
Chapter 2

Lagrangian Mechanics

2.1 The Equations of Mechanics

The motion of a mechanical system is described by a set of functions, the generalized
coordinates, {qσ(t)}. I will often write q for the entire set {q1, q2, . . . , qn}, where n is the
number of generalized coordinates.

Of course we are not given the motion q(t) directly. Rather, it is encoded in a set of
ordinary differential equations, known as the equations of motion. Consider a mechanical
system such that q(ta) = qa and q(tb) = qb (see Fig. 2.1). The equations of motion
select a particular path, q∗(t), from the infinite-dimensional space of all possible paths
q(t) connecting these endpoints. The equations of motion for a given system follow from
Hamilton’s Principle, economically expressed as

δS = 0 . (2.1)

Here, S[q(t)] is the action functional , which maps paths q(t) to real numbers. Hamilton’s
principle, in words, says that the motion of a mechanical system corresponds to an extremum
of the action functional.

The action functional is a time integral of the Lagrangian function L(q, q̇, t):

S[q(t)] =

tb∫
ta

dtL(q, q̇, t) . (2.2)

We shall discuss the properties of L presently, but first let us digress and discuss some
properties of functionals.
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Figure 2.1: Examples of paths q(t) connecting q(ta) = qa to q(tb) = qb.

2.1.1 Digression on Functionals

You all know that a function f is an animal which gets fed a real number x and excretes a
real number f(x). We say f maps the reals to the reals, or

f : R → R (2.3)

Of course we also have functions g : C → C which eat and excrete complex numbers,
multivariable functions h : RN → R which eat N -tuples of numbers and excrete a single
number, etc.

A functional F [f(x)] eats entire functions (!) and excretes numbers. That is,

F :
{
f(x)

∣∣ x ∈ R
}
→ R (2.4)

This says that F operates on the set of real-valued functions of a single real variable, yielding
a real number. Some examples:

F [f(x)] = 1
2

∞∫
−∞

dx
[
f(x)

]2 (2.5)

F [f(x)] = 1
2

∞∫
−∞

dx

∞∫
−∞

dx′K(x, x′) f(x) f(x′) (2.6)

F [f(x)] =

∞∫
−∞

dx

{
1
2Af

2(x) + 1
2B

(
df

dx

)2}
. (2.7)

In classical mechanics, the action S is a functional of the path q(t):

S[q(t)] =

tb∫
ta

dt
{

1
2mq̇

2 − U(q)
}
. (2.8)
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We can also have functionals which feed on functions of more than one independent variable,
such as

S[y(x, t)] =

tb∫
ta

dt

xb∫
xa

dx

{
1
2µ

(
∂y

∂t

)2

− 1
2τ

(
∂y

∂x

)2
}
, (2.9)

which just happens to be the functional for a string of mass density µ under uniform tension
τ . Another example comes from electrodynamics:

S[Aµ(x, t)] = −
∫
d3x

∫
dt

{
1

16π
Fµν F

µν + JµA
µ

}
, (2.10)

which is a functional of the four fields {A0, A1, A2, A3}, where A0 = cφ. These are the
components of the 4-potential, each of which is itself a function of four independent variables
(x0, x1, x2, x3), with x0 = ct. The field strength tensor is written in terms of derivatives of
the Aµ: Fµν = ∂µAν − ∂νAµ, where we use a metric gµν = diag(+,−,−,−) to raise and
lower indices. The 4-potential couples linearly to the source term Jµ, which is the electric
4-current (cρ,J).

Figure 2.2: A functional S[q(t)] is the continuum limit of a function of a large number of
variables, S(q1, . . . , qM ).

