Chapter 3

Hamiltonian Mechanics

3.1 The Hamiltonian

Recall that L = L(q, ¢,t), and
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= —. 3.1
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The Hamiltonian, H(q,p) is obtained by a Legendre transformation,
H(Qap) = Zpo (ja - L. (32)
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Note that
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Thus, we obtain Hamilton’s equations of motion,
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Some remarks:

e As an example, consider a particle moving in three dimensions, described by spherical
polar coordinates (r, 6, ¢). Then

L=1m (7*2 +r2 6% 4 2 sin20gf>2) —U(r,0,0) . (3.6)
We have
przzf::mf , pe:%:mTQQ , pqﬁ:gg:mﬂsin%gﬁ, (3.7)



and thus
H=p,i+py0+p,0—L
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= +U(r,0,9¢) . 3.8
2m  2mr?  2mr2sin? (r,9,¢) (3:8)
Note that H is time-independent, hence %—Ig = % = 0, and therefore H is a constant

of the motion.

In order to obtain H(q,p) we must invert the relation p, = gTLa = po(q,q) to obtain

Go(q,p). This is possible if the Hessian,

) 0L
Lo T2 (3.9)
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is nonsingular. This is the content of the ‘inverse function theorem’ of multivariable
calculus.

Define the rank 2n vector, &, by its components,
} if 1 <i<
=90 2t (3.10)
D, ifn<i<2n.

Then we may write Hamilton’s equations compactly as
OH

& = Jij €, (3.11)
where
J — ( 0n><n 1n><n> (312)
_1n><n On><n
is a rank 2n matrix. Note that J' = —J, i.e. J is antisymmetric, and that J? =
—15,, 9, We shall utilize this ‘symplectic structure’ to Hamilton’s equations shortly.

3.2 Modified Hamilton’s Principle

We have that
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assuming 6qo (ta) = dq,(t,) = 0. Setting the coefficients of §¢, and ép, to zero, we recover
Hamilton’s equations.



3.3 Phase Flow is Incompressible

A flow for which V - v = 0 is incompressible — we shall see why in a moment. Let’s check
that the divergence of the phase space velocity does indeed vanish:
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Now let p(&,t) be a distribution on phase space. Continuity implies
p
=0. 1
o +V-(p S) 0 (3.15)
Invoking V - 5 = 0, we have that
Dp (9,0
— = 1
Di — + £E-Vp=0, (3.16)

where Dp/Dt is sometimes called the convective derivative — it is the total derivative of the
function ,0(5 (1), t), evaluated at a point £(¢) in phase space which moves according to the
dynamics. This says that the density in the “comoving frame” is locally constant.

3.4 Poincaré Recurrence Theorem

Let g, be the ‘T-advance mapping’ which evolves points in phase space according to Hamil-

ton’s equations

. OH . OH

for a time interval At = 7. Consider a region {2 in phase space. Define g*{2 to be the
n*™ image of £2 under the mapping g.. Clearly g, is invertible; the inverse is obtained by
integrating the equations of motion backward in time. We denote the inverse of g, by g~ 1
By Liouville’s theorem, g, is volume preserving when acting on regions in phase space, since
the evolution of any given point is Hamiltonian. This follows from the continuity equation
for the phase space density,

do

where u = {q,p} is the velocity vector in phase space, and Hamilton’s equations, which
say that the phase flow is incompressible, i.e. V - u = 0:
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Thus, we have that the convective derivative vanishes, viz.

%fz%%—u-Vg:O, (3.20)
which guarantees that the density remains constant in a frame moving with the flow.

The proof of the recurrence theorem is simple. Assume that g, is invertible and volume-
preserving, as is the case for Hamiltonian flow. Further assume that phase space volume
is finite. Since the energy is preserved in the case of time-independent Hamiltonians, we
simply ask that the volume of phase space at fized total energy E be finite, i.e.

/du §(E—H(g,p)) < oo, (3.21)

where du = dq dp is the phase space uniform integration measure.

Theorem: In any finite neighborhood €2 of phase space there exists a point ¢, which will
return to ) after n applications of g, where n is finite.

Proof: Assume the theorem fails; we will show this assumption results in a contradiction.
Consider the set T formed from the union of all sets g)* €2 for all m:

T=J g (3.22)
m=0

We assume that the set {g2* Q| m € Z ,m > 0} is disjoint. The volume of a union of disjoint
sets is the sum of the individual volumes. Thus,

vol(T) = Y wvol(gl'Q)
m=0

= vol(Q) - i 1=o00, (3.23)

m=1

since vol(g!* Q) = vol(€2) from volume preservation. But clearly T is a subset of the entire
phase space, hence we have a contradiction, because by assumption phase space is of finite
volume.

Thus, the assumption that the set {g7" Q| m € Z ,m > 0} is disjoint fails. This means
that there exists some pair of integers k and I, with k& # [, such that ¢g¥ QN gl Q # 0.
Without loss of generality we may assume k > [. Apply the inverse g=! to this relation I
times to get g Q N Q # (. Now choose any point ¢ € g” QN Q, where n = k — [, and
define ¢, = g "¢. Then by construction both ¢, and g7 ¢, lie within 2 and the theorem
is proven.

Each of the two central assumptions — invertibility and volume preservation — is crucial.
Without either of them, the proof fails. Consider, for example, a volume-preserving map
which is not invertible. An example might be a mapping f: R — R which takes any real
number to its fractional part. Thus, f(7) = 0.14159265.... Let us restrict our attention
to intervals of width less than unity. Clearly f is then volume preserving. The action of f
on the interval [2,3) is to map it to the interval [0,1). But [0,1) remains fixed under the



action of f, so no point within the interval [2,3) will ever return under repeated iterations
of f. Thus, f does not exhibit Poincaré recurrence.

Consider next the case of the damped harmonic oscillator. In this case, phase space
volumes contract. For a one-dimensional oscillator obeying i + 283 + £22x = 0 one has
V-u = -2 <0 (8 > 0 for damping). Thus the convective derivative obeys D;p =
—(V - u)p = +20p which says that the density increases exponentially in the comoving
frame, as o(t) = e2%* p(0). Thus, phase space volumes collapse, and are not preserved by
the dynamics. In this case, it is possible for the set T to be of finite volume, even if it
is the union of an infinite number of sets g {2, because the volumes of these component
sets themselves decrease exponentially, as vol(g? 2) = e~2"7 vol(£2). A damped pendulum,
released from rest at some small angle 6, will not return arbitrarily close to these initial
conditions.

3.5 Kac Ring Model

The implications of the Poincaré recurrence theorem are surprising — even shocking. If one
takes a bottle of perfume in a sealed, evacuated room and opens it, the perfume molecules
will diffuse throughout the room. The recurrence theorem guarantees that after some finite
time T all the molecules will go back inside the bottle (and arbitrarily close to their initial
velocities as well). The hitch is that this could take a very long time, e.g. much much longer
than the age of the Universe.

On less absurd time scales, we know that most systems come to thermodynamic equi-
librium. But how can a system both exhibit equilibration and Poincaré recurrence? The
two concepts seem utterly incompatible!

A beautifully simple model due to Kac shows how a recurrent system can exhibit the
phenomenon of equilibration. Consider a ring with N sites. On each site, place a ‘spin’
which can be in one of two states: up or down. Along the N links of the system, F' of

Figure 3.1: A configuration of the Kac ring with N = 16 sites and F' = 4 flippers. The
flippers, which live on the links, are represented by blue dots.



Figure 3.2: The ring system after one time step. Evolution proceeds by clockwise rotation.
Spins passing through flippers are flipped.

them contain ‘flippers’. The configuration of the flippers is set at the outset and never
changes. The dynamics of the system are as follows: during each time step, every spin
moves clockwise a distance of one lattice spacing. Spins which pass through flippers reverse
their orientation: up becomes down, and down becomes up.

The ‘phase space’ for this system consists of 2V discrete configurations. Since each
configuration maps onto a unique image under the evolution of the system, phase space
‘volume’ is preserved. The evolution is invertible; the inverse is obtained simply by rotating
the spins counterclockwise. Figures 3.1 and 3.2 depict an example configuration for the
system, and its first iteration under the dynamics.

Suppose the flippers were not fixed, but moved about randomly. In this case, we could
focus on a single spin and determine its configuration probabilistically. Let p, be the
probability that a given spin is in the up configuration at time n. The probability that it
is up at time (n 4+ 1) is then

Pny1 =1 —x)pp+2(1—py), (3.24)

where = F/N is the fraction of flippers in the system. In words: a spin will be up at
time (n + 1) if it was up at time n and did not pass through a flipper, or if it was down
at time n and did pas through a flipper. If the flipper locations are randomized at each
time step, then the probability of flipping is simply x = F'/N. Equation 3.24 can be solved
immediately:

pn= b (1-22)" (o }) | (3.25)
which decays exponentially to the equilibrium value of peq = % with time scale T =
—1/In[1 — 2z|. If we define the magnetization m = (N, — N|)/N, then m = 2p — 1,

so my, = (1 —2x)" mgp. The equilibrium magnetization is meq = 0. Note that for % <x<l1
that the magnetization reverses sign each time step, as well as decreasing exponentially in
magnitude.
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Figure 3.3: Two simulations of the Kac ring model, each with N = 1000 sites and with
F =100 flippers (top panel) and F' = 24 flippers (bottom panel). The red line shows the
magnetization as a function of time, starting from an initial configuration in which 90% of
the spins are up. The blue line shows the prediction of the Stosszahlansatz, which yields
an exponentially decaying magnetization with time constant 7.

The assumption that leads to equation 3.24 is called the Stosszahlansatz. The resulting
dynamics are irreversible: the magnetization inexorably decays to zero. However, the Kac
ring model is purely deterministic, and the Stosszahlansatz can at best be an approximation
to the true dynamics. Clearly the Stosszahlansatz fails to account for correlations such as
the following: if spin ¢ is flipped at time n, then spin ¢4+ 1 will have been flipped at time n—1.
Indeed, since the dynamics of the Kac ring model are invertible and volume preserving, it
must exhibit Poincaré recurrence.

