S = S(q1, . . . , qn;Λ1, . . . , Λn, t) + Λn+1 , (3.100)

where our n+ 1 constants are {Λ1, . . . , Λn+1}. If we regard S as a mixed generator, which
is type-I in some variables and type-II in others, then each Λσ for 1 ≤ σ ≤ n may be chosen
to be either Qσ or Pσ. We will define

Γσ =
∂S

∂Λσ
=

{
+Qσ if Λσ = Pσ

−Pσ if Λσ = Qσ
(3.101)

For each σ, the two possibilities Λσ = Qσ or Λσ = Pσ are of course rendered equivalent by
a canonical transformation (Qσ, Pσ)→ (Pσ,−Qσ).

3.8.2 The Hamilton-Jacobi Equation

Since the action S(q, Λ, t) has been shown to generate a canonical transformation for which
H̃(Q,P ) = 0. This requirement may be written as

H
(
q1, . . . , qn,

∂S

∂q1
, . . . ,

∂S

∂qn
, t
)

+
∂S

∂t
= 0 . (3.102)

17



This is the Hamilton-Jacobi equation (HJE). It is a first order partial differential equation
in n+ 1 variables, and in general is nonlinear (since kinetic energy is generally a quadratic
function of momenta). Since H̃(Q,P, t) = 0, the equations of motion are trivial, and

Qσ(t) = const. , Pσ(t) = const. (3.103)

Once the HJE is solved, one must invert the relations Γσ = ∂S(q, Λ, t)/∂Λσ to obtain
q(Q,P, t). This is possible only if

det
(

∂2S

∂qα ∂Λβ

)
6= 0 , (3.104)

which is known as the Hessian condition.
It is worth noting that the HJE may have several solutions. For example, consider the

case of the free particle, with H(q, p) = p2/2m. The HJE is

1
2m

(
∂S

∂q

)2

+
∂S

∂t
= 0 . (3.105)

One solution of the HJE is

S(q, Λ, t) =
m (q − Λ)2

2t
. (3.106)

For this we find
Γ =

∂S

∂Λ
= −m

t
(q − Λ) ⇒ q(t) = Λ− Γ

m
t . (3.107)

Here Λ = q(0) is the initial value of q, and Γ = −p is minus the momentum.
Another equally valid solution to the HJE is

S(q, Λ, t) = q
√

2mΛ − Λ t . (3.108)

This yields

Γ =
∂S

∂Λ
= q

√
2m
Λ
− t ⇒ q(t) =

√
Λ

2m
(t+ Γ ) . (3.109)

For this solution, Λ is the energy and Γ may be related to the initial value of q(t) =
Γ
√
Λ/2m.

3.8.3 Time-Independent Hamiltonians

When H has no explicit time dependence, we may reduce the order of the HJE by one,
writing

S(q, Λ, t) = W (q, Λ) + T (Λ, t) . (3.110)

The HJE becomes

H

(
q,
∂W

∂q

)
= −∂T

∂t
. (3.111)

Note that the LHS of the above equation is independent of t, and the RHS is independent
of q. Therefore, each side must only depend on the constants Λ, which is to say that each
side must be a constant, which, without loss of generality, we take to be Λ1. Therefore

S(q, Λ, t) = W (q, Λ)− Λ1t . (3.112)
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The function W (q, Λ) is called Hamilton’s characteristic function. The HJE now takes the
form

H

(
q1, . . . , qn,

∂W

∂q1
, . . . ,

∂W

∂qn

)
= Λ1 . (3.113)

Note that adding an arbitrary constant C to S generates the same equation, and simply
shifts the last constant Λn+1 → Λn+1 + C. This is equivalent to replacing t by t− t0 with
t0 = C/Λ1, i.e. it just redefines the zero of the time variable.

3.8.4 Example: One-Dimensional Motion

As an example of the method, consider the one-dimensional system,

H(q, p) =
p2

2m
+ U(q) . (3.114)

The HJE is
1

2m

(
∂S

∂q

)2

+ U(q) = Λ . (3.115)

which may be recast as
∂S

∂q
=
√

2m
[
Λ− U(q)

]
, (3.116)

with solution

S(q, Λ, t) =
√

2m

q∫
dq′
√
Λ− U(q′)− Λ t . (3.117)

We now have
p =

∂S

∂q
=
√

2m
[
Λ− U(q)

]
, (3.118)

as well as

Γ =
∂S

∂Λ
=
√
m

2

∫ q(t) dq′√
Λ− U(q′)

− t . (3.119)

Thus, the motion q(t) is given by quadrature:

Γ + t =
√
m

2

q(t)∫
dq′√

Λ− U(q′)
, (3.120)

where Λ and Γ are constants. The lower limit on the integral is arbitrary and merely shifts
t by another constant. Note that Λ is the total energy.

3.8.5 Separation of Variables

It is convenient to first work an example before discussing the general theory. Consider the
following Hamiltonian, written in spherical polar coordinates:

H =
1

2m

(
p2
r +

p2
θ

r2
+

p2
φ

r2 sin2θ

)
+

potential U(r,θ,φ)︷ ︸︸ ︷
A(r) +

B(θ)
r2

+
C(φ)
r2 sin2θ

. (3.121)
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We seek a solution with the characteristic function

W (r, θ, φ) = Wr(r) +Wθ(θ) +Wφ(φ) . (3.122)

The HJE is then

1
2m

(
∂Wr

∂r

)2

+
1

2mr2

(
∂Wθ

∂θ

)2

+
1

2mr2 sin2θ

(
∂Wφ

∂φ

)2

+A(r) +
B(θ)
r2

+
C(φ)
r2 sin2θ

= Λ1 = E . (3.123)

Multiply through by r2 sin2θ to obtain

1
2m

(
∂Wφ

∂φ

)2

+ C(φ) = − sin2θ

{
1

2m

(
∂Wθ

∂θ

)2

+B(θ)

}

− r2 sin2θ

{
1

2m

(
∂Wr

∂r

)2

+A(r)− Λ1

}
. (3.124)

The LHS is independent of (r, θ), and the RHS is independent of φ. Therefore, we may set

1
2m

(
∂Wφ

∂φ

)2

+ C(φ) = Λ2 . (3.125)

Proceeding, we replace the LHS in eqn. 3.124 with Λ2, arriving at

1
2m

(
∂Wθ

∂θ

)2

+B(θ) +
Λ2

sin2θ
= −r2

{
1

2m

(
∂Wr

∂r

)2

+A(r)− Λ1

}
. (3.126)

The LHS of this equation is independent of r, and the RHS is independent of θ. Therefore,

1
2m

(
∂Wθ

∂θ

)2

+B(θ) +
Λ2

sin2θ
= Λ3 . (3.127)

We’re left with
1

2m

(
∂Wr

∂r

)2

+A(r) +
Λ3

r2
= Λ1 . (3.128)

The full solution is therefore

S(q, Λ, t) =
√

2m

r∫
dr′
√
Λ1 −A(r′)− Λ3

r′2
(3.129)

+
√

2m

θ∫
dθ′
√
Λ3 −B(θ′)− Λ2

sin2θ′

+
√

2m

φ∫
dφ′

√
Λ2 − C(φ′)− Λ1t . (3.130)
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We then have

Γ1 =
∂S

∂Λ1
=
∫ r(t)

√
m
2 dr

′√
Λ1 −A(r′)− Λ3 r

′−2
− t (3.131)

Γ2 =
∂S

∂Λ2
= −

∫ θ(t)
√

m
2 dθ

′

sin2θ′
√
Λ3 −B(θ′)− Λ2 csc2θ′

+
∫ φ(t)

√
m
2 dφ

′√
Λ2 − C(φ′)

(3.132)

Γ3 =
∂S

∂Λ3
= −

∫ r(t)
√

m
2 dr

′

r′2
√
Λ1 −A(r′)− Λ3 r

′−2
+
∫ θ(t)

√
m
2 dθ

′√
Λ3 −B(θ′)− Λ2 csc2θ′

. (3.133)

The game plan here is as follows. The first of the above trio of equations is inverted to yield
r(t) in terms of t and constants. This solution is then invoked in the last equation (the upper
limit on the first integral on the RHS) in order to obtain an implicit equation for θ(t), which
is invoked in the second equation to yield an implicit equation for φ(t). The net result is
the motion of the system in terms of time t and the six constants (Λ1, Λ2, Λ3, Γ1, Γ2, Γ3). A
seventh constant, associated with an overall shift of the zero of t, arises due to the arbitrary
lower limits of the integrals.

In general, the separation of variables method begins with3

W (q, Λ) =
n∑
σ=1

Wσ(qσ, Λ) . (3.134)

Each Wσ(qσ, Λ) may be regarded as a function of the single variable qσ, and is obtained by
satisfying an ODE of the form4

Hσ

(
qσ,

dWσ

dqσ

)
= Λσ . (3.135)

We then have
pσ =

∂Wσ

∂qσ
, Γσ =

∂W

∂Λσ
+ δσ,1 t . (3.136)

Note that while each Wσ depends on only a single qσ, it may depend on several of the Λσ.