We extremize functions by sending the independent variable x to x+dx and demanding
that the variation df = 0 to first order in dx. That is,

f(x+ dx) = f(x) + f ′(x) dx+ 1
2f

′′(x)(dx)2 + . . . , (2.11)

whence df = f ′(x) dx+O
(
(dx)2

)
and thus

f ′(x∗) = 0 ⇐⇒ x∗ an extremum. (2.12)

We extremize functionals by sending

f(x) → f(x) + δf(x) (2.13)
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and demanding that the variation δF in the functional F [f(x)] vanish to first order in δf(x).
The variation δf(x) must sometimes satisfy certain boundary conditions. For example, if
F [f(x)] only operates on functions which vanish at a pair of endpoints, i.e. f(xa) = f(xb) =
0, then when we extremize the functional F we must do so within the space of allowed
functions. Thus, we would in this case require δf(xa) = δf(xb) = 0. We may expand the
functional F [f + δf ] in a functional Taylor series,

F [f + δf ] = F [f ] +
∫
dx1K1(x1) δf(x1) + 1

2 !

∫
dx1

∫
dx2K2(x1, x2) δf(x1) δf(x2)

+ 1
3 !

∫
dx1

∫
dx2

∫
dx3K3(x1, x2, x3) δf(x1) δf(x2) δf(x3) + . . . (2.14)

and we write
Kn(x1, . . . , xn) ≡

δnF

δf(x1) · · · δf(xn)
. (2.15)

In a more general case, F = F [{fi(x)} is a functional of several functions, each of which is
a function of several independent variables.1 We then write

F [{fi + δfi}] = F [{fi}] +
∫
dx1K

i
1(x1) δfi(x1)

+ 1
2 !

∫
dx1

∫
dx2K

ij
2 (x1,x2) δfi(x1) δfj(x2)

+ 1
3 !

∫
dx1

∫
dx2

∫
dx3 K

ijk
3 (x1,x2, x3) δfi(x1) δfj(x2) δfk(x3) + . . . , (2.16)

with
K
i1i2···in
n (x1,x2, . . . ,xn) =

δnF

δf
i1

(x1) δfi2
(x2) δfin(xn)

. (2.17)

Another way to compute functional derivatives is to send

f(x) → f(x) + ε1 δ(x− x1) + . . .+ εn δ(x− xn) (2.18)

and then differentiate n times with respect to ε1 through εn. That is,

δnF

δf(x1) · · · δf(xn)
=

∂n

∂ε1 · · · ∂εn

∣∣∣∣∣
ε1=ε2=···εn=0

F
[
f(x) + ε1 δ(x− x1) + . . .+ εn δ(x− xn)

]
. (2.19)

Let’s see how this works. As an example, we’ll take the action functional from classical
mechanics,

S[q(t)] =

tb∫
ta

dt
{

1
2mq̇

2 − U(q)
}
. (2.20)

1It may be also be that different functions depend on a different number of independent variables. E.g.
F = F [f(x), g(x, y), h(x, y, z)].
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To compute the first functional derivative, we replace the function q(t) with q(t)+ε δ(t−t1),
and expand in powers of ε:

S
[
q(t) + εδ(t− t1)

]
= S[q(t)] + ε

tb∫
ta

dt
{
m q̇ δ′(t− t1)− U ′(q) δ(t− t1)

}
= −ε

{
m q̈(t1) + U ′

(
q(t1)

)}
, (2.21)

hence
δS

δq(t)
= −

{
m q̈(t) + U ′

(
q(t)

)}
(2.22)

and setting the first functional derivative to zero yields Newton’s Second Law, mq̈ = −U ′(q),
for all t ∈ [ta, tb]. Note that we have used the result

∞∫
−∞

dt δ′(t− t1)h(t) = −h′(t1) , (2.23)

which is easily established upon integration by parts.