The model is trivial to simulate. The results of such a simulation are shown in figure 3.3
for a ring of N = 1000 sites, with /' = 100 and F' = 24 flippers. Note how the magnetization
decays and fluctuates about the equilibrium value ¢ = 0, but that after IV iterations m
recovers its initial value: m,, = m,. The recurrence time for this system is simply N if F' is
even, and 2N if F' is odd, since every spin will then have flipped an even number of times.

In figure 3.4 we plot two other simulations. The top panel shows what happens when
T > %, so that the magnetization wants to reverse its sign with every iteration. The bottom
panel shows a simulation for a larger ring, with N = 25000 sites. Note that the fluctuations
in m about equilibrium are smaller than in the cases with N = 1000 sites. Why?
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Figure 3.4: Simulations of the Kac ring model. Top: N = 1000 sites with F' = 900 flippers.
The flipper density x = F/N is greater than %, so the magnetization reverses sign every
time step. Only 100 iterations are shown, and the blue curve depicts the absolute value of
the magnetization within the Stosszahlansatz. Bottom: N = 25,000 sites with F' = 1000
flippers. Note that the fluctuations about the ‘equilibrium’ magnetization m = 0 are much
smaller than in the N = 1000 site simulations.

3.6 Poisson Brackets

The time evolution of any function F'(q,p) over phase space is given by

p OF ~[OF .  OF .
- Fla@®)p(),t) = at*;{aqaq”@pap"}
_OF
=5, T{FH}. (3.26)

where the Poisson bracket {-,-} is given by

" /9A OB DA OB
A, B} = = = 3.27
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2n
0A 0B
=y g, 0800 (3.28)
o=V 06 05

Properties of the Poisson bracket:



Antisymmetry:

{f.9} =—{9.f}- (3.29)
e Bilinearity: if A\ is a constant, and f, g, and h are functions on phase space, then
{f+Xg,h} ={fh}+Xg,n}. (3.30)

Linearity in the second argument follows from this and the antisymmetry condition.

Associativity:

{fg,h} = f{g,h} +g{f,h} ) (3.31)

Jacobi identity:
{f,{g,h}}+{g,{h,f}}+{h,{f,g}}20 (332)

Some other useful properties:
o If {A,H} =0 and %—’? =0, then % =0, i.e. A(q,p) is a constant of the motion.

o If {A,H} =0 and {B,H} =0, then {{4,B},H} = 0. If in addition A and B have
no explicit time dependence, we conclude that {A, B} is a constant of the motion.

o It is easily established that

{0251 =0, {Paspg} =0 , {da:pg} =0,5 - (3.33)

3.7 Canonical Transformations

3.7.1 Point Transformations in Lagrangian Mechanics

In Lagrangian mechanics, we are free to redefine our generalized coordinates, viz.

QU = QU(QD R 7q17,7 t) . (334)
This is called a “point transformation.” The transformation is invertible if
9Qa )
det 0. 3.35
(G # (3.39

The transformed Lagrangian, L, written as a function of the new coordinates Q and veloc-
ities @, is ) ' ‘
L(Q,Q.t) = L(q(Q,1),4(Q. Q,1)) - (3.36)

Finally, Hamilton’s principle,

tp
5/dti(Q,Q,t) —0 (3.37)
t1



with 0Qs(ta) = 6Qs(t,) = 0, still holds, and the form of the Euler-Lagrange equations

remains unchanged:

oL
Qs

oL

d
‘Am)ﬂ

(3.38)

The invariance of the equations of motion under a point transformation may be verified

explicitly. We first evaluate

d(OLY _d (0L 94 _ d (0L g (3.39)
dt\0Q,/) dt\da 0Q,) dt\0dn 0Qs) " '
where the relation Y 5
o da
e 3.40
90, ~ Qs (3.40)
follows from 5 3
. _ 04a | 0%
Q(:u - aQo‘ Qo + at . (341)
Now we compute
OL 0L 0qo | OL 04a
0Qs  9qa 0Qs = 0o Qg
0L e 0L (P, Pan
B 8QOc 8@0 a(joz aQO’ aQJ’ 7 8@0 ot
_ (0L da. 0L d (0a,
dt\0¢s ) 0Qs  0da dt \ 0Qq
_d (0L 9g.\ d [ OL
Cdt <8qg 8Q0> S dt <3Q0> ’ (342)

where the last equality is what we obtained earlier in eqn. 3.39.

3.7.2 Canonical Transformations in Hamiltonian Mechanics

In Hamiltonian mechanics, we will deal with a much broader class of transformations — ones
which mix all the ¢’s and p’s. The general form for a canonical transformation (CT) is

qa:qg(Ql,...,Qn;Pl,...,Pn;t) (3.43)
pa:pU(Ql,...,Qn;Pl,...,Pn;t) , (3.44)

with o € {1,...,n}. We may also write
§¢:51(517-~-752n§t) ) (3.45)

with ¢ € {1,...,2n}. The transformed Hamiltonian is ﬁ(Q, P,t).
What sorts of transformations are allowed? Well, if Hamilton’s equations are to remain
invariant, then
o
- oP, ¢

_om
T,

Q, (3.46)
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which gives _ . .
8Q0+8P0 —0= 8€z )
0Q, 0P, 0=

Le. the flow remains incompressible in the new (Q, P) variables. We will also require that

phase space volumes are preserved by the transformation, i.e.

w(32)- 125 -

Additional conditions will be discussed below.

(3.47)

3.7.3 Hamiltonian Evolution

Hamiltonian evolution itself defines a canonical transformation. Let § = &;(t) and & =
§;(t +dt). Then from the dynamics f =Jij 85 , we have

&t +dt) = &(t) + J g€ dt + O(dt?) . (3.49)
Thus,
o¢ 0 < OH 9 >
+J. dt + O(dt
o6, ~ o, \ &1 T i g At O(F)
O*H
=6, +J, dt + O(dt? 3.50
i ik aé-] 851@ ( ) ( )
Now, using the result
det(1+eM) =1+€eTr M+ O(€) , (3.51)
we have
O*H )
Ha@ T 96, 06 dt + O(dt?) (3.52)
=1+0(dt?) . (3.53)
3.7.4 Symplectic Structure
We have that OH

Suppose we make a time-independent canonical transformation to new phase space coordi-
nates, =, = Z,(£). We then have

_ 9%y 0%, OH
©0g T 98 TR og,

]

(3.55)

(1
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But if the transformation is canonical, then the equations of motion are preserved, and we
also have

= _, OH _ . 04 0H
Z=Tu gz, =T g2 og, (3.56)

Equating these two expressions, we have

OH . OH
aj ijaTk = Jap My, 96, (3.57)
where
M = 9= (3.58)
aj — E) ; .

is the Jacobian of the transformation. Since the equality must hold for all £, we conclude
MJ=JMY' = MJM'=J. (3.59)

A matrix M satisfying M M*® = 1 is of course an orthogonal matrix. A matrix M satisfying
MJM" = J is called symplectic. We write M € Sp(2n), i.e. M is an element of the group
of symplectic matrices' of rank 2n.

The symplectic property of M guarantees that the Poisson brackets are preserved under
a canonical transformation:

9A 8B
7098 0€;
_, 04 95, 9B 95,
i 92, 0& 0=, 0§
9A OB
0=, 05,

{A7B}g =J;

= (Mai ‘]ij Mytb)
94 9B
b 9=, 05

={A,B}_. (3.60)

3.7.5 Generating Functions for Canonical Transformations
For a transformation to be canonical, we require

ty 12

§ [dt {pg g, — H(q,p,t)} —0=24 [dt {Pa O, — H(Q,P, t)} . (3.61)

ta ta

This is satisfied provided

{pUQO'_H(Q7p7t)}:A{PaQa_g(QujD?t)—i_czlj}7 (362)

'Note that the rank of a symplectic matrix is always even. Note also M JM"® = J implies M*JM = J.
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where ) is a constant. For canonical transformations, A = 1.2 Thus,

- . oF oF .
H Pt)=H t P - ] — gy + — Q,
(Q,Pt) (¢,p,t) + P, Q, pgqg+ang +8Q0Q
LOF L OF ,  OF
ap, L7 T ap, 7T A
Thus, we require
oF oF oF oF
a5 —Ps = _Pa' ) +— =0 ) =0.
0q, 0Qs Opo 0P,
The transformed Hamiltonian is

(3.63)

(3.64)

(3.65)

There are four possibilities, corresponding to the freedom to make Legendre transformations

with respect to each of the arguments of F(q, Q) :

Fi(q,Q,1) i Do :+% . P, = _%

FQ(Q7P7t)_PaQU 5 pa:‘f'% s Qo':—i_g%
F(Qa@vt) ==

F3(p7Q7t)+po'qo' N qo = —gp% , PO' — _g%

(Fu(p, Pit) +pogo — Fo Qo qazi% ) Qo:+g%

In each case (y =1,2,3,4), we have

oF,

Let’s work out some examples:

e Consider the type-II transformation generated by

g

F2(Q7P):AU(Q)P )

where A;(g) is an arbitrary function of the {¢,}. We then have

0F, 0F, 0A,
= — = A = — = .
QO’ 8Pg' O'(q) ) pO’ aqg aqo- 67
Thus,
9o
Qo’ U(q) ? o aQa’ pa

ZSolutions of eqn. 3.62 with A\ # 1 are known as extended canonical transformations.

rescale coordinates and/or momenta to achieve A = 1.

13

(type I)
(type II)
(type III)

(type IV)

(3.66)

(3.67)

(3.68)

(3.69)

We can always



This is a general point transformation of the kind discussed in eqn. 3.34. For a general
linear point transformation, QQ, = Maﬁ 43, we have P, = Ps M[;al, i.e. Q = Mg,

P=pM-t If Ma,@ = 5&67 this is the identity transformation. F, = ¢, P; + ¢z P,
interchanges labels 1 and 3, etc.