3.8.6 Example #2 : Point Charge plus Electric Field

Consider a potential of the form

U(r) =
k

r
− Fz , (3.137)

which corresponds to a charge in the presence of an external point charge plus an external
electric field. This problem is amenable to separation in parabolic coordinates, (ξ, η, ϕ):

x =
√
ξη cosϕ , y =

√
ξη sinϕ , z = 1

2(ξ − η) . (3.138)

3Here we assume complete separability . A given system may only be partially separable.
4Hσ(qσ, pσ) may also depend on several of the Λα . See e.g. eqn. 3.128, which is of the form

Hr

`
r, ∂rWr, Λ3

´
= Λ1.
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Note that

ρ ≡
√
x2 + y2 =

√
ξη (3.139)

r =
√
ρ2 + z2 = 1

2(ξ + η) . (3.140)

The kinetic energy is

T = 1
2m
(
ρ̇2 + ρ2 ϕ̇2 + ż2

)
= 1

8m (ξ + η)
(
ξ̇2

ξ
+
η̇2

η

)
+ 1

2mξη ϕ̇2 , (3.141)

and hence the Lagrangian is

L = 1
8m (ξ + η)

(
ξ̇2

ξ
+
η̇2

η

)
+ 1

2mξη ϕ̇2 − 2k
ξ + η

+ 1
2F (ξ − η) . (3.142)

Thus, the conjugate momenta are

pξ =
∂L

∂ξ̇
= 1

4m (ξ + η)
ξ̇

ξ
(3.143)

pη =
∂L

∂η̇
= 1

4m (ξ + η)
η̇

η
(3.144)

pϕ =
∂L

∂ϕ̇
= mξη ϕ̇ , (3.145)

and the Hamiltonian is

H = pξ ξ̇ + pη η̇ + pϕ ϕ̇ (3.146)

=
2
m

(
ξ p2

ξ + η p2
η

ξ + η

)
+

p2
ϕ

2mξη
+

2k
ξ + η

− 1
2F (ξ − η) . (3.147)

Notice that ∂H/∂t = 0, which means dH/dt = 0, i.e. H = E ≡ Λ1 is a constant of the
motion. Also, ϕ is cyclic in H, so its conjugate momentum pϕ is a constant of the motion.

We write

S(q, Λ) = W (q, Λ)− Et (3.148)

= Wξ(ξ, Λ) +Wη(η, Λ) +Wϕ(ϕ,Λ)− Et . (3.149)

with E = Λ1. Clearly we may take

Wϕ(ϕ,Λ) = Pϕ ϕ , (3.150)

where Pϕ = Λ2. Multiplying the Hamilton-Jacobi equation by 1
2m (ξ + η) then gives

ξ

(
dWξ

dξ

)2

+
P 2
ϕ

4ξ
+mk − 1

4Fξ
2 − 1

2mEξ

= −η
(
dWη

dη

)2

−
P 2
ϕ

4η
− 1

4Fη
2 + 1

2mEη ≡ Υ , (3.151)
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where Υ = Λ3 is the third constant: Λ = (E,Pϕ, Υ ). Thus,

S
( q︷ ︸︸ ︷
ξ, η, ϕ;E,Pϕ, Υ︸ ︷︷ ︸

Λ

)
=
∫ ξ

dξ′

√
1
2mE +

Υ −mk
ξ′

+ 1
4mFξ

′ −
P 2
ϕ

4ξ′2

+
∫ η

dη′

√
1
2mE −

Υ

η′
− 1

4mFη
′ −

P 2
ϕ

4η′2

+ Pϕ ϕ− Et . (3.152)

3.8.7 Example #3 : Charged Particle in a Magnetic Field

The Hamiltonian is
H =

1
2m

(
p− e

c
A
)2

. (3.153)

We choose the gauge A = Bxŷ, and we write

S(x, y, P1, P2) = Wx(x, P1, P2) +Wy(y, P1, P2)− P1 t . (3.154)

Note that here we will consider S to be a function of {qσ} and {Pσ}.
The Hamilton-Jacobi equation is then(

∂Wx

∂x

)2

+
(
∂Wy

∂y
− eBx

c

)2

= 2mP1 . (3.155)

We solve by writing

Wy = P2 y ⇒
(
dWx

dx

)2

+
(
P2 −

eBx

c

)2

= 2mP1 . (3.156)

This equation suggests the substitution

x =
cP2

eB
+

c

eB

√
2mP1 sin θ . (3.157)

in which case
∂x

∂θ
=

c

eB

√
2mP1 cos θ (3.158)

and
∂Wx

∂x
=
∂Wx

∂θ
· ∂θ
∂x

=
eB

c
√

2mP1

1
cos θ

∂Wx

∂θ
. (3.159)

Substitution this into eqn. 3.156, we have

∂Wx

∂θ
=

2mcP1

eB
cos2θ , (3.160)

with solution

Wx =
mcP1

eB
θ +

mcP1

2eB
sin(2θ) . (3.161)
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We then have

px =
∂Wx

∂x
=
∂Wx

∂θ

/
∂x

∂θ
=
√

2mP1 cos θ (3.162)

and
py =

∂Wy

∂y
= P2 . (3.163)

The type-II generator we seek is then

S(q, P, t) =
mcP1

eB
θ +

mcP1

2eB
sin(2θ) + P2 y − P1 t , (3.164)

where

θ =
eB

c
√

2mP1
sin−1

(
x− cP2

eB

)
. (3.165)

Note that, from eqn. 3.157, we may write

dx =
c

eB
dP2 +

mc

eB

1√
2mP1

sin θ dP1 +
c

eB

√
2mP1 cos θ dθ , (3.166)

from which we derive
∂θ

∂P1
= −tan θ

2P1
,

∂θ

∂P2
= − 1√

2mP1 cos θ
. (3.167)

These results are useful in the calculation of Q1 and Q2:

Q1 =
∂S

∂P1

=
mc

eB
θ +

mcP1

eB

∂θ

∂P1
+

mc

2eB
sin(2θ) +

mcP1

eB
cos(2θ)

∂θ

∂P1
− t

=
mc

eB
θ − t (3.168)

and

Q2 =
∂S

∂P2

= y +
mcP1

eB

[
1 + cos(2θ)

] ∂θ
∂P2

= y − c

eB

√
2mP1 cos θ . (3.169)

Now since H̃(P,Q) = 0, we have that Q̇σ = 0, which means that each Qσ is a constant. We
therefore have the following solution:

x(t) = x0 +A sin(ωct+ δ) (3.170)

y(t) = y0 +A cos(ωct+ δ) , (3.171)

where ωc = eB/mc is the ‘cyclotron frequency’, and

x0 =
cP2

eB
, y0 = Q2 , δ ≡ ωcQ1 , A =

c

eB

√
2mP1 . (3.172)
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3.9 Action-Angle Variables

3.9.1 Circular Phase Orbits: Librations and Rotations

In a completely integrable system, the Hamilton-Jacobi equation may be solved by separa-
tion of variables. Each momentum pσ is a function of only its corresponding coordinate qσ
plus constants – no other coordinates enter:

pσ =
∂Wσ

∂qσ
= pσ(qσ, Λ) . (3.173)

The motion satisfies
Hσ(qσ, pσ) = Λσ . (3.174)

The level sets of Hσ are curves Cσ. In general, these curves each depend on all of the
constants Λ, so we write Cσ = Cσ(Λ). The curves Cσ are the projections of the full motion
onto the (qσ, pσ) plane. In general we will assume the motion, and hence the curves Cσ,
is bounded . In this case, two types of projected motion are possible: librations and rota-
tions. Librations are periodic oscillations about an equilibrium position. Rotations involve
the advancement of an angular variable by 2π during a cycle. This is most conveniently
illustrated in the case of the simple pendulum, for which

H(pφ, φ) =
p2
φ

2I
+ 1

2Iω
2
(
1− cosφ

)
. (3.175)

• When E < I ω2, the momentum pφ vanishes at φ = ± cos−1(2E/Iω2). The system
executes librations between these extreme values of the angle φ.

• When E > I ω2, the kinetic energy is always positive, and the angle advances mono-
tonically, executing rotations.

In a completely integrable system, each Cσ is either a libration or a rotation5. Both
librations and rotations are closed curves. Thus, each Cσ is in general homotopic to (= “can
be continuously distorted to yield”) a circle, S1. For n freedoms, the motion is therefore
confined to an n-torus, Tn:

Tn =

n times︷ ︸︸ ︷
S1 × S1 × · · · × S1 . (3.176)

These are called invariant tori (or invariant manifolds). There are many such tori, as there
are many Cσ curves in each of the n two-dimensional submanifolds.

Invariant tori never intersect! This is ruled out by the uniqueness of the solution to the
dynamical system, expressed as a set of coupled ordinary differential equations.

Note also that phase space is of dimension 2n, while the invariant tori are of dimension
n. Phase space is ‘covered’ by the invariant tori, but it is in general difficult to conceive of
how this happens. Perhaps the most accessible analogy is the n = 1 case, where the ‘1-tori’
are just circles. Two-dimensional phase space is covered noninteracting circular orbits. (The
orbits are topologically equivalent to circles, although geometrically they may be distorted.)
It is challenging to think about the n = 2 case, where a four-dimensional phase space is
filled by nonintersecting 2-tori.