To compute the second functional derivative, we replace

q(t) → q(t) + ε1 δ(t− t1) + ε2 δ(t− t2) (2.24)

and extract the term of order ε1 ε2 in the double Taylor expansion. One finds this term to
be

ε1 ε2

tb∫
ta

dt
{
mδ′(t− t1) δ′(t− t2)− U ′′(q) δ(t− t1) δ(t− t2)

}
. (2.25)

Note that we needn’t bother with terms proportional to ε21 or ε22 since the recipe is to
differentiate once with respect to each of ε1 and ε2 and then to set ε1 = ε2 = 0. This
procedure uniquely selects the term proportional to ε1 ε2, and yields

δ2S

δq(t1) δq(t2)
= −

{
mδ′′(t1 − t2) + U ′′

(
q(t1)

)
δ(t1 − t2)

}
. (2.26)

In multivariable calculus, the stability of an extremum is assessed by computing the
matrix of second derivatives at the extremal point, known as the Hessian matrix. One has

∂f

∂xi

∣∣∣∣
x∗

= 0 ∀ i ; Hij =
∂2f

∂xi ∂xj

∣∣∣∣
x∗
. (2.27)

The eigenvalues of the Hessian Hij determine the stability of the extremum. Since Hij is
a symmetric matrix, its eigenvectors ηα may be chosen to be orthogonal. The associated
eigenvalues λα, defined by the equation

Hij η
α
j = λα η

α
i , (2.28)
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are the respective curvatures in the directions ηα, where α ∈ {1, . . . , n} where n is the
number of variables. The extremum is a local minimum if all the eigenvalues λα are positive,
a maximum if all are negative, and otherwise is a saddle point. Near a saddle point, there
are some directions in which the function increases and some in which it decreases.

In the case of functionals, the second functional derivative K2(x1, x2) defines an eigen-
value problem for δf(x):

xb∫
xa

dx2K2(x1, x2) δf(x2) = λ δf(x1) . (2.29)

In general there are an infinite number of solutions to this equation which form a basis in
function space, subject to appropriate boundary conditions at xa and xb. For example, in
the case of the action functional from classical mechanics, the above eigenvalue equation
becomes a differential equation,

−
{
m

d2

dt2
+ U ′′

(
q∗(t)

)}
δq(t) = λ δq(t) , (2.30)

where q∗(t) is the solution to the Euler-Lagrange equations. As with the case of ordinary
multivariable functions, the functional extremum is a local minimum (in function space)
if every eigenvalue λα is positive, a local maximum if every eigenvalue is negative, and a
saddle point otherwise.

Consider the simple harmonic oscillator, for which U(q) = 1
2 mω

2
0 q

2. Then U ′′
(
q∗(t)

)
=

mω2
0; note that we don’t even need to know the solution q∗(t) to obtain the second functional

derivative in this special case. The eigenvectors obey m(δq̈ + ω2
0 δq) = −λ δq, hence

δq(t) = A cos
(√

ω2
0 + (λ/m) t+ ϕ

)
, (2.31)

where A and ϕ are constants. Demanding δq(ta) = δq(tb) = 0 requires√
ω2

0 + (λ/m)
(
tb − ta) = nπ , (2.32)

where n is an integer. Thus, the eigenfunctions are

δqn(t) = A sin
(
nπ · t− ta

tb − ta

)
, (2.33)

and the eigenvalues are

λn = m
(nπ
T

)2
−mω2

0 , (2.34)

where T = tb − ta. Thus, so long as T > π/ω0, there is at least one negative eigenvalue.
Indeed, for nπ

ω0
< T < (n+1)π

ω0
there will be n negative eigenvalues. This means the action

is generally not a minimum, but rather lies at a saddle point in the (infinite-dimensional)
function space.
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To test this explicitly, consider a harmonic oscillator with the boundary conditions
q(0) = 0 and q(T ) = Q. The equations of motion, q̈ + ω2

0 q = 0, along with the boundary
conditions, determine the motion,

q∗(t) =
Q sin(ω0t)

sin(ω0T )
. (2.35)