Consider the type-I transformation generated by

Fl (q7 Q) = AU(Q) Qo- . (370)
We then have
B o B 0A,
Ps = % = 94y Qq (3-71)
oF
P =— =-A ) 79
"= 80, (@) (3.72)

Note that As(q) = ¢, generates the transformation

q —-P
. 3.73
() — (a) 679
A mixed transformation is also permitted. For example,
F(q,Q) = ¢, Q1 + (g3 — Qq) Py + (g5 — Q3) Ps (3.74)

is of type-I with respect to index ¢ = 1 and type-II with respect to indices o = 2, 3.
The transformation effected is

Q) =p Qe =43 Q3 =4y (3.75)
P =—q P, =p, P;=p, . (3.76)

Consider the harmonic oscillator,

2
H(q,p) = 2 + Lkg®. (3.77)

2m

If we could find a time-independent canonical transformation such that

p=vafP s a=y g, (3.75)

where f(P) is some function of P, then we’d have H(Q, P) = f(P), which is cyclic in
Q. To find this transformation, we take the ratio of p and ¢ to obtain

p=vVmkqctnQ , (3.79)
which suggests the type-I transformation

Fi(g,Q) = 2Vmk ¢® ctn@Q . (3.80)

14



This leads to

oF N oF vVmk ¢?
p dq mkg ctnQ 0Q 2 sin?Q ( )
Thus,
V2P k
= sin — P)y=4/—P=wP, 3.82
1=Vt Q FP)y =1/ (3.82)
where w = y/k/m is the oscillation frequency. We therefore have
H(Q,P)=wP, (3.83)
whence P = E/w. The equations of motion are
. oOH . OH
P = —-—— = — . 4
0= @=gp=w. (3.84)
which yields
2F .
Qt)=wt+y¢, , q(t)= . sin (wt + gpo) . (3.85)

3.8 Hamilton-Jacobi Theory

We’ve stressed the great freedom involved in making canonical transformations. Coordi-
nates and momenta, for example, may be interchanged — the distinction between them is
purely a matter of convention! We now ask: is there any specially preferred canonical trans-
formation? In this regard, one obvious goal is to make the Hamiltonian H (Q, P,t) and the
corresponding equations of motion as simple as possible.

Recall the general form of the canonical transformation:

A(Q.P) = H(g.p) + 2L

ETIE (3.86)
with
oF oF
i — =0 3.87
8QJ Po 8170 ( )
oF oF
20, =—-P oP. =0. (3.88)

We now demand that this transformation result in the simplest Hamiltonian possible, that
is, H(Q, P,t) = 0. This requires we find a function F' such that
oF oF
— H _

a0 oy T o)

The remaining functional dependence may be taken to be either on @ (type I) or on P
(type II). As it turns out, the generating function F' we seek is in fact the action, S, which
is the integral of L with respect to time, expressed as a function of its endpoint values.

15



3.8.1 The Action as a Function of Coordinates and Time

We have seen how the action S[n(7)] is a functional of the path n(7r) and a function of the
endpoint values {qa,%.} and {g,,t,}. Let us define the action function S(q,t) as

S(q,t) = /dT L(n,,7) , (3.90)

ta
where n(7) starts at (qq,tq) and ends at (g,t). We also require that n(7) satisfy the Euler-

Lagrange equations,
oL d (OL
— _ (=) =0 3.91

on, dr (81’70> ( )

Let us now consider a new path, 7(7), also starting at (qq, tq), but ending at (¢+dgq, t+dt),
and also satisfying the equations of motion. The differential of S is

dsS = S[ﬁ(T)] - S[n(T)]
tdt ¢

= /dT L(7,7,7) — /dT L(n,ﬁ, T) (3.92)
~ far {g; [0 (7) = 1 (7)] + g’j [0(7) =11, (7)] } + L(ii(1), (1), 1) dt
[ for d[oL\\[.
= [ar {an -+ () } [ () = ()
+ g | [0 = na0)] + L0 70, )
=0+ 7, (t) on,(t) + L(n(t),n(t), t) dt + O(dq - dt) , (3.93)
where we have defined L
Ty = o0, (3.94)
and
015 (7) = 715(T) = 0 (7) - (3.95)
Note that the differential dq, is given by
dQU = ﬁo'(t + dt) - na(t) (396)
= 1y (t +dt) =7, (t) + 7, () = 1, ()
- ﬁa (t) dt + 5770 (t)
= ¢, (t)dt + én,(t) + O(dq - dt) . (3.97)
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Figure 3.5: A one-parameter family of paths ¢(s;e€).

Thus, with 74(t) = ps, we have

dS = DPs dQO' + (L — Ps qg) dt

=p,dq, — Hdt . (3.98)
We therefore obtain 95 oy s
9q, P 5g:_H, EZ:L' (3.99)

What about the lower limit at ¢,7 Clearly there are n+ 1 constants associated with this
limit: {ql (ta), - qn(ta); ta}. Thus, we may write

S=58(q1, QG Ays - Ay t) + A, (3.100)

where our n + 1 constants are {A,,..., 4, +1}‘ If we regard S as a mixed generator, which

is type-I in some variables and type-II in others, then each A, for 1 < ¢ < n may be chosen
to be either @), or P,. We will define

08 _[+Qs ifAe=P,
—P5 ifAO’:QO’

= o = (3.101)

For each o, the two possibilities A, = Q, or A, = P, are of course rendered equivalent by
a canonical transformation (Qs, Py) — (Ps, —Qs)-

3.8.2 The Hamilton-Jacobi Equation

Since the action S (g, A, t) has been shown to generate a canonical transformation for which
H(Q, P) = 0. This requirement may be written as

25 S ) 05

Moy 2505 ) 95

0. (3.102)
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This is the Hamilton-Jacobi equation (HJE). It is a first order partial differential equation
in n + 1 variables, and in general is nonlinear (since kinetic energy is generally a quadratic
function of momenta). Since H(Q, P,t) = 0, the equations of motion are trivial, and

Q,(t) =const. , P_(t) = const. (3.103)

[

Once the HJE is solved, one must invert the relations I, = 05(q, 4,t)/0A, to obtain

q(Q, P,t). This is possible only if
%S
det| ———— 0 3.104
which is known as the Hessian condition.

It is worth noting that the HJE may have several solutions. For example, consider the
case of the free particle, with H(q,p) = p?/2m. The HJE is

1 (8S\* as
— | = —=0. 3.105
2m ( Jq ) * ot ( )
One solution of the HJE is 2
S(q, A, t) = m(q2;) . (3.106)
For this we find 55 N
m
I'=s—=———(¢— A t)y=A——t. 1
A Sla=4) = q(t) - (3.107)
Here A = ¢(0) is the initial value of ¢, and I" = —p is minus the momentum.
Another equally valid solution to the HJE is
S(q, A, t) = qVv2mA — At . (3.108)
This yields
oS 2m [ A

For this solution, A is the energy and I' may be related to the initial value of ¢(t) =
I'\/A/2m.

3.8.3 Time-Independent Hamiltonians

When H has no explicit time dependence, we may reduce the order of the HJE by one,

writing
S(q, A,t) =W (g, A) +T(At) . (3.110)
The HJE becomes oW T
H —_— ] = ——. 11

Note that the LHS of the above equation is independent of ¢, and the RHS is independent
of q. Therefore, each side must only depend on the constants A, which is to say that each
side must be a constant, which, without loss of generality, we take to be A;. Therefore

S(g, A, t) = W(g, A) — Ayt . (3.112)
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The function W (q, A) is called Hamilton’s characteristic function. The HJE now takes the

form o o
H — e, | =4 11
<Q17 7q17,7 8q1 9 9 8qn> 1 (3 3)

Note that adding an arbitrary constant C' to S generates the same equation, and simply
shifts the last constant A, ,; — A, ,; + C. This is equivalent to replacing ¢ by ¢ — ¢, with

to = C/A,, i.e. it just redefines the zero of the time variable.

3.8.4 Example: One-Dimensional Motion

As an example of the method, consider the one-dimensional system,

H = — . 114
(@.p) = 5~ +Ula) (3.114)
The HJE is )

1 [0S
which may be recast as

oS

— =/2m|A — A1

5o = \2mla-UG@)] (3.116)
with solution .

S(q, A, t) =v2m [dgd JA-U(q)— At . (3.117)

‘We now have

p= 25 o000 15)

oS fm [0 dq
I'=—=,/— _— — . 3.119
04 2/ VA=U(d) (341

Thus, the motion ¢(¢) is given by quadrature:

as well as

I+t= (3.120)

q(t)
m / dq
2 ) \/A-U(@q)’
where A and I are constants. The lower limit on the integral is arbitrary and merely shifts
t by another constant. Note that A is the total energy.

3.8.5 Separation of Variables

It is convenient to first work an example before discussing the general theory. Consider the
following Hamiltonian, written in spherical polar coordinates:

potential U(r,0,¢)

) -
1{::1(ﬁ+fﬁ+ Po )+A&)+Bw)+ o9 (3.121)

2m r2  r2gin20 72 r2 sin%6

19



We seek a solution with the characteristic function
W(r,0,6) = W,(r) + Wy(8) + W,(9) . (3.122)
The HJE is then

LW\ L W\ oWy
2m \ Or 2mr2 \ 00 2mr2sin?f \ 0¢

B() , C(9)
A =A,=F. 12
AW+ = 5 = A (3.123)
Multiply through by 72 sin?6 to obtain
1 (W2 on | 1 (OW?
— | = C(p)=—sin“0 ¢ — | — B(6
2m<8¢)+ () = —sin0 35\ 5g ) +BO)
, 1 (W, >
— r?sin?9 {2m< o > + A(r) — Al} . (3.124)
The LHS is independent of (r, ), and the RHS is independent of ¢. Therefore, we may set
1 8W¢ 2
. @ = . 1
2m< 30 ) +C(¢) = A,y (3.125)
Proceeding, we replace the LHS in eqn. 3.124 with A,, arriving at
1 [(OWy\? Ay , |1 ow\?
— | —== B =— — Alr)y— A4, 3 . 12
2m< 00 > +BO)+ sin?6 "Yom\ or +Ar) L (8-126)
The LHS of this equation is independent of r, and the RHS is independent of 8. Therefore,
1 (0Wy\> Ay
% (89) + B(Q) + sin29 = /13 . (3.127)
We're left with )
1 /oW, Az
The full solution is therefore
S, A1) = vam [dr' 4, =A@y — 22 3.129
(Q7 7)* m r 1 (T)_Tﬁ ( )

+ \/%/ede’ \/Ag — B(#") — =

sin?¢’

¢
+ \/%/dd \ Ay — C(¢') — Ayt . (3.130)
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We then have

I = a/h /\/A _\fdr i (3.131)

Ar’2

r=2% / " Vs / OVEd (3.132)
2 = - = — .
04 sin¢’ \/A — B(¢') — A, csc?0’ \/ Ay — C(¢)
\F do’
(3.133)

—Agr'™ 2 /\/A — — A, csc?d’

The game plan here is as follows. The first of the above trio of equations is inverted to yield
r(t) in terms of ¢ and constants. This solution is then invoked in the last equation (the upper
limit on the first integral on the RHS) in order to obtain an implicit equation for #(t), which
is invoked in the second equation to yield an implicit equation for ¢(¢). The net result is

\Fdr

Iy = 3/13 /,2\//1

the motion of the system in terms of time ¢ and the six constants (A, Ay, A5, I, 15, I5). A
seventh constant, associated with an overall shift of the zero of ¢, arises due to the arbitrary
lower limits of the integrals.