5Cσ may correspond to a separatrix, but this is a nongeneric state of affairs.
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Figure 3.6: Phase curves for the simple pendulum, showing librations (in blue), rotations
(in green), and the separatrix (in red). This phase flow is most correctly viewed as taking
place on a cylinder, obtained from the above sketch by identifying the lines φ = π and
φ = −π.

3.9.2 Action-Angle Variables

For a completely integrable system, one can transform canonically from (q, p) to new co-
ordinates (φ, J) which specify a particular n-torus Tn as well as the location on the torus,
which is specified by n angle variables. The {Jσ} are ‘momentum’ variables which specify
the torus itself; they are constants of the motion since the tori are invariant. They are
called action variables. Since J̇σ = 0, we must have

J̇σ = − ∂H
∂φσ

= 0 =⇒ H = H(J) . (3.177)

The {φσ} are the angle variables.
The coordinate φσ describes the projected motion along Cσ, and is normalized by∮

Cσ

dφσ = 2π (once around Cσ) . (3.178)

The dynamics of the angle variables are given by

φ̇σ =
∂H

∂Jσ
≡ νσ(J) . (3.179)

Thus,
φσ(t) = φσ(0) + νσ(J) t . (3.180)

The
{
νσ(J)

}
are frequencies describing the rate at which the Cσ are traversed; Tσ(J) =

2π/νσ(J) is the period.
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3.9.3 Canonical Transformation to Action-Angle Variables

The {Jσ} determine the {Cσ}; each qσ determines a point on Cσ. This suggests a type-II
transformation, with generator F2(q, J):

pσ =
∂F2

∂qσ
, φσ =

∂F2

∂Jσ
. (3.181)

Note that6

2π =
∮
Cσ

dφσ =
∮
Cσ

d

(
∂F2

∂Jσ

)
=
∮
Cσ

∂2F2

∂Jσ ∂qσ
dqσ =

∂

∂Jσ

∮
Cσ

pσ dqσ , (3.182)

which suggests the definition

Jσ =
1
2π

∮
Cσ

pσ dqσ . (3.183)

I.e. Jσ is (2π)−1 times the area enclosed by Cσ.
If, separating variables,

W (q, Λ) =
∑
σ

Wσ(qσ, Λ) (3.184)

is Hamilton’s characteristic function for the transformation (q, p)→ (Q,P ), then

Jσ =
1
2π

∮
Cσ

∂Wσ

∂qσ
dqσ = Jσ(Λ) (3.185)

is a function only of the {Λα} and not the {Γα}. We then invert this relation to obtain
Λ(J), to finally obtain

F2(q, J) = W
(
q, Λ(J)

)
=
∑
σ

Wσ

(
qσ, Λ(J)

)
. (3.186)

Thus, the recipe for canonically transforming to action-angle variable is as follows:

(1) Separate and solve the Hamilton-Jacobi equation for W (q, Λ) =
∑

σWσ(qσ, Λ).

(2) Find the orbits Cσ – the level sets of satisfying Hσ(qσ, pσ) = Λσ.

(3) Invert the relation Jσ(Λ) = 1
2π

∮
Cσ

∂Wσ
∂qσ

dqσ to obtain Λ(J).

(4) F2(q, J) =
∑

σWσ

(
qσ, Λ(J)

)
is the desired type-II generator7.

6In general, we should write d
`

∂F2
∂Jσ

´
= ∂2F2

∂Jσ ∂qα
dqα with a sum over α. However, in eqn. 3.182 all

coordinates and momenta other than qσ and pσ are held fixed. Thus, α = σ is the only term in the sum
which contributes.

7Note that F2(q, J) is time-independent. I.e. we are not transforming to H̃ = 0, but rather to H̃ = H̃(J).
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3.9.4 Example : Harmonic Oscillator

The Hamiltonian is

H =
p2

2m
+ 1

2mω
2
0q

2 , (3.187)

hence the Hamilton-Jacobi equation is(
dW

dq

)2

+m2ω2
0q

2 = 2mΛ . (3.188)

Thus,

p =
dW

dq
= ±

√
2mΛ−m2ω2

0q
2 . (3.189)

We now define

q ≡
(

2Λ
mω2

0

)1/2

sin θ ⇒ p =
√

2mΛ cos θ , (3.190)

in which case

J =
1
2π

∮
p dq =

1
2π
· 2Λ
ω0
·

2π∫
0

dθ cos2θ =
Λ

ω0
. (3.191)

Solving the HJE, we write

dW

dθ
=
∂q

∂θ
· dW
dq

= 2J cos2θ . (3.192)

Integrating,
W = Jθ + 1

2J sin 2θ , (3.193)

up to an irrelevant constant. We then have

φ =
∂W

∂J

∣∣∣∣
q

= θ + 1
2 sin 2θ + J

(
1 + cos 2θ

) ∂θ
∂J

∣∣∣∣
q

. (3.194)

To find (∂θ/∂J)q, we differentiate q =
√

2J/mω0 sin θ:

dq =
sin θ√
2mω0J

dJ +
√

2J
mω0

cos θ dθ ⇒ ∂θ

∂J

∣∣∣∣
q

= − 1
2J

tan θ . (3.195)

Plugging this result into eqn. 3.194, we obtain φ = θ. Thus, the full transformation is

q =
(

2J
mω0

)1/2

sinφ , p =
√

2mω0J cosφ . (3.196)

The Hamiltonian is
H = ω0 J , (3.197)

hence φ̇ = ∂H
∂J = ω0 and J̇ = −∂H

∂φ = 0, with solution φ(t) = φ(0) + ω0 t and J(t) = J(0).
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3.9.5 Example : Particle in a Box

Consider a particle in an open box of dimensions Lx × Ly moving under the influence of
gravity. The bottom of the box lies at z = 0. The Hamiltonian is

H =
p2
x

2m
+

p2
y

2m
+

p2
z

2m
+mgz . (3.198)

Step one is to solve the Hamilton-Jacobi equation via separation of variables. The
Hamilton-Jacobi equation is written

1
2m

(
∂Wx

∂x

)2

+
1

2m

(
∂Wy

∂y

)2

+
1

2m

(
∂Wz

∂z

)2

+mgz = E ≡ Λz . (3.199)

We can solve for Wx,y by inspection:

Wx(x) =
√

2mΛx x , Wy(y) =
√

2mΛy y . (3.200)

We then have8

W ′
z(z) = −

√
2m
(
Λz − Λx − Λy −mgz

)
(3.201)

Wz(z) =
2
√

2
3
√
mg

(
Λz − Λx − Λy −mgz

)3/2
. (3.202)

Step two is to find the Cσ. Clearly px,y =
√

2mΛx,y. For fixed px, the x motion proceeds
from x = 0 to x = Lx and back, with corresponding motion for y. For x, we have

pz(z) = W ′
z(z) =

√
2m
(
Λz − Λx − Λy −mgz

)
, (3.203)

and thus Cz is a truncated parabola, with zmax = (Λz − Λx − Λy)/mg.
Step three is to compute J(Λ) and invert to obtain Λ(J). We have

Jx =
1
2π

∮
Cx

px dx =
1
π

Lx∫
0

dx
√

2mΛx =
Lx
π

√
2mΛx (3.204)

Jy =
1
2π

∮
Cy

py dy =
1
π

Ly∫
0

dy
√

2mΛy =
Ly
π

√
2mΛy (3.205)

and

Jz =
1
2π

∮
Cz

pz dz =
1
π

zmax∫
0

dx
√

2m
(
Λz − Λx − Λy −mgz

)
=

2
√

2
3π
√
mg

(
Λz − Λx − Λy

)3/2
. (3.206)

8Our choice of signs in taking the square roots for W ′
x, W ′

y, and W ′
z is discussed below.
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Figure 3.7: The librations Cz and Cx. Not shown is Cy, which is of the same shape as Cx.

We now invert to obtain

Λx =
π2

2mL2
x

J2
x , Λy =

π2

2mL2
y

J2
y (3.207)

Λz =
(

3π
√
mg

2
√

2

)2/3

J2/3
z +

π2

2mL2
x

J2
x +

π2

2mL2
y

J2
y . (3.208)

F2

(
x, y, z, Jx, Jy, Jz

)
=
πx

Lx
Jx +

πy

Ly
Jy + π

(
J2/3
z − 2m2/3g1/3z

(3π)2/3

)3/2

. (3.209)

We now find
φx =

∂F2

∂Jx
=
πx

Lx
, φy =

∂F2

∂Jy
=
πy

Ly
(3.210)

and

φz =
∂F2

∂Jz
= π

√
1− 2m2/3g1/3z

(3πJz)
2/3

= π

√
1− z

zmax

, (3.211)

where

zmax(Jz) =
(3πJz)2/3

2m2/3g1/3
. (3.212)

The momenta are
px =

∂F2

∂x
=
πJx
Lx

, py =
∂F2

∂y
=
πJy
Ly

(3.213)

and

pz =
∂F2

∂z
= −
√

2m

((
3π
√
mg

2
√

2

)2/3

J2/3
z −mgz

)1/2

. (3.214)
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We note that the angle variables φx,y,z seem to be restricted to the range [0, π], which
seems to be at odds with eqn. 3.182. Similarly, the momenta px,y,z all seem to be positive,
whereas we know the momenta reverse sign when the particle bounces off a wall. The origin
of the apparent discrepancy is that when we solved for the functions Wx,y,z, we had to take
a square root in each case, and we chose a particular branch of the square root. So rather
than Wx(x) =

√
2mΛx x, we should have taken

Wx(x) =

{√
2mΛx x if px > 0
√

2mΛx (2Lx − x) if px < 0 .
(3.215)

The relation Jx = (Lx/π)
√

2mΛx is unchanged, hence

Wx(x) =

{
(πx/Lx) Jx if px > 0
2πJx − (πx/Lx) Jx if px < 0 .