The action for this path is then

S[q∗(t)] =

T∫
0

dt
{

1
2m q̇∗2 − 1

2mω
2
0 q

∗2
}

=
mω2

0 Q
2

2 sin2ω0T

T∫
0

dt
{

cos2ω0t− sin2ω0t
}

= 1
2mω0Q

2 ctn (ω0T ) . (2.36)

Next consider the path q(t) = Qt/T which satisfies the boundary conditions but does not
satisfy the equations of motion (it proceeds with constant velocity). One finds the action
for this path is

S[q(t)] = 1
2mω0Q

2

(
1

ω0T
− 1

3ω0T

)
. (2.37)

Thus, provided ω0T 6= nπ, in the limit T →∞ we find that the constant velocity path has
lower action.

Finally, consider the general mechanical action,

S
[
q(t)

]
=

tb∫
ta

dtL(q, q̇, t) . (2.38)

We now evaluate the first few terms in the functional Taylor series:

S
[
q∗(t) + δq(t)

]
=

tb∫
ta

dt

{
L(q∗, q̇∗, t) +

∂L

∂qi

∣∣∣∣∣
q∗

δqi +
∂L

∂q̇i

∣∣∣∣∣
q∗

δq̇i (2.39)

+
1
2

∂2L

∂qi ∂qj

∣∣∣∣∣
q∗

δqi δqj +
∂2L

∂qi ∂q̇j

∣∣∣∣∣
q∗

δqi δq̇j +
1
2

∂2L

∂q̇i ∂q̇j

∣∣∣∣∣
q∗

δq̇i δq̇j + . . .

}
.

To identify the functional derivatives, we integrate by parts. Let Φ...(t) be an arbitrary
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function of time. Then
tb∫
ta

dtΦi(t) δq̇i(t) = −
tb∫
ta

dt Φ̇i(t) δqi(t) (2.40)

tb∫
ta

dtΦij(t) δqi(t) δq̇j(t) =

tb∫
ta

dt

tb∫
ta

dt′ Φij(t) δ(t− t′)
d

dt′
δqi(t) δqj(t′)

=

tb∫
ta

dt

tb∫
ta

dt′ Φij(t)) δ′(t− t′) δqi(t) δqj(t′) (2.41)

tb∫
ta

dtΦij(t) dq̇i(t) δq̇j(t) =

tb∫
ta

dt

tb∫
ta

dt′ Φij(t) δ(t− t′)
d

dt

d

dt′
δqi(t) δqj(t′)

= −
tb∫
ta

dt

tb∫
ta

dt′
[
Φ̇ij(t) δ′(t− t′) + Φij(t) δ′′(t− t′)

]
δqi(t) δqj(t′) .

(2.42)

Thus,

δS

δqi(t)
=

[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
q∗(t)

(2.43)

δ2S

δqi(t) δqj(t′)
=

{
∂2L

∂qi ∂qj

∣∣∣∣∣
q∗(t)

δ(t− t′)− ∂2L

∂q̇i ∂q̇j

∣∣∣∣∣
q∗(t)

δ′′(t− t′)

+

[
2

∂2L

∂qi ∂q̇j
− d

dt

(
∂2L

∂q̇i ∂q̇j

)]
q∗(t)

δ′(t− t′)

}
. (2.44)

2.1.2 Example 1 : Minimal Surface of Revolution

Consider a surface formed by rotating the function y(x) about the x-axis. The area is then

A
[
y(x)

]
=

x2∫
x1

dx 2πy

√
1 +

(
dy

dx

)2
, (2.45)

and is a functional of the curve y(x). Thus we can define L(y, y′) = 2πy
√

1 + y′2 and make
the identification y(x) ↔ q(t). We can then apply what we have derived for the mechanical
action, with L = L(q, q̇, t), mutatis mutandis. Thus, the equation of motion is

d

dx

(
∂L

∂y′

)
=
∂L

∂y
, (2.46)
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which is a second order ODE for y(x). Rather than treat the second order equation, though,
we can integrate once to obtain a first order equation, by noticing that

d

dx

[
y′
∂L

∂y′
− L

]
= y′′

∂L

∂y′
+ y′

d

dx

(
∂L

∂y′

)
− ∂L

∂y′
y′′ − ∂L

∂y
y′ − ∂L

∂x

= y′
[
d

dx

(
∂L

∂y′

)
− ∂L

∂y

]
− ∂L

∂x
. (2.47)