In general, the separation of variables method begins with?3

= zn: W._(q,,A) . (3.134)
o=1

Each W5 (qo, A) may be regarded as a function of the single variable ¢,, and is obtained by
satisfying an ODE of the form*

AW,
H, ,— | =A_ . 3.135
(qg 0 ) o (3.135)
We then have oW oW
= g I =——4+6_.t. 3.136
Ps aqo_ ’ o 8/10- + o,1 ( )

Note that while each W, depends on only a single ¢,, it may depend on several of the A,.

3.8.6 Example #2 : Point Charge plus Electric Field

Consider a potential of the form
k
U(r)=—-—Fz, (3.137)
r
which corresponds to a charge in the presence of an external point charge plus an external

electric field. This problem is amenable to separation in parabolic coordinates, (£, 7, ):

r=\Ejcosp , y=\Esing . z=}E-n). (3.138)

3Here we assume complete separability. A given system may only be partially separable.

‘H,(¢y,p,) may also depend on several of the A, . See e.g. eqn. 3.128, which is of the form
H, (r, o.W,, /13) =A,.
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Note that

p=+a2+1y2 = /¢ (3.139)
r=vpr+22=2L1¢+n) . (3.140)

The kinetic energy is

2 2
= %m E+mn) (5 + Z]) + %mfn o, (3.141)
and hence the Lagrangian is
SN 1 o 2k
L=1m(E+ <—|— +5m ——+s5F(&—1n). 3.142
S (§ 77) ¢ n 2 Ene £t 3 (5 77) ( )
Thus, the conjugate momenta are
oL ¢
pe= gz =amE+ng (3.143)
oL _, 0
=—=73 — 3.144
oL i
Po= 55 = méneg , (3.145)
and the Hamiltonian is
H=p+p,0+p,¢ (3.146)
2 (&£ +np;, o 2%
S 4 + —Llp@E—n) . 3.147
m( £+ omen T Exy 20 T (3:147)

Notice that 0H/0t = 0, which means dH/dt = 0, i.e. H = E = A is a constant of the

motion. Also, ¢ is cyclic in H, so its conjugate momentum p,, is a constant of the motion.
We write

S(q,A) =W(q,A) - Bt (3.148)
= W(&A) + W, (n, A) + W (p, 4) — Bt . (3.149)

with £ = A,. Clearly we may take
Wylp, ) =P, ¢, (3.150)

where P, = A,. Multiplying the Hamilton-Jacobi equation by %m (£ +1n) then gives
§(d;) + 4—25 +mk — 1F¢* — ImE¢
dw,

2 P2
=—pl—2) -2 _1pp? 4 lmEp=7T (3.151)
d77 4,'7 4 2 )
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where 1" = A, is the third constant: A = (E, P,, 7). Thus,

mhk P2
+ ImFe — e

P2
/dn mE — — — fan’ — 47;2

P,p—Et. (3.152)

q
(fn,go,EP T) /dg\/mEJr

3.8.7 Example #3 : Charged Particle in a Magnetic Field

The Hamiltonian is

1 e \2
= —(p- 7A) . 3.153
2m (p c ( )
We choose the gauge A = Bxy, and we write
S(x,y, P, Py) = Wy(x, P, Py) + W, (y, P, Py) — Py t. (3.154)

Note that here we will consider S to be a function of {¢,} and {F}.
The Hamilton-Jacobi equation is then

oW, \*  [(OW, eBx\?
—2 — —— | =2mP, . 3.155
( Ox ) +( oy c i ( )
We solve by writing
AW, \? Bz\?

This equation suggests the substitution

cPy c .
z=—= + B 2mP; sin6 . (3.157)
in which case 9
x c
— = —/2mP .1
50 — og vV 2m 1 cos 6 (3.158)
and
oW, oW, @ _eB 1 oW, (3.159)
or 00 Or c¢/2mP; cos® 00 '
Substitution this into eqn. 3.156, we have
= 1
50 g o 0, (3.160)
with solution
_ mcP; mcP; .
W, = B 0+ 508 sin(26) . (3.161)
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We then have - —T
T T i _
Pe= 5= "33/ 30 = V2mPy cos 6 (3.162)

and

_ E Yy _
py 8y 2
The type—II generator we seek is then

(3.163)

mcP; o+ mcPy

S(g, P,t) = B 555 sin(20) + P,y — P, t, (3.164)
where B .
e . cl?
f=——=sint(z—— ). 3.165
oomp, <$ eB> (3.165)
Note that, from eqn. 3.157, we may write
c mc 1 c
dr = —dP,+ — — sinfdP, + — v/2mP, 0 do 1
z=—z 2—1—63\/msm 1+€B\/mlcos , (3.166)

from which we derive

00 tan 00 1

o 7 S . 3.167
0P, 2P oP, \V2mPy cos 6 ( )
These results are useful in the calculation of @); and Q,:
oS
Q@ P
me meP; 00 me . meP; 00
=—90 20 5(20) — — t
Bt en ap T aep SN T g s 5p
me
=—0-—t 1
B (3.168)
and
oS
Q9 P,
P 0
—y 4 e [1 -+ cos(20)] 88132
:y—%mcose . (3.169)
e

Now since H(P, Q) = 0, we have that Q, = 0, which means that each Q, is a constant. We
therefore have the following solution:

z(t) = o+ A sin(w.t + 0) (3.170)
y(t) =y, + A cos(w.t +6) , (3.171)

where w, = eB/mc is the ‘cyclotron frequency’, and

cP c
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3.9 Action-Angle Variables

3.9.1 Circular Phase Orbits: Librations and Rotations

In a completely integrable system, the Hamilton-Jacobi equation may be solved by separa-
tion of variables. Each momentum p, is a function of only its corresponding coordinate ¢,
plus constants — no other coordinates enter:

oW,
= = A) . 3.173
Pr = Ban Po(4os A) ( )
The motion satisfies
H,(¢5:p,) = 4, (3.174)

The level sets of H, are curves C,. In general, these curves each depend on all of the

constants A, so we write C, = C,(A). The curves C, are the projections of the full motion

onto the (¢o,po) plane. In general we will assume the motion, and hence the curves C,,

is bounded. In this case, two types of projected motion are possible: librations and rota-

tions. Librations are periodic oscillations about an equilibrium position. Rotations involve

the advancement of an angular variable by 27 during a cycle. This is most conveniently
illustrated in the case of the simple pendulum, for which

pé 17, 2
H(p,, ¢) = ﬁ+§fw (1—cosg) . (3.175)
e When E < Iw?, the momentum py vanishes at ¢ = +cos H(2E/Iw?). The system
executes librations between these extreme values of the angle ¢.

e When E > I w?, the kinetic energy is always positive, and the angle advances mono-
tonically, executing rotations.

In a completely integrable system, each C, is either a libration or a rotation®. Both

librations and rotations are closed curves. Thus, each C, is in general homotopic to (= “can
be continuously distorted to yield”) a circle, S*. For n freedoms, the motion is therefore
confined to an n-torus, T":

n times

T" =8'x St x ... xS, (3.176)

These are called invariant tori (or invariant manifolds). There are many such tori, as there
are many C, curves in each of the n two-dimensional submanifolds.

Invariant tori never intersect! This is ruled out by the uniqueness of the solution to the
dynamical system, expressed as a set of coupled ordinary differential equations.

Note also that phase space is of dimension 2n, while the invariant tori are of dimension
n. Phase space is ‘covered’ by the invariant tori, but it is in general difficult to conceive of
how this happens. Perhaps the most accessible analogy is the n = 1 case, where the ‘1-tori’
are just circles. Two-dimensional phase space is covered noninteracting circular orbits. (The
orbits are topologically equivalent to circles, although geometrically they may be distorted.)
It is challenging to think about the n = 2 case, where a four-dimensional phase space is
filled by nonintersecting 2-tori.

5C, may correspond to a separatrix, but this is a nongeneric state of affairs.
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\Vi
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=

Figure 3.6: Phase curves for the simple pendulum, showing librations (in blue), rotations
(in green), and the separatrix (in red). This phase flow is most correctly viewed as taking
place on a cylinder, obtained from the above sketch by identifying the lines ¢ = 7 and

¢ = —m.

3.9.2 Action-Angle Variables

For a completely integrable system, one can transform canonically from (g,p) to new co-
ordinates (¢, J) which specify a particular n-torus 7" as well as the location on the torus,
which is specified by n angle variables. The {J,} are ‘momentum’ variables which specify
the torus itself; they are constants of the motion since the tori are invariant. They are
called action variables. Since jg = 0, we must have

- 0H
J,=—7—=0 = H=H(J). (3.177)
g
The {¢,} are the angle variables.
The coordinate ¢, describes the projected motion along C,, and is normalized by

%dqf)a =27 (once around Cy) . (3.178)
Co
The dynamics of the angle variables are given by
b, = gi =v,(J). (3.179)
Thus,
Os(t) =, (0) + vy (J)t . (3.180)

The {v,(J)} are frequencies describing the rate at which the Co are traversed; T,(J) =
27 /vy (J) is the period.