(3.216)

and

φx =

{
πx/Lx if px > 0
π(2Lx − x)/Lx if px < 0 .

(3.217)

Now the angle variable φx advances by 2π during the cycle Cx. Similar considerations apply
to the y and z sectors.

3.9.6 Kepler Problem in Action-Angle Variables

This is discussed in detail in standard texts, such as Goldstein. The potential is V (r) =
−k/r, and the problem is separable. We write9

W (r, θ, φ) = Wr(r) +Wθ(θ) +Wϕ(ϕ) , (3.218)

hence

1
2m

(
∂Wr

∂r

)2

+
1

2mr2

(
∂Wθ

∂θ

)2

+
1

2mr2 sin2θ

(
∂Wϕ

∂ϕ

)2

+ V (r) = E ≡ Λr . (3.219)

Separating, we have

1
2m

(
dWϕ

dϕ

)2

= Λϕ ⇒ Jϕ =
∮
Cϕ

dϕ
dWϕ

dϕ
= 2π

√
2mΛϕ . (3.220)

Next we deal with the θ coordinate:

1
2m

(
dWθ

dθ

)2

= Λθ −
Λϕ

sin2θ
⇒

Jθ = 4
√

2mΛθ

θ0∫
0

dθ
√

1−
(
Λϕ/Λθ

)
sin−2θ

= 2π
√

2m
(√

Λθ −
√
Λϕ

)
, (3.221)

9We denote the azimuthal angle by ϕ to distinguish it from the AA variable φ.
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where θ0 = sin−1(Λϕ/Λθ). Finally, we have10

1
2m

(
dWr

dr

)2

= E +
k

r
− Λθ
r2

⇒

Jr =
∮
Cr

dr

√
2m
(
E +

k

r
− Λθ
r2

)

= −(Jθ + Jϕ) + πk

√
2m
|E|

, (3.222)

where we’ve assumed E < 0, i.e. bound motion.
Thus, we find

H = E = − 2π2mk2(
Jr + Jθ + Jϕ

)2 . (3.223)

Note that the frequencies are completely degenerate:

ν ≡ νr,θ,ϕ =
∂H

∂Jr,θ,ϕ
=

4π2mk2(
Jr + Jθ + Jϕ

)3 =
(
π2mk2

2|E|3

)1/2

. (3.224)

This threefold degeneracy may be removed by a transformation to new AA variables,{
(φr, Jr), (φθ, Jθ), (φϕ, Jϕ)

}
−→

{
(φ1, J1), (φ2, J2), (φ3, J3)

}
, (3.225)

using the type-II generator

F2(φr, φθ, φϕ;J1, J2, J3) = (φϕ − φθ) J1 + (φθ − φr) J2 + φr J3 , (3.226)

which results in

φ1 =
∂F2

∂J1
= φϕ − φθ Jr =

∂F2

∂φr
= J3 − J2 (3.227)

φ2 =
∂F2

∂J2
= φθ − φr Jθ =

∂F2

∂φθ
= J2 − J1 (3.228)

φ3 =
∂F2

∂J3
= φr Jϕ =

∂F2

∂φϕ
= J1 . (3.229)

The new Hamiltonian is

H(J1, J2, J3) = −2π2mk2

J2
3

, (3.230)

whence ν1 = ν2 = 0 and ν3 = ν.

10The details of performing the integral around Cr are discussed in e.g. Goldstein.
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3.9.7 Charged Particle in a Magnetic Field

For the case of the charged particle in a magnetic field, studied above in section 3.8.7, we
found

x =
cP2

eB
+

c

eB

√
2mP1 sin θ (3.231)

and
px =

√
2mP1 cos θ , py = P2 . (3.232)

The action variable J is then

J =
∮
px dx =

2mcP1

eB

2π∫
0

dθ cos2θ =
mcP1

eB
. (3.233)

We then have
W = Jθ + 1

2J sin(2θ) + Py , (3.234)

where P ≡ P2. Thus,

φ =
∂W

∂J

= θ + 1
2 sin(2θ) + J

[
1 + cos(2θ)

] ∂θ
∂J

= θ + 1
2 sin(2θ) + 2J cos2θ ·

(
− tan θ

2J

)
= θ . (3.235)

The other canonical pair is (Q,P ), where

Q =
∂W

∂P
= y −

√
2cJ
eB

cosφ . (3.236)

Therefore, we have

x =
cP

eB
+

√
2cJ
eB

sinφ , y = Q+

√
2cJ
eB

cosφ (3.237)

and

px =

√
2eBJ
c

cosφ , py = P . (3.238)

The Hamiltonian is

H =
p2
x

2m
+

1
2m

(
py −

eBx

c

)2

=
eBJ

mc
cos2φ+

eBJ

mc
sin2φ

= ωc J , (3.239)

33



where ωc = eB/mc. The equations of motion are

φ̇ =
∂H

∂J
= ωc , J̇ = −∂H

∂φ
= 0 (3.240)

and
Q̇ =

∂H

∂P
= 0 , Ṗ = −∂H

∂Q
= 0 . (3.241)

Thus, Q, P , and J are constants, and φ(t) = φ0 + ωc t.

3.9.8 Motion on Invariant Tori

The angle variables evolve as

φσ(t) = νσ(J) t+ φσ(0) . (3.242)

Thus, they wind around the invariant torus, specified by {Jσ} at constant rates. In general,
while each φσ executed periodic motion around a circle, the motion of the system as a whole
is not periodic, since the frequencies νσ(J) are not, in general, commensurate. In order for
the motion to be periodic, there must exist a set of integers, {lσ}, such that

n∑
σ=1

lσ νσ(J) = 0 . (3.243)

This means that the ratio of any two frequencies νσ/να must be a rational number. On a
given torus, there are several possible orbits, depending on initial conditions φ(0). However,
since the frequencies are determined by the action variables, which specify the tori, on a
given torus either all orbits are periodic, or none are.

In terms of the original coordinates q, there are two possibilities:

qσ(t) =
∞∑

l1=−∞
· · ·

∞∑
ln=−∞

A
(σ)
l1l2···ln e

il1φ1(t) · · · eilnφn(t)

≡
∑

l

Aσl e
il·φ(t) (libration) (3.244)

or
qσ(t) = q◦σ φσ(t) +

∑
l

Bσ
l e

il·φ(t) (rotation) . (3.245)

For rotations, the variable qσ(t) increased by ∆qσ = 2π q◦σ .

3.10 Canonical Perturbation Theory

3.10.1 Canonical Transformations and Perturbation Theory

Suppose we have a Hamiltonian

H(ξ, t) = H0(ξ, t) + εH1(ξ, t) , (3.246)
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where ε is a small dimensionless parameter. Let’s implement a type-II transformation,
generated by S(q, P, t):11

H̃(Q,P, t) = H(q, p, t) +
∂

∂t
S(q, P, t) . (3.247)

Let’s expand everything in powers of ε:

qσ = Qσ + ε q1,σ + ε2 q2,σ + . . . (3.248)

pσ = Pσ + ε p1,σ + ε2 p2,σ + . . . (3.249)

H̃ = H̃0 + ε H̃1 + ε2 H̃2 + . . . (3.250)

S = qσ Pσ︸ ︷︷ ︸
identity

transformation

+ ε S1 + ε2 S2 + . . . . (3.251)

Then

Qσ =
∂S

∂Pσ
= qσ + ε

∂S1

∂Pσ
+ ε2

∂S2

∂Pσ
+ . . . (3.252)

= Qσ +
(
q1,σ +

∂S1

∂Pσ

)
ε+

(
q2,σ +

∂S2

∂Pσ

)
ε2 + . . .

and

pσ =
∂S

∂qσ
= Pσ + ε

∂S1

∂qσ
+ ε2

∂S2

∂qσ
+ . . . (3.253)

= Pσ + ε p1,σ + ε2 p2,σ + . . . . (3.254)

We therefore conclude, order by order in ε,

qk,σ = −∂Sk
∂Pσ

, pk,σ = +
∂Sk
∂qσ

. (3.255)

Now let’s expand the Hamiltonian:

H̃(Q,P, t) = H0(q, p, t) + εH1(q, p, t) +
∂S

∂t
(3.256)

= H0(Q,P, t) +
∂H0

∂Qσ
(qσ −Qσ) +

∂H0

∂Pσ
(pσ − Pσ)