In the second line above, the term in square brackets vanishes, thus

J = y′
∂L

∂y′
− L ⇒ dJ

dx
= −∂L

∂x
, (2.48)

and when L has no explicit x-dependence, J is conserved. One finds

J = 2πy · y′2√
1 + y′2

− 2πy
√

1 + y′2 = − 2πy√
1 + y′2

. (2.49)

Solving for y′,

dy

dx
= ±

√(
2πy
J

)2

− 1 , (2.50)

which may be integrated with the substitution y = J
2π coshχ, yielding

y(x) = b cosh
(
x− a

b

)
, (2.51)

where a and b = J
2π are constants of integration. Note there are two such constants, as

the original equation was second order. This shape is called a catenary. As we shall later
find, it is also the shape of a uniformly dense rope hanging between two supports, under
the influence of gravity. To fix the constants a and b, we invoke the boundary conditions
y(x1) = y1 and y(x2) = y2.

Consider the case where −x1 = x2 ≡ x0 and y1 = y2 ≡ y0. Then clearly a = 0, and we
have

y0 = b cosh
(x0

b

)
⇒ γ = κ−1 coshκ , (2.52)

with γ ≡ y0/x0 and κ ≡ x0/b. One finds that for any γ > 1.5089 there are two solutions,
one of which is a local minimum and one of which is a saddle point of A[y(x)]. The solution
with the smaller value of κ (i.e. the larger value of sechκ) yields the smaller value of A, as
shown in Fig. 2.3. Note that

y

y0
=

cosh(x/b)
cosh(x0/b)

, (2.53)

so y(x = 0) = y0 sech(x0/b).

When extremizing functions that are defined over a finite or semi-infinite interval, one
must take care to evaluate the function at the boundary, for it may be that the boundary
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Figure 2.3: Minimal surface solution, with y(x) = b cosh(x/b) and y(x0) = y0. Top panel:
A/2πy2

0 vs. y0/x0. Bottom panel: sech(x0/b) vs. y0/x0. The blue curve corresponds to a
local minimum of A[y(x), and the red curve to a saddle point.

yields a global extremum even though the derivative may not vanish there. Similarly, when
extremizing functionals, one must investigate the functions at the boundary of function
space. In this case, such a function would be the discontinuous solution, with

y(x) =



y1 if x = x1

0 if x1 < x < x2

y2 if x = x2 .

(2.54)

This solution corresponds to a surface consisting of two discs of radii y1 and y2, joined
by an infinitesimally thin thread. The area functional evaluated for this particular y(x)
is clearly A = π(y2

1 + y2
2). In Fig. 2.3, we plot A/2πy2

0 versus the parameter γ = y0/x0.
For γ > γc ≈ 1.564, one of the catenary solutions is the global minimum. For γ < γc, the
minimum area is achieved by the discontinuous solution.
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Note that the functional derivative,

K1(x) =
δA

δy(x)
=

{
∂L

∂y
− d

dx

(
∂L

∂y′

)}
=

2π
(
1 + y′2 − yy′′

)
(1 + y′2)3/2

, (2.55)

indeed vanishes for the catenary solutions, but does not vanish for the discontinuous solu-
tion, where K1(x) = 2π throughout the interval (−x0, x0). Since y = 0 on this interval, y
cannot be decreased. The fact that K1(x) > 0 means that increasing y will result in an
increase in A, so the boundary value for A, which is 2πy2

0, is indeed a local minimum.