[\l
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3.9.3 Canonical Transformation to Action-Angle Variables

The {J,} determine the {C,}; each ¢, determines a point on C,. This suggests a type-II
transformation, with generator F,(q, J):

8F2 aFQ
_ _ 92 3.181
po’ aqa ’ ¢o‘ 8Ja— ( )
Note that®
OF, O*F, o)
2t = @ d = d d 3.182
ﬂf%f( ) 8Ja%qa ajfpaqm (3.182)
which suggests the definition
1
J, = 271_7{]90 dq, . (3.183)
Co
Le. Jy is (2m)~! times the area enclosed by C,.
If, separating variables,
= Wyl(gp: 4) (3.184)
is Hamilton’s characteristic function for the transformation (¢,p) — (@, P), then
oWy,
J,=— 00 dg, = J,(A) (3.185)

Co

is a function only of the {A,} and not the {I,}. We then invert this relation to obtain
A(J), to finally obtain

Fy(q,J) = W (g, A(J)) = > W, (a5, A(T)) - (3.186)

Thus, the recipe for canonically transforming to action-angle variable is as follows:
(1) Separate and solve the Hamilton-Jacobi equation for W(q, A) = >, W5(qo, A).
(2) Find the orbits C, — the level sets of satisfying Hy(¢s, po) = Ao

3) Invert the relation J,( 6W" dgs to obtain A(J).
27r

(4) Fy(q,J) =Y 5 Wo(go, A(J)) is the desired type-II generator”.

8%Fy
0Js 0qa

coordinates and momenta other than g, and p, are held fixed. Thus, @ = o is the only term in the sum
which contributes.
"Note that Fy(g, J) is time-independent. I.e. we are not transforming to H = 0, but rather to H = H(J).

5In general, we should write d(dF2) = dg, with a sum over a. However, in eqn. 3.182 all
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3.9.4 Example : Harmonic Oscillator

The Hamiltonian is )

p
H=5-+ Imwi® (3.187)

hence the Hamilton-Jacobi equation is

2
<dVV> +m2wie® = 2mA . (3.188)
dq
Thus,
aw
_ 2
p= A i\/2m/1 m2wiq? (3.189)
We now define
21 1/2
q= <2> sinf = p=+vV2mA cosf , (3.190)
mwg
in which case
1 1 2/1 /1
J = pdq = df cos®0 = . (3.191)
o o wo wo
0
Solving the HJE, we write
dw  0q dW 9
— = —=2J 0. 3.192
a9 — 90 dg €08 (3.192)
Integrating,
W =J0+%Jsin20 (3.193)
up to an irrelevant constant. We then have
o= —— :9+lsin20+J(1+c0820)% (3.194)
aJ |, 2 aJ |,
To find (00/0J)q, we differentiate ¢ = \/2.J/mwy sin 6:
sin 2J 00 1
d dJ 0dd = —| =—— tanf. 3.195
1= Fomand T e 97|, = as 't (3195)
Plugging this result into eqn. 3.194, we obtain ¢ = 6. Thus, the full transformation is
27 \/?
q= <> sing , p=+/2mwyJ coso . (3.196)
mwo
The Hamiltonian is
H=uw,J, (3.197)
hence ¢ = %—g =w, and J = — G = 0, with solution ¢(t) = ¢(0) +w,t and J(t) = J(0).
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3.9.5 Example : Particle in a Box

Consider a particle in an open box of dimensions L, x L, moving under the influence of
gravity. The bottom of the box lies at z = 0. The Hamiltonian is
2 2 2
px py pz
H=-"2*+—"=4+ = . 3.198
2m+2m+2m+mgz ( )

Step one is to solve the Hamilton-Jacobi equation via separation of variables. The
Hamilton-Jacobi equation is written

INCUASRE NG ASENIAS B
2m< 6m> +2m< 8y> +2m< 82) +mgz=E=A,. (3.199)

We can solve for W, , by inspection:

Wy(x) =+2mAxz , W,(y)=+2mA,y . (3.200)

We then have®

Wl(z) = —\/2m(/lz — Ay — Ay — mgz) (3.201)
W.(2) = ?j/\gg (A = Ay — Ay —mgz)*” . (3.202)

Step two is to find the C,. Clearly p,, = \/2mA; . For fixed p;, the x motion proceeds
from x = 0 to x = L, and back, with corresponding motion for y. For x, we have

p.(2) =W.i(z) = \/Qm(/lz — Ay — Ay —mgz) | (3.203)
and thus C. is a truncated parabola, with 2z, = (A4, — A, — A,)/mg.
Step three is to compute J(A) and invert to obtain A(.J). We have
Ly
1 1 L,
J, = j{pm dr = /da:\/ZmA = —+/2mA, (3.204)
27 T T
Cx 0
Ly
Jo= 2 ay=1t [y ami, = Lo fama (3.205)
vy = op Py T L [V EMSy = oV Ay '
e, 0

and

1 1
J, = %jquzdz - 7T/dan V2m (4 — A, — A, —mgz)

C. 0
V2 3/2
= \/mg(/lz Ay — A,)77 (3.206)

8Qur choice of signs in taking the square roots for W, Wé, and W, is discussed below.
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px .pz

% motion z motion

Figure 3.7: The librations C, and C,. Not shown is C,, which is of the same shape as C,.

We now invert to obtain

2 2

T T
AJ} e 2 A == 2
2mL?2 N Y2mL2 Y
2/3
4, = (3Vmg / T3 4 r JZ+ gy
22 2mL2 2mL2 Y
2/3 .1/3 .\ 3/2
T Y 2/3 2m=°gCz
F. J. S, J)=—J —=J JI? - .
We now find
oF, nx oF, my
¢I = = T ) ¢y =37 — 7
0Jy L, 0Jy L,
and
= 7. W¢ Gl TN
where
(J) = (B L)
Zmax z - 2m2/391/3 :
The momenta are
ory, nJ, 0Fy, mJy,
p:l? = — = s py = — = —
and 1/2
OF, _ oo (?mmg)”?’ 2
Pz 0z ( 2V/2 ? g
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We note that the angle variables ¢4, . seem to be restricted to the range [0, 7], which
seems to be at odds with eqn. 3.182. Similarly, the momenta p; 4 . all seem to be positive,
whereas we know the momenta reverse sign when the particle bounces off a wall. The origin
of the apparent discrepancy is that when we solved for the functions W; 4 ., we had to take

a square root in each case, and we chose a particular branch of the square root. So rather
than Wy (x) = v/2mA, z, we should have taken

vV2mA, if p >0
W,(z) = e oP (3.215)
2mA, (2L —x) ifpy <O .
The relation J; = (Lz/m)v/2mA, is unchanged, hence
L) Js: if p, >0
W (z) = { "/ Ea) Pz = (3.216)
2nJy — (mx/Ly) Jp if pp <O
and
L. if p, >0
b, = e/ P (3.217)
(2L —x)/Ly if pr <O .

Now the angle variable ¢, advances by 27 during the cycle C;. Similar considerations apply
to the y and z sectors.

3.9.6 Kepler Problem in Action-Angle Variables

This is discussed in detail in standard texts, such as Goldstein. The potential is V (r) =
—Fk/r, and the problem is separable. We write?

W(r,0,¢) = W,(r) + W,(8) + Ww(go) , (3.218)
hence
1 (oW, \? 1 oW\ 1 oW, \ 2
— =FE=A.. 21
2m( or ) * 2mr2< 06 ) * 2mr?2 sin29< Oy ) Vi) " (3:219)

Separating, we have

2
! <dW‘P) =4, = J,= fdgo dZ‘P = 2my\/2mA, . (3.220)

2m \ dy

Co

Next we deal with the 6 coordinate:
1 /dWp\? A

- e = Ay — ¥

2m< do > 7 sin20 -
o

JG = 4+/2mAy /d9 \/1 — (/Lp//lg) sin—20
0
- 277\/2m<\//1 - \/ASD) , (3.221)

9We denote the azimuthal angle by ¢ to distinguish it from the AA variable ¢.
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where 0y = sin™!(A,/4p). Finally, we have!?

1 "\ 2 A
@W) :E+k 0

2m \ dr

2

T T
Jr —fdr\/%n(E—i-k—Ag)
T r
Cr
[2m

where we’ve assumed F < 0, i.e. bound motion.

Thus, find
us, we fin -
H=F=- 5 - (3.223)
(Jr + Jo + Jy)
Note that the frequencies are completely degenerate:
L, __oH _  ar’mk® <7T2mk:2>1/2 (3.224)
S 0y (Jo+ Jy+ )"\ 20EP '

This threefold degeneracy may be removed by a transformation to new AA variables,

{@n 1), (90 70)s (D0 )} — {61, 71), (0, To), (93, } (3.225)

using the type-II generator

FQ((bra ¢97 (bW; J17 J27 J&) = (¢<p - ¢9) ‘]1 + (¢9 - ¢r) J2 + ¢r JS ) (3226)
which results in

i 6F2 o aFZ

¢>1—6—J1:¢¢—¢9 Jr_agbr =J;—Jy (3.227)
%Zgiz%—% %zgiz@—ﬁ (3.228)
¢g = gi: = ¢, J, = gg—i =J, . (3.229)

The new Hamiltonian is S
H(J o, Js) = —%E‘: , (3.230)

whence v = v, =0 and v5 = v.

10The details of performing the integral around C, are discussed in e.g. Goldstein.
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3.9.7 Charged Particle in a Magnetic Field

For the case of the charged particle in a magnetic field, studied above in section 3.8.7, we

found P
T = &2 + % vV 2mP; sin 6
e

and
Dy =/ 2mPy cosf , py =P, .
The action variable J is then

2

- _ 2mch 9,  mchy
J—%pxdx— B /d@ cos“f = 5
0
We then have
W =J0+ %Jsin(20) + Py ,
where P = P,. Thus,
ow
*= o5
1. 00
=6+ 5sin(20) + J[1 + cos(26)] 37
tan 6
=0+ 3sin(20) + 2.J cos? - (— zrj] )

=0.
The other canonical pair is (Q, P), where

oW 2cJ

Q_aT_y eB

Therefore, we have

cP 2c¢d . 2cJ
xfﬁ—k Esmgt , ny—l—\/@comb

and

The Hamiltonian is

2m+2m c
BJ J
= —" cos’p + sin?
c
=w.J,
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(3.231)

(3.232)

(3.233)

(3.234)

(3.235)

(3.236)

(3.237)

(3.238)

(3.239)



where we = eB/mec. The equations of motion are

. 8H . OH
and 8H OH
Q= -0 , P = _7(9@ =0. (3.241)

Thus, Q, P, and J are constants, and ¢(t) = ¢, + wct.