+ εH1(Q,P, t) + ε
∂

∂t
S1(Q,P, t) +O(ε2)

= H0(Q,P, t) +

(
− ∂H0

∂Qσ

∂S1

∂Pσ
+
∂H0

∂Pσ

∂S1

∂Qσ
+
∂S1

∂t
+H1

)
ε+O(ε2)

= H0(Q,P, t) +
(
H1 +

{
S1,H0

}
+
∂S1

∂t

)
ε+O(ε2) . (3.257)

11Here, S(q, P, t) is not meant to signify Hamilton’s principal function.
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In the above expression, we evaluate Hk(q, p, t) and Sk(q, P, t) at q = Q and p = P and
expand in the differences q −Q and p− P . Thus, we have derived the relation

H̃(Q,P, t) = H̃0(Q,P, t) + εH̃1(Q,P, t) + . . . (3.258)

with

H̃0(Q,P, t) = H0(Q,P, t) (3.259)

H̃1(Q,P, t) = H1 +
{
S1,H0

}
+
∂S1

∂t
. (3.260)

The problem, though, is this: we have one equation, eqn, 3.260, for the two unknowns
H̃1 and S1. Thus, the problem is underdetermined. Of course, we could choose H̃1 = 0,
which basically recapitulates standard Hamilton-Jacobi theory. But we might just as well
demand that H̃1 satisfy some other requirement, such as that H̃0 + ε H̃1 being integrable.

Incidentally, this treatment is paralleled by one in quantum mechanics, where a unitary
transformation may be implemented to eliminate a perturbation to lowest order in a small
parameter. Consider the Schrödinger equation,

ih̄
∂ψ

∂t
= (H0 + εH1)ψ , (3.261)

and define χ by
ψ ≡ eiS/h̄ χ , (3.262)

with
S = ε S1 + ε2 S2 + . . . . (3.263)

As before, the transformation U ≡ exp(iS/h̄) collapses to the identity in the ε → 0 limit.
Now let’s write the Schrödinger equation for χ. Expanding in powers of ε, one finds

ih̄
∂χ

∂t
= H0

χ+ ε

(
H1 +

1
ih̄

[
S1,H0

]
+
∂S1

∂t

)
χ+ . . . ≡ H̃χ , (3.264)

where [A,B] = AB −BA is the commutator. Note the classical-quantum correspondence,

{A,B} ←→ 1
ih̄

[A,B] . (3.265)

Again, what should we choose for S1? Usually the choice is made to make the O(ε) term
in H̃ vanish. But this is not the only possible simplifying choice.

3.10.2 Canonical Perturbation Theory for n = 1 Systems

Henceforth we shall assume H(ξ, t) = H(ξ) is time-independent, and we write the perturbed
Hamiltonian as

H(ξ) = H0(ξ) + εH1(ξ) . (3.266)

Let (φ0, J0) be the action-angle variables for H0. Then

H̃0(φ0, J0) = H0

(
q(φ0, J0), p(φ0, J0)

)
= H̃0(J0) . (3.267)
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We define
H̃1(φ0, J0) = H1

(
q(φ0, J0), p(φ0, J0)

)
. (3.268)

We assume that H̃ = H̃0 + ε H̃1 is integrable12, so it, too, possesses action-angle vari-
ables, which we denote by (φ, J)13. Thus, there must be a canonical transformation taking
(φ0, J0)→ (φ, J), with

H̃
(
φ0(φ, J), J0(φ, J)

)
≡ K(J) = E(J) . (3.269)

We solve via a type-II canonical transformation:

S(φ0, J) = φ0J + ε S1(φ0, J) + ε2 S2(φ0, J) + . . . , (3.270)

where φ0J is the identity transformation. Then

J0 =
∂S

∂φ0
= J + ε

∂S1

∂φ0
+ ε2

∂S2

∂φ0
+ . . . (3.271)

φ =
∂S

∂J
= φ0 + ε

∂S1

∂J
+ ε2

∂S2

∂J
+ . . . , (3.272)

and

E(J) = E0(J) + εE1(J) + ε2E2(J) + . . . (3.273)

= H̃0(φ0, J0) + H̃1(φ0, J0) . (3.274)

We now expand H̃(φ0, J0) in powers of J0 − J :

H̃(φ0, J0) = H̃0(φ0, J0) + ε H̃1(φ0, J0) (3.275)

= H̃0(J) +
∂H̃0

∂J
(J0 − J) + 1

2

∂2H̃0

∂J2
(J0 − J)2 + . . .

+ ε H̃1(φ0, J0) + ε
∂H̃1

∂J
(J0 − J) + . . .

= H̃0(J) +
(
H̃1(φ0, J0) +

∂H̃0

∂J

∂S1

∂φ0

)
ε (3.276)

+

(
∂H̃0

∂J

∂S2

∂φ0
+

1
2
∂2H̃0

∂J2

(
∂S1

∂φ0

)2

+
∂H̃1

∂J

∂S1

∂φ0

)
ε2 + . . . .

Equating terms, then,

E0(J) = H̃0(J) (3.277)

E1(J) = H̃1(φ0, J) +
∂H̃0

∂J

∂S1

∂φ0
(3.278)

E2(J) =
∂H̃0

∂J

∂S2

∂φ0
+

1
2
∂2H̃0

∂J2

(
∂S1

∂φ0

)2

+
∂H̃1

∂J

∂S1

∂φ0
. (3.279)

12This is always true, in fact, for n = 1.
13We assume the motion is bounded, so action-angle variables may be used.
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How, one might ask, can we be sure that the LHS of each equation in the above hierarchy
depends only on J when each RHS seems to depend on φ0 as well? The answer is that we
use the freedom to choose each Sk to make this so. We demand each RHS be independent
of φ0, which means it must be equal to its average, 〈RHS(φ0) 〉, where

〈
f
(
φ0

)〉
=

2π∫
0

dφ0

2π
f
(
φ0

)
. (3.280)

The average is performed at fixed J and not at fixed J0. In this regard, we note that holding
J constant and increasing φ0 by 2π also returns us to the same starting point. Therefore,
J is a periodic function of φ0. We must then be able to write

Sk(φ0, J) =
∞∑

m=−∞
Sk(J ;m) eimφ0 (3.281)

for each k > 0, in which case〈
∂Sk
∂φ0

〉
=

1
2π
[
Sk(2π)− Sk(0)

]
= 0 . (3.282)

Let’s see how this averaging works to the first two orders of the hierarchy. Since H̃0(J)
is independent of φ0 and since ∂S1/∂φ0 is periodic, we have

E1(J) =
〈
H̃1(φ0, J)

〉
+
∂H̃0

∂J

this vanishes!︷ ︸︸ ︷〈
∂S1

∂φ0

〉
(3.283)

and hence S1 must satisfy
∂S1

∂φ0
=

〈
H̃1

〉
− H̃1

ν0(J)
, (3.284)

where ν0(J) = ∂H̃0/∂J . Clearly the RHS of eqn. 3.284 has zero average, and must be a
periodic function of φ0. The solution is S1 = S1(φ0, J) + g(J), where g(J) is an arbitrary
function of J . However, g(J) affects only the difference φ − φ0, changing it by a constant
value g′(J). So there is no harm in taking g(J) = 0.

Next, let’s go to second order in ε. We have

E2(J) =
〈
∂H̃1

∂J

∂S1

∂φ0

〉
+ 1

2

∂ν0

∂J

〈(
∂S1

∂φ1

)2〉
+ ν0(J)

this vanishes!︷ ︸︸ ︷〈
∂S2

∂φ0

〉
. (3.285)

The equation for S2 is then

∂S2

∂φ0
=

1
ν2
0(J)

{〈
∂H̃1

∂J

〉〈
H̃0

〉
−
〈
∂H̃1

∂J
H̃0

〉
− ∂H̃1

∂J

〈
H̃1

〉
+
∂H̃1

∂J
H̃1

+
1
2
∂ ln ν0

∂J

(〈
H̃2

1

〉
− 2
〈
H̃1

〉2 + 2
〈
H̃1

〉
− H̃2

1

)}
. (3.286)
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The expansion for the energy E(J) is then

E(J) = H̃0(J) + ε
〈
H̃1

〉
+

ε2

ν0(J)

{〈
∂H̃1

∂J

〉〈
H̃1

〉
−
〈
∂H̃1

∂J
H̃1

〉

+
1
2
∂ ln ν0

∂J

(〈
H̃2

1 −
〈
H̃1

〉2)}+O(ε3) . (3.287)

Note that we don’t need S to find E(J)! The perturbed frequencies are

ν(J) =
∂E

∂J
. (3.288)

Sometimes the frequencies are all that is desired. However, we can of course obtain the full
motion of the system via the succession of canonical transformations,

(φ, J) −→ (φ0, J0) −→ (q, p) . (3.289)

3.10.3 Example : Nonlinear Oscillator

Consider the nonlinear oscillator with Hamiltonian

H(q, p) =

H0︷ ︸︸ ︷
p2

2m
+ 1

2mν
2
0q

2 +1
4εαq

4 . (3.290)

The action-angle variables for the harmonic oscillator Hamiltonian H0 are

Figure 3.8: Action-angle variables for the harmonic oscillator.