3.9.8 Motion on Invariant Tori

The angle variables evolve as
b (t) = vy (J) t + ¢,(0) . (3.242)

Thus, they wind around the invariant torus, specified by {.J,} at constant rates. In general,
while each ¢, executed periodic motion around a circle, the motion of the system as a whole
is not periodic, since the frequencies v,(.J) are not, in general, commensurate. In order for
the motion to be periodic, there must exist a set of integers, {l,}, such that

i v, (J)=0. (3.243)

This means that the ratio of any two frequencies v, /v, must be a rational number. On a
given torus, there are several possible orbits, depending on initial conditions ¢(0). However,
since the frequencies are determined by the action variables, which specify the tori, on a
given torus either all orbits are periodic, or none are.

In terms of the original coordinates ¢, there are two possibilities:

Gt)= > > Az(fz)z‘..zn eh191(t) .. pilndn(t)
l1=—00 lp=—00
= A7 et (libration) (3.244)
l
or
4 (t) = g5 Po( +ZB" &ot)  (rotation) . (3.245)

For rotations, the variable ¢, (t) increased by Ag, = 27 ¢S .

3.10 Canonical Perturbation Theory

3.10.1 Canonical Transformations and Perturbation Theory

Suppose we have a Hamiltonian

H(&,t) = Hy(€,t) + e H (&, 1), (3.246)
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where € is a small dimensionless parameter. Let’s implement a type-II transformation,
generated by S(q, P, t):!!

A(Q.P1) = Higp.t) + & S(a.P.1). (3.247)

Let’s expand everything in powers of e:

Go= Qo+ €d1 g+ € g+ (3.248)
Po=P,+ep .+, + ... (3.249)
H=Hy+eH +éHy+... (3.250)
S= 4P, +eS +28,+... . (3.251)
identity
transformation
Then
05 051 9 05
Q"_é?PU —qa+eapg+e op, (3.252)
= Qo‘ + <q1,a + 8_P0—>6+ <q270. + 8P0->6 —+ ...
and
os aSl 2 85’2
=—=P — —+... 2
Do 94, 1€ 90, +e 94, + (3.253)
=P, +ep,+ €2 Doyt - (3.254)
We therefore conclude, order by order in e,
08 OS5k
qk,o’ - _6P0— ? pk;p- - +aqg . (3255)
Now let’s expand the Hamiltonian:
ﬁ(Q7P7t) :Ho(q,p,t)‘i‘le(q,p,t)‘i‘E (3256)
0H) 0H)
= H, Pt — — - P
O(Qﬂ ’ )+ 8@0 (qa Qo) + 8]30 (pa 0')
0
+eHy(Q Pit) + e 5 5,(Q. P t) + O(e)
0Hy 0S1 0Hy 051 051 9
= H, Pt — H
O(Qa ) )+ ( 8@@ an apa 8Qg + 8t + 1) €+O(€ )
851 2
= H,(Q,P,t)+ Hl—i-{Sl,HD}—i—W e+ O(€) . (3.257)

" Here, S(q, P,t) is not meant to signify Hamilton’s principal function.
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In the above expression, we evaluate H,(q,p,t) and S, (¢, P,t) at ¢ = @ and p = P and
expand in the differences ¢ — @@ and p — P. Thus, we have derived the relation

H(Q,P,t) = Hy(Q,P,t) +eH,(Q,P,t) + ... (3.258)

with
Hy(Q, P,t) = Hy(Q, P, t) (3.259)
H(Q,P,t)=H, +{S,,Hy} + a;;l . (3.260)

The problem, though, is this: we have one equation, eqn, 3.260, for the two unknowns
ﬁl and S;. Thus, the problem is underdetermined. Of course, we could choose fIl = 0,
which basically recapitulates standard Hamilton-Jacobi theory. But we might just as well
demand that H 1 satisfy some other requirement, such as that ﬁo +eH 1 being integrable.

Incidentally, this treatment is paralleled by one in quantum mechanics, where a unitary
transformation may be implemented to eliminate a perturbation to lowest order in a small
parameter. Consider the Schrédinger equation,

0
maif — (Hy+eHy) 0 (3.261)
and define X by _
=My (3.262)
with
S=eS +e2S,+... . (3.263)

As before, the transformation U = exp(iS/h) collapses to the identity in the e — 0 limit.
Now let’s write the Schrodinger equation for X. Expanding in powers of €, one finds

L OX 1 951 -
= = — - = 264
zhat H0x+e<H1+m[S1,HO]+ at>x+ HX, (3.264)

where [A, B] = AB — BA is the commutator. Note the classical-quantum correspondence,

(A B} % 4, B] . (3.265)

Again, what should we choose for S;7 Usually the choice is made to make the O(e) term
in H vanish. But this is not the only possible simplifying choice.
3.10.2 Canonical Perturbation Theory for n =1 Systems

Henceforth we shall assume H(&,t) = H(§) is time-independent, and we write the perturbed
Hamiltonian as

H(&) = Hy(&) + eH, (E) - (3.266)
Let (¢g, Jy) be the action-angle variables for H,. Then

Hy($g, Jo) = Ho(a(¢g, Jo)s p(¢0: o)) = Ho(Jp) - (3.267)
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We define .
H\ (9o, Jy) = Hy(a(¢0, Jo)s (g5 Jp)) - (3.268)

We assume that H = E[O + eI:I1 is integrable!'?, so it, too, possesses action-angle vari-
ables, which we denote by (¢, J)'3. Thus, there must be a canonical transformation taking

(90 Jo) = (¢, J), with
H(po(¢, ), Jo(d,J)) = K(J) = E(J) . (3.269)
We solve via a type-II canonical transformation:
S(pg, ) = g + €Sy (pg, J) + €2 So(dg, J) + -+, (3.270)

where ¢,J is the identity transformation. Then

oS 051 | 595

B @ 051 505
p=gr =G tegrte oot (3.272)
and
E(J)=Ey(J)+eE,(J)+EEy(J)+ ... (3.273)
= Hy(9g, Jo) + Hy (g, Jy) - (3.274)
We now expand fI(gf)O, Jy) in powers of J, — J:
H(gg, Jy) = Hy(¢g, Jo) + € H, (¢, Jy) (3.275)
A 0H, 0°H, >
= Hy(J)+ 57 (o= D+ 573 (o= D>+
~ aH
+eHy (o, Jo) + 57 (T =)+
- - oH, 05,
= Hy(J) + (H1(¢0, To) + 57 (%O) (3.276)
OH, 0, 1 82H, (0S1\> 0H, 05, 2
aJ O¢g 2 0J* \ 0o dJ oo
Equating terms, then,
Ey(J) = Hy(J) (3.277)
i 0H, 05,
Ey(J) = Hy (¢, )+W% (3.278)
_OH, 9S8, 1 9H, (9S1\® | 0H, 98

12This is always true, in fact, for n = 1.
13We assume the motion is bounded, so action-angle variables may be used.
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How, one might ask, can we be sure that the LHS of each equation in the above hierarchy
depends only on J when each RHS seems to depend on ¢, as well? The answer is that we
use the freedom to choose each S, to make this so. We demand each RHS be independent
of ¢, which means it must be equal to its average, (RHS(¢,) ), where

2

(F0)) = [ 52 10n) (3.2%0)

0

The average is performed at fized J and not at fixed J,. In this regard, we note that holding
J constant and increasing ¢, by 27 also returns us to the same starting point. Therefore,
J is a periodic function of ¢,. We must then be able to write

o0

S(@0:T) = D Sp(Jym) e (3.281)
for each k£ > 0, in which case
oS\ 1 -
(52) = - [s,em - 5,0 =0, (328)

Let’s see how this averaging works to the first two orders of the hierarchy. Since fIO(J )
is independent of ¢, and since 0S,/0¢, is periodic, we have

this vanishes!

E\(J) = (Hy(¢: 7)) + 8530 <gj;> (3.283)

and hence S| must satisfy
951 _ <H1> —H,
Do vy(J)

where vy(J) = 9H,/d.J. Clearly the RHS of eqn. 3.284 has zero average, and must be a
periodic function of ¢,. The solution is S; = S, (¢, J) + g(J), where g(J) is an arbitrary

; (3.284)

function of J. However, g(J) affects only the difference ¢ — ¢,, changing it by a constant
value ¢'(J). So there is no harm in taking ¢g(J) = 0.
Next, let’s go to second order in e. We have

this vanishes!

oH, dS 9 851\ dS
Yt Ut} 1970 /(991 “o2
EQ(J)—< 57 8¢0>+28J <<8¢1> >+VO(J)<8¢0> . (3.285)
The equation for S, is then
ER N 01/ AT AR S
Do u§(J){< 7 ><H0> < 7 H0> a7 )+ 57

+%% <<H12>_2<ﬁ1>2+2<ﬁ1>_ﬁ12>} ’ (3.286)
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The expansion for the energy F(J) is then

- - €2 ] - 1, -
E(J)=Hy(J)+e(H,) + o) {<6:;1].1> (H) — <6;{j H1>

1 0lny - ~
yo2 ((H% - <Hl>2> +O@ES) . (3.287)

2 oJ
Note that we don’t need S to find E(J)! The perturbed frequencies are
_OF
0J
Sometimes the frequencies are all that is desired. However, we can of course obtain the full
motion of the system via the succession of canonical transformations,

(¢, J) — (g, Jo) — (¢, p) - (3.289)

v(J) (3.288)

3.10.3 Example : Nonlinear Oscillator

Consider the nonlinear oscillator with Hamiltonian

HO
PR —
p2
H(q,p) =>— + smijq® +5eaq” . (3.290)

2m

The action-angle variables for the harmonic oscillator Hamiltonian H, are

vV Jo mug

) o

P
V2muy

Figure 3.8: Action-angle variables for the harmonic oscillator.

2
-1 p 1 2
¢y = tan (qu/p) . Jy= ST + gmyyq” (3.291)

and the relation between (¢, J;) and (g, p) is further depicted in fig. 3.8. Note H, = v, J,,.
For the full Hamiltonian, we have

I 1 2JO . 4
H(¢y, Jy) = vyJy + jea o sin ¢,

€ .
= vy + e J§ sin’ ¢y . (3.292)
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We may now evaluate

~ aJ? [deo . 4 3aJ?
E (J)=(H,) = —_— = —. 3.293
1( ) < 1> m2y§0/27r sy 8m2l/§ ( )
The frequency, to order ¢, is
3ead
J) = — . 3.294
)=t (3.294)

Now to lowest order in €, we may replace J by J, = %ml/()AQ, where A is the amplitude of

the ¢ motion. Thus,
Jea

v(A) =y, +

(3.295)

Smuyy

This result agrees with that obtained via heavier lifting, using the Poincaré-Lindstedt
method.
Next, let’s evaluate the canonical transformation (¢, J,) — (¢,J). We have

081 aJ sy
VOM)_WM(S_SIH(%) =

eaJ?