φ0 = tan−1
(
mvq/p) , J0 =

p2

2mν0
+ 1

2mν0q
2 , (3.291)

and the relation between (φ0, J0) and (q, p) is further depicted in fig. 3.8. Note H0 = ν0 J0.
For the full Hamiltonian, we have

H̃(φ0, J0) = ν0J0 + 1
4ε α

(√
2J0

mν0
sinφ0

)4

= ν0J0 +
εα

m2ν2
0

J2
0 sin4φ0 . (3.292)

39



We may now evaluate

E1(J) =
〈
H̃1

〉
=

αJ2

m2ν2
0

2π∫
0

dφ0

2π
sin4φ0 =

3αJ2

8m2ν2
0

. (3.293)

The frequency, to order ε, is

ν(J) = ν0 +
3 ε αJ
4m2ν2

0

. (3.294)

Now to lowest order in ε, we may replace J by J0 = 1
2mν0A

2, where A is the amplitude of
the q motion. Thus,

ν(A) = ν0 +
3εα

8mν0
. (3.295)

This result agrees with that obtained via heavier lifting, using the Poincaré-Lindstedt
method.

Next, let’s evaluate the canonical transformation (φ0, J0)→ (φ, J). We have

ν0

∂S1

∂φ0
=

αJ2

m2ν2
0

(
3
8 − sin4φ0

)
⇒

S(φ0, J) = φ0 J +
εαJ2

8m2ν3
0

(
3 + 2 sin2φ0

)
sinφ0 cosφ0 +O(ε2) . (3.296)

Thus,

φ =
∂S

∂J
= φ0 +

εαJ

4m2ν3
0

(
3 + 2 sin2φ0

)
sinφ0 cosφ0 +O(ε2) (3.297)

J0 =
∂S

∂φ0

= J +
εαJ2

8m2ν3
0

(
4 cos 2φ0 − cos 4φ0

)
+O(ε2) . (3.298)

Again, to lowest order, we may replace J by J0 in the above, whence

J = J0 −
εαJ2

0

8m2ν3
0

(
4 cos 2φ0 − cos 4φ0

)
+O(ε2) (3.299)

φ = φ0 +
εαJ0

8m2ν3
0

(
3 + 2 sin2φ0

)
sin 2φ0 +O(ε2) . (3.300)

To obtain (q, p) in terms of (φ, J) is not analytically tractable – the relations cannot be
analytically inverted.

3.10.4 n > 1 Systems : Degeneracies and Resonances

Generalizing the procedure we derived for n = 1, we obtain

Jα0 =
∂S

∂φα0
= Jα + ε

∂S1

∂φα0
+ ε2

∂S2

∂φα0
+ . . . (3.301)

φα =
∂S

∂Jα
= φα0 + ε

∂S1

∂Jα
+ ε2

∂S2

∂Jα
+ . . . (3.302)
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and

E0(J) = H̃0(J) (3.303)

E1(J) = H̃0(φ0,J) + να0 (J)
∂S1

∂φα0
(3.304)

E2(J) =
∂H̃0

∂Jα

∂S2

∂φα0
+

1
2
∂να0
∂Jβ

∂S1

∂φα0

∂S1

∂φβ0
+ να0

∂S1

∂φα0
. (3.305)

We now implement the averaging procedure, with

〈
f(J1, . . . , Jn)

〉
=

2π∫
0

dφ1
0

2π
· · ·

2π∫
0

dφn0
2π

f
(
φ1

0, . . . , φ
n
0 , J

1, . . . , Jn
)
. (3.306)

The equation for S1 is

να0
∂S1

∂φα0
=
〈
H̃1

〉
− H̃1 ≡ −

∑
l

′
Vl e

il·φ , (3.307)

where l = {l1, l2, . . . , ln}, with each lσ an integer, and with l 6= 0. The solution is

S1(φ0,J) = i
∑
l

′ Vl

l · ν0
eil·φ . (3.308)

where l · ν0 = lανα0 . When two or more of the frequencies να(J) are commensurate, there
exists a set of integers l such that the denominator of D(l) vanishes. But even when the
frequencies are not rationally related, one can approximate the ratios να0 /ν

α′
0 by rational

numbers, and for large enough l the denominator can become arbitrarily small.
A similar problem arises with periodic time-dependent perturbations. Consider the

system
H(φ,J , t) = H0(J) + ε V (φ,J , t) , (3.309)

where V (t+ T ) = V (t). This means we may write

V (φ,J , t) =
∑
k

Vk(φ,J) e−ikΩt (3.310)

=
∑

k

∑
l

V̂k,l(J) eil·φ e−ikΩt . (3.311)

by Fourier transforming from both time and angle variables; here Ω = 2π/T . Note that
V (φ,J , t) is real if V ∗

k,l = V−k,−l. The equations of motion are

J̇α = − ∂H
∂φα

= −iε
∑
k,l

lα V̂k,l(J) eil·φ e−ikΩt (3.312)

φ̇α = +
∂H

∂Jα
= να0 (J) + ε

∑
k,l

∂V̂k,l(J)

∂Jα
eil·φ e−ikΩt . (3.313)
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We now expand in ε:

φα = φα0 + ε φα1 + ε2 φα2 + . . . (3.314)

Jα = Jα0 + ε Jα1 + ε2 Jα2 + . . . . (3.315)

To order ε0, Jα = Jα0 and φα0 = να0 t+ βα0 . To order ε1,

J̇α1 = −i
∑
k,l

lα V̂k,l(J0) e
i(l·ν0−kΩ)t ei·β0 (3.316)

and

φ̇α1 =
∂να0
∂Jβ

Jβ1 +
∑
k,l

∂V̂k,l(J)

∂Jα
ei(l·ν0−kΩ)t eil·β0 , (3.317)

where derivatives are evaluated at J = J0. The solution is:

Jα1 =
∑
k,l

lα V̂k,l(J0)
kΩ − l · ν0

ei(l·ν0−kΩ)t eil·β0 (3.318)

φα1 =

{
∂να0
∂Jβ

lβ V̂k,l(J0)
(kΩ − l · ν0)2

+
∂V̂k,l(J)

∂Jα
1

kΩ − l · ν0

}
ei(l·ν0−kΩ)t eil·β0 . (3.319)

When the resonance condition,
kΩ = l · ν0(J0) , (3.320)

holds, the denominators vanish, and the perturbation theory breaks down.

3.10.5 Particle-Wave Interaction

Consider a particle of charge e moving in the presence of a constant magnetic field B = Bẑ
and a space- and time-varying electric field E(x, t), described by the Hamiltonian

H =
1

2m
(
p− e

cA
)2 + ε eV0 cos(k⊥x+ kzz − ωt) , (3.321)

where ε is a dimensionless expansion parameter. Working in the gauge A = Bxŷ, from our
earlier discussions in section 3.8.7, we may write

H = ωcJ +
p2
z

2m
+ ε eV0 cos

(
kzz +

k⊥P

mωc
+ k⊥

√
2J
mωc

sinφ− ωt
)
. (3.322)

Here,

x =
P

mωc
+
√

2J
mωc

sinφ , y = Q+
√

2J
mωc

cosφ , (3.323)

with ωc = eB/mc, the cyclotron frequency. We now make a mixed canonical transformation,
generated by

F = φJ ′ +
(
kzz +

k⊥P

mωc
− ωt

)
K ′ − PQ′ , (3.324)
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where the new sets of conjugate variables are
{
(φ′, J ′) , (Q′, P ′) , (ψ′,K ′)

}
. We then have

φ′ =
∂F

∂J ′
= φ J =

∂F

∂φ
= J ′ (3.325)

Q = −∂F
∂P

= −k⊥K
′

mωc
+Q′ P ′ = − ∂F

∂Q′ = P (3.326)

ψ′ =
∂F

∂K ′ = kzz +
k⊥P

mωc
− ωt pz =

∂F

∂z
= kzK

′ . (3.327)

The transformed Hamiltonian is

H ′ = H +
∂F

∂t

= ωcJ
′ +

k2
z

2m
K ′2 − ωK ′ + ε eV0 cos

(
ψ′ + k⊥

√
2J ′

mωc
sinφ′

)
. (3.328)

We will now drop primes and simply write H = H0 + εH1, with

H0 = ωcJ +
k2
z

2m
K2 − ωK (3.329)

H1 = eV0 cos
(
ψ + k⊥

√
2J
mωc

sinφ
)
. (3.330)

When ε = 0, the frequencies associated with the φ and ψ motion are

ω0
φ =

∂H0

∂φ
= ωc , ω0

ψ =
∂H0

∂ψ
=
k2
zK

m
− ω = kzvz − ω , (3.331)

where vz = pz/m is the z-component of the particle’s velocity. Now let us solve eqn. 3.307:

ω0
φ

∂S1

∂φ
+ ω0

ψ

∂S1

∂ψ
= 〈H1 〉 −H1 . (3.332)

This yields

ωc

∂S1

∂φ
+
(
k2
zK

m
− ω

)
∂S1

∂ψ
= −eA0 cos

(
ψ + k⊥

√
2J
mωc

sinφ
)

= −eA0

∞∑
n=−∞

Jn

(
k⊥

√
2J
mωc

)
cos(ψ + nφ) , (3.333)

where we have used the result

eiz sin θ =
∞∑

n=−∞
Jn(z) e

inθ . (3.334)

The solution for S1 is

S1 =
∑
n

eV0

ω − nωc − k2
zK̄/m

Jn

(
k⊥

√
2J̄
mωc

)
sin(ψ + nφ) . (3.335)
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We then have new action variables J̄ and K̄, where

J = J̄ + ε
∂S1

∂φ
+O(ε2) (3.336)

K = K̄ + ε
∂S1

∂ψ
+O(ε2) . (3.337)

Defining the dimensionless variable

λ ≡ k⊥

√
2J
mωc

, (3.338)

we obtain the result(
mω2

c

2eV0k2
⊥

)
λ̄2 =

(
mω2

c

2eV0k2
⊥

)
λ2 − ε

∑
n

nJn(λ) cos(ψ + nφ)
ω
ωc
− n− k2

zK
mωc

+O(ε2) , (3.339)

where λ̄ = k⊥
√

2J̄/mωc.14

We see that resonances occur whenever

ω

ωc
− k2

zK

mωc
= n , (3.340)

for any integer n. Let us consider the case kz = 0, in which the resonance condition is
ω = nωc. We then have

λ̄2

2α
=
λ2

2α
−
∑
n

nJn(λ) cos(ψ + nφ)
ω
ωc
− n

, (3.341)

where
α =

E0

B
· ck⊥
ωc

(3.342)

is a dimensionless measure of the strength of the perturbation, with E0 ≡ k⊥V0. In Fig. 3.9
we plot the level sets for the RHS of the above equation λ(ψ) for φ = 0, for two different
values of the dimensionless amplitude α, for ω/ωc = 30.11 (i.e. off resonance). Thus, when
the amplitude is small, the level sets are far from a primary resonance, and the analytical and
numerical results are very similar (left panels). When the amplitude is larger, resonances
may occur which are not found in the lowest order perturbation treatment. However, as
is apparent from the plots, the gross features of the phase diagram are reproduced by
perturbation theory. What is missing is the existence of ‘chaotic islands’ which initially
emerge in the vicinity of the trapping regions.

14Note that the argument of Jn in eqn. 3.339 is λ and not λ̄. This arises because we are computing the
new action J̄ in terms of the old variables (φ, J) and (ψ,K).

44



Figure 3.9: Plot of λ versus ψ for φ = 0 (Poincaré section) for ω = 30.11ωc Top panels are
nonresonant invariant curves calculated to first order. Bottom panels are exact numerical
dynamics, with x symbols marking the initial conditions. Left panels: weak amplitude
(no trapping). Right panels: stronger amplitude (shows trapping). From Lichtenberg and
Lieberman (1983).

3.11 Adiabatic Invariants

Adiabatic perturbations are slow, smooth, time-dependent perturbations to a dynamical
system. A classic example: a pendulum with a slowly varying length l(t). Suppose λ(t)
is the adiabatic parameter. We write H = H

(
q, p;λ(t)

)
. All explicit time-dependence to

H comes through λ(t). Typically, a dimensionless parameter ε may be associated with the
perturbation:

ε =
1
ω0

∣∣∣∣d lnλ
dt

∣∣∣∣ , (3.343)

where ω0 is the natural frequency of the system when λ is constant. We require ε � 1 for
adiabaticity.

In adiabatic processes, the action variables are conserved to a high degree of accuracy.
These are the adiabatic invariants. For example, for the harmonix oscillator, the action is
J = E/ν. While E and ν may vary considerably during the adiabatic process, their ratio
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is very nearly fixed. As a consequence, assuming small oscillations,

E = νJ = 1
2mgl θ

2
0 ⇒ θ0(l) ≈

2J
m
√
g l3/2

, (3.344)

so θ0(`) ∝ l−3/4.
Suppose that for fixed λ the Hamiltonian is transformed to action-angle variables via

the generator S(q, J ;λ). The transformed Hamiltonian is

H̃(φ, J, t) = H(φ, J ;λ) +
∂S

∂λ
λ̇ , (3.345)

where
H(φ, J ;λ) = H

(
q(φ, J ;λ), p(φ, J ;λ);λ) . (3.346)

We assume n = 1 here. Hamilton’s equations are now

φ̇ = +
∂H̃

∂J
= ν(J ;λ) +

∂2S

∂λ ∂J
λ̇ (3.347)

J̇ = −∂H̃
∂φ

= − ∂2S

∂λ ∂φ
λ̇ . (3.348)

The second of these may be Fourier decomposed as

J̇ = −iλ̇
∑
m

m
∂Sm(J ;λ)

∂λ
eimφ , (3.349)

hence

∆J = J(t = +∞)− J(t = −∞) = −i
∑
m

m

∞∫
−∞

dt
∂Sm(J ;λ)

∂λ
λ̇ eimφ . (3.350)

Since λ̇ is small, we have φ(t) = ν t + β, to lowest order. We must therefore evaluate
integrals such as

I =

∞∫
−∞

dt

{
∂Sm(J ;λ)

∂λ
λ̇

}
eimνt . (3.351)

The term in curly brackets is a smooth, slowly varying function of t. Call it f(t). We
presume f(t) can be analytically continued off the real t axis, and that its closest singularity
in the complex t plane lies at t = ±iτ , in which case I behaves as exp(−|m|ντ). Consider,
for example, the Lorentzian,

f(t) =
C

1 + (t/τ)2
⇒

∞∫
−∞

dt f(t) eimνt = πτ e−|m|ντ , (3.352)

which is exponentially small in the time scale τ . Because of this, only m = ±1 need be
considered. What this tells us is that the change ∆J may be made arbitrarily small by a
sufficiently slowly varying λ(t).
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Figure 3.10: A mechanical mirror.

3.11.1 Example: Mechanical Mirror

Consider a two-dimensional version of a mechanical mirror, depicted in fig. 3.10. A particle
bounces between two curves, y = ±D(x), where |D′(x)| << 1. The bounce time is τb⊥ =
2D/vy. We assume τ � L/vx, where vx,y are the components of the particle’s velocity, and
L is the total length of the system. There are, therefore, many bounces, which means the
particle gets to sample the curvature in D(x).

The adiabatic invariant is the action,

J =
1
2π

D∫
−D

dymvy +
1
2π

−D∫
D

dym (−vy) =
2
π
mvyD(x) . (3.353)

Thus,

E = 1
2m
(
v2
x + v2

y) = 1
2mv

2
x +

π2J2

8mD2(x)
, (3.354)

or

v2
x =

2E
m
−
(

πJ

2mD(x)

)2

. (3.355)

This means that the particle is reflected in the throat of the device at horizontal coordinate
x∗ such that

D(x∗) =
πJ√
8mE

. (3.356)

3.11.2 Example: Magnetic Mirror

Consider a particle of charge e moving in the presence of a uniform magnetic field B = Bẑ.
Recall the basic physics: velocity in the parallel direction vz is conserved, while in the plane
perpendicular to B the particle executes circular ‘cyclotron orbits’, satisfying

mv2
⊥
ρ

=
e

c
v⊥B ⇒ ρ =

mcv⊥
eB

, (3.357)

where ρ is the radial coordinate in the plane perpendicular to B. The period of the orbits
is T = 2πρ.v⊥ = 2πmc/eB, hence their frequency is ωc = eB/mc, known as the cyclotron
frequency .

Now assume that the magnetic field is spatially dependent. Note that a spatially varying
B-field cannot be unidirectional:

∇ ·B = ∇⊥ ·B⊥ +
∂Bz
∂z

= 0 . (3.358)

47



Figure 3.11: B field lines in a magnetic bottle.

The non-collinear nature of B results in the drift of the cyclotron orbits. Nevertheless, if
the field B felt by the particle varies slowly on the time scale T = 2π/ωc, then the system
possesses an adiabatic invariant:

J =
1
2π

∮
C

p · d` =
1
2π

∮
C

(
mv + e

c A
)
· d` (3.359)

=
m

2π

∮
C

v · d` +
e

2πc

∮
int(C)

B · n̂ dΣ . (3.360)

The last two terms are of opposite sign, and one has

J = −m
2π
· ρeBz
mc

· 2πρ+
e

2πc
·Bz · πρ2 (3.361)

= −eBzρ
2

2c
= − e

2πc
· ΦB(C) = −

m2v2
⊥c

2eBz
, (3.362)

where ΦB(C) is the magnetic flux enclosed by C.
The energy is

E = 1
2mv

2
⊥ + 1

2mv
2
z , (3.363)

hence we have

vz =

√
2
m

(
E −MB

)
. (3.364)

where

M ≡ − e

mc
J =

e2

2πmc2
ΦB(C) (3.365)

is the magnetic moment . Note that vz vanishes when B = Bmax = E/M . When this limit
is reached, the particle turns around. This is the physics of the magnetic mirror .