S(%a J) = ¢0J+ 2 3 (3+2SIH gbo) sin ¢, cos ¢ + O(e ) ) (3.296)
Thus,

oS aJ
=57 =+ m (3 + 2singy) sin g, cos ¢y + O(e2) (3.297)

S eaJ?
Jo= = =T+ g5 (4cos 2, — cosdgy) + O(<") . 3.208
"= Do +8m21/g( cos 2¢, — cos4ey) + O(e?) ( )

Again, to lowest order, we may replace J by J, in the above, whence

cad? 9
J=J,— Sm2 (4cos2¢, — cosdey) + O(€?) (3.299)
0
b=y + 860‘;] O (3+ 2sin’gg) sin 26, + O(?) . (3.300)

To obtain (¢,p) in terms of (¢,.J) is not analytically tractable — the relations cannot be
analytically inverted.

3.10.4 n > 1 Systems : Degeneracies and Resonances

Generalizing the procedure we derived for n = 1, we obtain

oS 651 2 852
J§ = =JY+ + € +... 3.301
0 a¢0 aqbo a¢0 ( )
o 05 _ . 081 0%
= gra = tegate oot (3.302)
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and

Ey(J) = Hy(J) (3.303)
~ o aS
E\(J) = Hy(g, J) +v5(J) 875;‘ (3.304)
0
OH, 0S2 1 dvg 85y 05 9S4
Ey(J) = -0 - & — 3.305
D)= 570 a5 T2 997 065 097 " dag (3:305)
We now implement the averaging procedure, with
2Trd¢)1 27rd¢7l
1 ny\ _ Yoo, Yo 1 n 7l n
<f(J,...,J)>_/27T /277 f(dgs-- 08, I ") (3.306)
0 0
The equation for S, is
v OO0 () - ==Y Vet (3.307)
where I = {I1,12,... 1"}, with each [ an integer, and with I # 0. The solution is
Vi pil-®
Sy (¢, J) = ZZ o (3.308)

where - v, = [“v§. When two or more of the frequencies v, (J) are commensurate, there
exists a set of integers [ such that the denominator of D(l) vanishes. But even when the
frequencies are not rationally related, one can approximate the ratios v/ 1/8‘/ by rational
numbers, and for large enough [ the denominator can become arbitrarily small.
A similar problem arises with periodic time-dependent perturbations. Consider the
system
H(p,J,t)=Hy(J)+eV(p,J,t), (3.309)

where V(t + T) = V(t). This means we may write

V(p,J,t) ka ¢, J) e kOt (3.310)
= Z D Vi (J)et? et er (3.311)
k l

by Fourier transforming from both time and angle variables; here {2 = 27/T. Note that
V(p,J,t) is real if V}*; = V_, _,. The equations of motion are

oH

R R M Eada (3.312)
. OH oV, (J) .
0" = ton =) e (;’}(a) el =ikt (3.313)

k.l
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We now expand in e:

P =P+ edS +E2BY + ... (3.314)
JY=J8 teJP+eE T8+ ... (3.315)

To order €, J* = J& and ¢§ = v§t + 3. To order €',

Tt = =iy 10V, () ekt gio (3.316)
k1l
and .
go = 8 o 5~ ViaT) ke s, (3.317)

L= 98 71 aJe
k.l

)

where derivatives are evaluated at J = J;. The solution is:

1°Via(Jo) :
o = M Gillvy—k)t il By (3.318)
k.l 0
g 1°Via(Jo) V31 (J) 1 i(lvg— k)t il-B
(e} — ) U by v . . 1
o {aJﬁ R A T 7 A (3:319)

When the resonance condition,

k2 =1-vy(Jy) (3.320)

holds, the denominators vanish, and the perturbation theory breaks down.

3.10.5 Particle-Wave Interaction

Consider a particle of charge e moving in the presence of a constant magnetic field B = B2
and a space- and time-varying electric field E(x,t), described by the Hamiltonian

H= %(p — %A)2 +eeV cos(k z+k,z —wt) , (3.321)

where € is a dimensionless expansion parameter. Working in the gauge A = Bxy, from our
earlier discussions in section 3.8.7, we may write

2
p kJ_P 2J .
H=w.J+ ﬁ + €€V, cos (k:zz + F—_ +k " sing —wt | . (3.322)
Here,
P .
T = + sin ¢ , y=Q+ cos o , (3.323)
Mwe Mwe Mwe

with w. = eB/me, the cyclotron frequency. We now make a mixed canonical transformation,
generated by

P
F=¢J + (k:zz + MLP wt) K - PQ", (3.324)

MWe
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where the new sets of conjugate variables are {(¢/,J), (@', P'), (¢/, K’)}. We then have

OF oF
¢ =55 =0 J:%:J’ (3.325)
oF kiK' oF
Q:_a?:_mwc +Q P’:—aQ/:P (3.326)
OF k. P oF
The transformed Hamiltonian is
oF
H =H+ —
o
/ kg 12 / / 2J /
= weJ —i—%K —wK' +eeVycos |V + k| p— sing’ | . (3.328)
C
We will now drop primes and simply write H = H, + ¢ H,, with
k2
Hy = weJ + % K? - wK (3.329)

H, =€V, cos <w +k 4/ nzi sinqﬁ) . (3.330)
C

When € = 0, the frequencies associated with the ¢ and ¢ motion are

0Hy 0Hy kK
wgza—(b:wc , wi:%: in —w=kuv, —w, (3.331)
where v, = p,/m is the z-component of the particle’s velocity. Now let us solve eqn. 3.307:
051 051
wga—gb%—wg%:(fh}—[{l. (3.332)

This yields

98, (KK \0S; 27 .
wc&b+< - —w)——ercos(w—i-kL . sm¢>

o c
> 2.J
— —eA, Z J <’m w) cos(v) + no) (3.333)

where we have used the result

el = N 7 (2) e (3.334)

The solution for S, is
eVo [ 2J .
S, = — J [k — . 3.335
1 ;w_nwc_sz/m n( 1 mwc) Sln(¢+n¢) ( )
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We then have new action variables J and K, where

J=J+e 95, + O(e?) (3.336)
o
_ oS
K=K+e—210() . (3.337)
o
Defining the dimensionless variable
2J
A=k .
2\ e (3.338)
we obtain the result
mw? 2 mw? 2 GZ ndn(N) cos(v + ng) Lo (3.330)
2eVok? )7\ 2eVpk? — w g, KK ’ ‘
where A = k| \/2J /mw. !
We see that resonances occur whenever
k2K
©BER gy, (3.340)
We MW

for any integer n. Let us consider the case k, = 0, in which the resonance condition is
w = nw.. We then have

AN n Jn(X) cos(¢ 4+ no) (3.341)
20 2« — o-n ’ '
where 5 .
0o Ccky
- 9. .342
a=—3 o (3.342)

is a dimensionless measure of the strength of the perturbation, with £, = k, V{,. In Fig. 3.9
we plot the level sets for the RHS of the above equation A(¢) for ¢ = 0, for two different
values of the dimensionless amplitude «, for w/w. = 30.11 (i.e. off resonance). Thus, when
the amplitude is small, the level sets are far from a primary resonance, and the analytical and
numerical results are very similar (left panels). When the amplitude is larger, resonances
may occur which are not found in the lowest order perturbation treatment. However, as
is apparent from the plots, the gross features of the phase diagram are reproduced by
perturbation theory. What is missing is the existence of ‘chaotic islands’ which initially
emerge in the vicinity of the trapping regions.

M Note that the argument of Jy, in eqn. 3.339 is A and not X. This arises because we are computing the
new action J in terms of the old variables (¢, J) and (¢, K).
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Figure 3.9: Plot of A versus ¢ for ¢ = 0 (Poincaré section) for w = 30.11 w. Top panels are
nonresonant invariant curves calculated to first order. Bottom panels are exact numerical
dynamics, with x symbols marking the initial conditions. Left panels: weak amplitude
(no trapping). Right panels: stronger amplitude (shows trapping). From Lichtenberg and
Lieberman (1983).

3.11 Adiabatic Invariants

Adiabatic perturbations are slow, smooth, time-dependent perturbations to a dynamical
system. A classic example: a pendulum with a slowly varying length [(¢). Suppose A(t)
is the adiabatic parameter. We write H = H (q,p; )\(t)). All explicit time-dependence to
H comes through A(t). Typically, a dimensionless parameter ¢ may be associated with the
perturbation:
1
=

dln A\
dt

, (3.343)

where wy, is the natural frequency of the system when A is constant. We require € < 1 for
adiabaticity.

In adiabatic processes, the action variables are conserved to a high degree of accuracy.
These are the adiabatic invariants. For example, for the harmonix oscillator, the action is
J = E/v. While E and v may vary considerably during the adiabatic process, their ratio
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is very nearly fixed. As a consequence, assuming small oscillations,

2J

e 3.344
m\/§l3/2 ( )

E=vJ=1imgl 02 = 6()~
80 0 (£) oc 173/4,
Suppose that for fixed A the Hamiltonian is transformed to action-angle variables via
the generator S(q, J; \). The transformed Hamiltonian is

A6, 0,1) = H(p, J:X) + o5 & (3.345)
where
H(p, J;\) = H(q(¢, J;7),p(¢, J;A); A) - (3.346)
We assume n = 1 here. Hamilton’s equations are now
. .oH >’s .
=+—=v(J; N+ —— )\ 3.347
. 0H 0% .
=——=— A .34
J 96 9700 (3.348)
The second of these may be Fourier decomposed as
i 3 OSm(J3A) img
J= —ZA;ma)\e , (3.349)
hence
| [ 080(TiN) ¢ o
AJ:J(t:—i—oo)—J(t:—oo):—zZm/dta)\)\e . (3.350)

Since A is small, we have o(t) = vt + 3, to lowest order. We must therefore evaluate

integrals such as
OSm (J:A) < imt
T = t vt 351
/d {m )\}e (3.351)

The term in curly brackets is a smooth, slowly varying function of t. Call it f(t). We
presume f(t) can be analytically continued off the real ¢ axis, and that its closest singularity
in the complex ¢ plane lies at t = +i7, in which case Z behaves as exp(—|m|v7). Consider,
for example, the Lorentzian,

C r imy —|mivT
IO =1rgm = [Jui®e b=mretmhm (3.352)

which is exponentially small in the time scale 7. Because of this, only m = +1 need be
considered. What this tells us is that the change AJ may be made arbitrarily small by a
sufficiently slowly varying A(¢).
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Figure 3.10: A mechanical mirror.

3.11.1 Example: Mechanical Mirror

Consider a two-dimensional version of a mechanical mirror, depicted in fig. 3.10. A particle
bounces between two curves, y = +D(x), where |D’(z)| << 1. The bounce time is 7, | =
2D/vy,. We assume 7 < L/v,, where v, , are the components of the particle’s velocity, and
L is the total length of the system. There are, therefore, many bounces, which means the
particle gets to sample the curvature in D(z).

The adiabatic invariant is the action,

D -D
1 1 2
J = or dymuv, + 27T/dym(—vy) = ;mvyD(a:) . (3.353)
—-D D
Thus,
1 2 2 1, .2 w2 J?
E = §m(Ux + 'Uy> = im’l)x + WQ(:E) ; (3354)
or 9
2F J
2_ 2= ("7
= (2mD(m)> . (3.355)

This means that the particle is reflected in the throat of the device at horizontal coordinate

z* such that r
D(z*) = 2 . (3.356)

3.11.2 Example: Magnetic Mirror

Consider a particle of charge e moving in the presence of a uniform magnetic field B = BZ2.
Recall the basic physics: velocity in the parallel direction v, is conserved, while in the plane
perpendicular to B the particle executes circular ‘cyclotron orbits’, satisfying

mv? e _ mevy

P :E’ULB = P=_5 (3.357)

where p is the radial coordinate in the plane perpendicular to B. The period of the orbits
is T = 2mp.v, = 2mmc/eB, hence their frequency is we. = eB/mc, known as the cyclotron
frequency.

Now assume that the magnetic field is spatially dependent. Note that a spatially varying
B-field cannot be unidirectional:

0B,
0z

V.-B=V, -B, + 0. (3.358)
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Figure 3.11: B field lines in a magnetic bottle.

The non-collinear nature of B results in the drift of the cyclotron orbits. Nevertheless, if
the field B felt by the particle varies slowly on the time scale T' = 27 /wc, then the system
possesses an adiabatic invariant:

1 1 .
J:%fp.dfz%%(m’u—i—cA)-dz (3.359)
C C
m € ~
_zw%”'d““zm B-hdy . (3.360)
C int(C)

The last two terms are of opposite sign, and one has

B
= P orp it S B, mp? (3.361)
2 mec 2me
eB.p? e m%ic
_ ()= 3.362
2c 2me 5(C) 2eB, ’ ( )
where ® 5 (C) is the magnetic flux enclosed by C.
The energy is
E=1imv] +imo? | (3.363)
hence we have
2
v,=1/—(E— MB) . (3.364)
m
where
S S ©) (3.365)
T me” T 2mme® '

is the magnetic moment. Note that v, vanishes when B = Bpmax = F/M. When this limit
is reached, the particle turns around. This is the physics of the magnetic mirror.

A pair of magnetic mirrors may be used to confine charged particles in a magnetic bottle,
depicted in fig. 3.11.
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Let V)00 V100 and BH o be the longitudinal particle velocity, transverse particle velocity,
and longitudinal component of the magnetic field, respectively, at the point of injection.
Our two conservation laws (J and F) guarantee

vil(2) + 03 (2) = vf g + 01 (3.366)
2
vi(2)? vl
== (3.367)
By(z) By
This leads to reflection at a longitudinal coordinate z*, where
(3.368)
The physics is quite similar to that of the mechanical mirror.
3.11.3 Resonances
When n > 1, we have
T - a 8Sm(‘]’ )‘) im-¢
Jo = —z)\;m e (3.369)
AJ = —i %: m® / dt as"é(j;” A efmvt gmeB (3.370)

—00

Therefore, when m - v(J) = 0 we have a resonance, and the integral grows linearly with
time — a violation of the adiabatic invariance of J<.

3.12 Fast Perturbations : Rapidly Oscillating Fields

Consider a free particle moving under the influence of an oscillating force,

m§ = Fsinwt . (3.371)
The motion of the system is then
F sinwt
q(t) = 4y(t) = ———— (3.372)

where ¢, (t) = A+ Bt is the solution to the homogeneous (unforced) equation of motion.

Note that the amplitude of the response ¢ — ¢, goes as w™?2 and is therefore small when w
is large.
Now consider a general n = 1 system, with

H(q,p,t) = Hy(q,p) + V;(q) sin(wt +9) . (3.373)
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We assume that w is much greater than any natural oscillation frequency associated with
H,. We separate the motion ¢(t) and p(t) into slow and fast components:

q(t) = q(t) + ¢(t) (3.374)

p(t) = B(t) + (1) (3.375)

where ((t) and 7(t) oscillate with the driving frequency w. Since ¢ and 7 will be small, we
expand Hamilton’s equations in these quantities:

... 0Hy 0%Hy 0%H, 1 0°Hy 0%H, 1 0°Hy
q+¢= ap +8ﬁ2 7r+6(j(9ﬁC+28q2 (%4 8(]8_2(%—1—5815377—1—... (3.376)
;+ﬁ__amy_mm%_¢whw_1&%be_znﬁgﬂ_;a%hWQ
p g g2 0Gop 2 0¢3 02 Op 2 0G Op?
- %‘; sin(wt + 0) — ?;;g sin(wt +9) — ... . (3.377)

We now average over the fast degrees of freedom to obtain an equation of motion for the slow
variables ¢ and p, which we here carry to lowest nontrivial order in averages of fluctuating
quantities:

1= +5 9205 (¢ + 97052 (¢m) + 2 o (m?) (3.378)
. OHy 13°Hy , .,  °Hy 1 9%Hy 2 o, .
=—— - — - = - t+4)) . (3.379
p g 2 05 (¢*) 93 0p (¢m) 2 07 0p2 BN (¢ sin(wt +0)) . (3.379)
The fast degrees of freedom obey
. 0%H, 82H0
(= 970p ¢+ (3.380)
0’Hy 82H0 oV
T=— — — t+0 .381
7 o 8@8}3 ~ 9 sin(wt + 0) . (3.381)
Let us analyze the coupled equations'®
(=AC+Bn (3.382)
T=-C(—-An+Fe ™, (3.383)
The solution is of the form
C _ (@ —iwt
<7r =5 e . (3.384)
Plugging in, we find
BF BF _4
B (A+iw)F iF _3
b=—fc—m -5 tOW"). (3.386)

15With real coefficients A, B, and C, one can always take the real part to recover the fast variable equations
of motion.
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Taking the real part, and restoring the phase shift §, we have
—BF 1 0V 0%H,

¢(t) = 7 sin(wt +9) = 090 0 sin(wt + 9) (3.387)
(t) = —g cos(wt + 8) = i‘?; cos(wt + 6) . (3.388)
The desired averages, to lowest order, are thus
L
(x2) = % (g‘g)z (3.390)
(¢ sin(wt +8)) = ﬁ %‘; 8;520 : (3.391)

along with <§7r> =0.
Finally, we substitute the averages into the equations of motion for the slow variables ¢
and p, resulting in the time-independent effective Hamiltonian

1 0%Hy (9V\?
K(g,p)=H,\(q,p) + — — | — 392
and the equations of motion
. 0K . 0K
= —F— p=——F— . 3.393
q % D 95 ( )

3.12.1 Example : Pendulum with Oscillating Support

Consider a pendulum with a vertically oscillating point of support. The coordinates of the
pendulum bob are

x=1~»sinf , y=a(t)—~Lcosh . (3.394)
The Lagrangian is easily obtained:
L=1ime 0% 4+ mla B sin 6 + mgl cos 6 + ima* — mga (3.395)
these may be dropped
. d
= iml?0® + m(g + &)l cos O+ tma® — mga — pn (mla sinf) . (3.396)

Thus we may take the Lagrangian to be
L=1ime? 60>+ m(g+a)lcosb (3.397)

from which we derive the Hamiltonian

H(0,p,,t) = % — mgl cos @ — mla cos 6 (3.398)
= Hy(0,p,.t) + V,(0) sinwt . (3.399)
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Figure 3.12: Dimensionless potential v(f) for e = 1.5 (black curve) and € = 0.5 (blue curve).

We have assumed a(t) = a,sinwt, so
V1(0) = mlagw? cos . (3.400)

The effective Hamiltonian, per eqn. 3.392, is

K(0,p,) = 2:&2 —mglcosd + tmajw?sin® 0 . (3.401)

Let’s define the dimensionless parameter

29/

7 -

€
2
wag

(3.402)

The slow variable 6 executes motion in the effective potential V, g(6) = mglv(6), with

v(f) = —cosf + 2l sin? 6 . (3.403)
€

Differentiating, and dropping the bar on 6, we find that V_;(#) is stationary when
V() =0 = sinfcosh = —esinf . (3.404)

Thus, # = 0 and 6 = 7, where sinf = 0, are equilibria. When € < 1 (note € > 0 always),
there are two new solutions, given by the roots of cosf = —e.
To assess stability of these equilibria, we compute the second derivative:

1
v"(0) = cosf + = cos 20 . (3.405)
€
From this, we see that # = 0 is stable (i.e. v”(6 = 0) > 0) always, but § = 7 is stable for
€ < 1 and unstable for ¢ > 1. When € < 1, two new solutions appear, at cosf = —e, for
which 1
v (cosT (=€) =€ — =, (3.406)

€
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which is always negative since € < 1 in order for these equilibria to exist. The situation is
sketched in fig. 3.12, showing v(f) for two representative values of the parameter e. For
€ > 1, the equilibrium at € = w is unstable, but as e decreases, a subcritical pitchfork
bifurcation is encountered at ¢ = 1, and § = 7 becomes stable, while the outlying 6 =
cos~1(—e) solutions are unstable.
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