A pair of magnetic mirrors may be used to confine charged particles in a magnetic bottle,
depicted in fig. 3.11.
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Let v‖,0, v⊥,0, and B‖,0 be the longitudinal particle velocity, transverse particle velocity,
and longitudinal component of the magnetic field, respectively, at the point of injection.
Our two conservation laws (J and E) guarantee

v2
‖(z) + v2

⊥(z) = v2
‖,0 + v2

⊥,0 (3.366)

v⊥(z)2

B‖(z)
=
v2
⊥,0
B‖,0

. (3.367)

This leads to reflection at a longitudinal coordinate z∗, where

B‖(z
∗) = B‖,0

√√√√1 +
v2
‖,0

v2
⊥,0

. (3.368)

The physics is quite similar to that of the mechanical mirror.

3.11.3 Resonances

When n > 1, we have

J̇α = −iλ̇
∑
m

mα ∂Sm(J ;λ)
∂λ

eim·φ (3.369)

∆J = −i
∑
m

mα

∞∫
−∞

dt
∂Sm(J ;λ)

∂λ
λ̇ eim·νt eim·β . (3.370)

Therefore, when m · ν(J) = 0 we have a resonance, and the integral grows linearly with
time – a violation of the adiabatic invariance of Jα.

3.12 Fast Perturbations : Rapidly Oscillating Fields

Consider a free particle moving under the influence of an oscillating force,

mq̈ = F sinωt . (3.371)

The motion of the system is then

q(t) = qh(t)−
F sinωt
mω2

, (3.372)

where qh(t) = A + Bt is the solution to the homogeneous (unforced) equation of motion.
Note that the amplitude of the response q − qh goes as ω−2 and is therefore small when ω
is large.

Now consider a general n = 1 system, with

H(q, p, t) = H0(q, p) + V1(q) sin(ωt+ δ) . (3.373)
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We assume that ω is much greater than any natural oscillation frequency associated with
H0. We separate the motion q(t) and p(t) into slow and fast components:

q(t) = q̄(t) + ζ(t) (3.374)

p(t) = p̄(t) + π(t) , (3.375)

where ζ(t) and π(t) oscillate with the driving frequency ω. Since ζ and π will be small, we
expand Hamilton’s equations in these quantities:

˙̄q + ζ̇ =
∂H0

∂p̄
+
∂2H0

∂p̄2
π +

∂2H0

∂q̄ ∂p̄
ζ +

1
2
∂3H0

∂q̄2 ∂p̄
ζ2 +

∂3H0

∂q̄ ∂p̄2
ζπ +

1
2
∂3H0

∂p̄3
π2 + . . . (3.376)

˙̄p+ π̇ = −∂H0

∂q̄
− ∂2H0

∂q̄2
ζ − ∂2H0

∂q̄ ∂p̄
π − 1

2
∂3H0

∂q̄3
ζ2 − ∂3H0

∂q̄2 ∂p̄
ζπ − 1

2
∂3H0

∂q̄ ∂p̄2
π2

− ∂V

∂q̄
sin(ωt+ δ)− ∂2V

∂q̄2
ζ sin(ωt+ δ)− . . . . (3.377)

We now average over the fast degrees of freedom to obtain an equation of motion for the slow
variables q̄ and p̄, which we here carry to lowest nontrivial order in averages of fluctuating
quantities:

˙̄q =
∂H0

∂p̄
+

1
2
∂3H0

∂q̄2 ∂p̄

〈
ζ2
〉

+
∂3H0

∂q̄ ∂p̄2

〈
ζπ
〉

+
1
2
∂3H0

∂p̄3

〈
π2
〉

(3.378)

˙̄p = −∂H0

∂q̄
− 1

2
∂3H0

∂q̄3
〈
ζ2
〉
− ∂3H0

∂q̄2 ∂p̄

〈
ζπ
〉
− 1

2
∂3H0

∂q̄ ∂p̄2

〈
π2
〉
− ∂2V

∂q̄2
〈
ζ sin(ωt+ δ)

〉
. (3.379)

The fast degrees of freedom obey

ζ̇ =
∂2H0

∂q̄ ∂p̄
ζ +

∂2H0

∂p̄2
π (3.380)

π̇ = −∂
2H0

∂q̄2
ζ − ∂2H0

∂q̄ ∂p̄
π − ∂V

∂q
sin(ωt+ δ) . (3.381)

Let us analyze the coupled equations15

ζ̇ = Aζ +B π (3.382)

π̇ = −C ζ −Aπ + F e−iωt . (3.383)

The solution is of the form (
ζ
π

)
=
(
α
β

)
e−iωt . (3.384)

Plugging in, we find

α =
BF

BC −A2 − ω2
= −BF

ω2
+O

(
ω−4

)
(3.385)

β = − (A+ iω)F
BC −A2 − ω2

=
iF

ω
+O

(
ω−3

)
. (3.386)

15With real coefficients A, B, and C, one can always take the real part to recover the fast variable equations
of motion.
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Taking the real part, and restoring the phase shift δ, we have

ζ(t) =
−BF
ω2

sin(ωt+ δ) =
1
ω2

∂V

∂q̄

∂2H0

∂p̄2
sin(ωt+ δ) (3.387)

π(t) = −F
ω

cos(ωt+ δ) =
1
ω

∂V

∂q̄
cos(ωt+ δ) . (3.388)

The desired averages, to lowest order, are thus〈
ζ2
〉

=
1

2ω4

(
∂V

∂q̄

)2(∂2H0

∂p̄2

)2

(3.389)

〈
π2
〉

=
1

2ω2

(
∂V

∂q̄

)2

(3.390)

〈
ζ sin(ωt+ δ)

〉
=

1
2ω2

∂V

∂q̄

∂2H0

∂p̄2
, (3.391)

along with
〈
ζπ
〉

= 0.
Finally, we substitute the averages into the equations of motion for the slow variables q̄

and p̄, resulting in the time-independent effective Hamiltonian

K(q̄, p̄) = H0(q̄, p̄) +
1

4ω2

∂2H0

∂p̄2

(
∂V

∂q̄

)2

, (3.392)

and the equations of motion

˙̄q =
∂K

∂p̄
, ˙̄p = −∂K

∂q̄
. (3.393)

3.12.1 Example : Pendulum with Oscillating Support

Consider a pendulum with a vertically oscillating point of support. The coordinates of the
pendulum bob are

x = ` sin θ , y = a(t)− ` cos θ . (3.394)

The Lagrangian is easily obtained:

L = 1
2m`

2 θ̇2 +m`ȧ θ̇ sin θ +mg` cos θ + 1
2mȧ

2 −mga (3.395)

= 1
2m`

2 θ̇2 +m(g + ä)` cos θ+

these may be dropped︷ ︸︸ ︷
1
2mȧ

2 −mga− d

dt

(
m`ȧ sin θ

)
. (3.396)

Thus we may take the Lagrangian to be

L̄ = 1
2m`

2 θ̇2 +m(g + ä)` cos θ , (3.397)

from which we derive the Hamiltonian

H(θ, pθ, t) =
p2
θ

2m`2
−mg` cos θ −m`ä cos θ (3.398)

= H0(θ, pθ, t) + V1(θ) sinωt . (3.399)
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Figure 3.12: Dimensionless potential v(θ) for ε = 1.5 (black curve) and ε = 0.5 (blue curve).

We have assumed a(t) = a0 sinωt, so

V1(θ) = m`a0 ω
2 cos θ . (3.400)

The effective Hamiltonian, per eqn. 3.392, is

K(θ̄, p̄θ) =
p̄θ

2m`2
−mg` cos θ̄ + 1

4ma2
0 ω

2 sin2 θ̄ . (3.401)

Let’s define the dimensionless parameter

ε ≡ 2g`
ω2a2

0

. (3.402)

The slow variable θ̄ executes motion in the effective potential Veff(θ̄) = mg` v(θ̄), with

v(θ̄) = − cos θ̄ +
1
2ε

sin2 θ̄ . (3.403)

Differentiating, and dropping the bar on θ, we find that Veff(θ) is stationary when

v′(θ) = 0 ⇒ sin θ cos θ = −ε sin θ . (3.404)

Thus, θ = 0 and θ = π, where sin θ = 0, are equilibria. When ε < 1 (note ε > 0 always),
there are two new solutions, given by the roots of cos θ = −ε.

To assess stability of these equilibria, we compute the second derivative:

v′′(θ) = cos θ +
1
ε

cos 2θ . (3.405)

From this, we see that θ = 0 is stable (i.e. v′′(θ = 0) > 0) always, but θ = π is stable for
ε < 1 and unstable for ε > 1. When ε < 1, two new solutions appear, at cos θ = −ε, for
which

v′′(cos−1(−ε)) = ε− 1
ε
, (3.406)
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which is always negative since ε < 1 in order for these equilibria to exist. The situation is
sketched in fig. 3.12, showing v(θ) for two representative values of the parameter ε. For
ε > 1, the equilibrium at θ = π is unstable, but as ε decreases, a subcritical pitchfork
bifurcation is encountered at ε = 1, and θ = π becomes stable, while the outlying θ =
cos−1(−ε) solutions are unstable.
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