We furthermore see in Fig. 2.3 that for γ < γ∗ ≈ 1.5089 the local minimum and saddle
are no longer present. This is the familiar saddle-node bifurcation, here in function space.
Thus, for γ ∈ [0, γ∗) there are no extrema of A[y(x)], and the minimum area occurs for the
discontinuous y(x) lying at the boundary of function space. For γ ∈ (γ∗, γc), two extrema
exist, one of which is a local minimum and the other a saddle point. Still, the area is
minimized for the discontinuous solution. For γ ∈ (γc,∞), the local minimum is the global
minimum, and has smaller area than for the discontinuous solution.

2.1.3 Example 2 : Geodesic on a Surface of Revolution

We use cylindrical coordinates (ρ, φ, z) on the surface z = z(ρ). Thus,

ds2 = dρ2 + ρ2 dφ2 + dx2

=
{

1 +
[
z′(ρ)

]2}
dρ+ ρ2 dφ2 , (2.56)

and the distance functional D
[
φ(ρ)

]
is

D
[
φ(ρ)

]
=

ρ2∫
ρ1

dρL(φ, φ′, ρ) , (2.57)

where
L(φ, φ′, ρ) =

√
1 + z′2(ρ) + ρ2 φ′2(ρ) . (2.58)

The Euler-Lagrange equation is

∂L

∂φ
− d

dρ

(
∂L

∂φ′

)
= 0 ⇒ ∂L

∂φ′
= const. (2.59)

Thus,
∂L

∂φ′
=

ρ2 φ′√
1 + z′2 + ρ2 φ′2

= a , (2.60)

where a is a constant. Solving for φ′, we obtain

dφ =
a
√

1 +
[
z′(ρ)

]2
ρ
√
ρ2 − a2

dρ , (2.61)
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which we must integrate to find φ(ρ), subject to boundary conditions φ(ρi) = φi, with
i = 1, 2.

On a cone, z(ρ) = λρ, and we have

dφ = a
√

1 + λ2
dρ

ρ
√
ρ2 − a2

=
√

1 + λ2 d tan−1

√
ρ2

a2
− 1 , (2.62)

which yields

φ(ρ) = β +
√

1 + λ2 tan−1

√
ρ2

a2
− 1 , (2.63)

which is equivalent to

ρ cos
(

φ− β√
1 + λ2

)
= a . (2.64)

The constants β and a are determined from φ(ρi) = φi.

2.1.4 Example 3 : Brachistochrone

Problem: find the path between (x1, y1) and (x2, y2) which a particle sliding frictionlessly
and under constant gravitational acceleration will traverse in the shortest time. To solve
this we first must invoke some elementary mechanics. Assuming the particle is released
from (x1, y1) at rest, energy conservation says

1
2mv

2 −mgy = mgy1 . (2.65)

Then the time, which is a functional of the curve y(x), is

T
[
y(x)

]
=

x2∫
x1

ds

v
=

1√
2g

x2∫
x1

dx

√
1 + y′2

y1 − y
(2.66)

≡
x2∫
x1

dxL(y, y′, x) ,

with

L(y, y′, x) =

√
1 + y′2

2g(y1 − y)
. (2.67)

Since L is independent of x, eqn. 2.47, we have that

J = y′
∂L

∂y′
− L = −

[
2g (y1 − y)

(
1 + y′

2)]−1/2
(2.68)

is conserved. This yields

dx = −
√

y1 − y

2a− y1 + y
dy , (2.69)
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with a = (4gJ 2)−1. This may be integrated parametrically, writing

y1 − y = 2a sin2(1
2θ) ⇒ dx = 2a sin2(1

2θ) dθ , (2.70)

which results in the parametric equations

x− x1 = a
(
θ − sin θ

)
(2.71)

y − y1 = −a (1− cos θ) . (2.72)

This curve is known as a cycloid.

2.2 Lagrangian Mechanics

Setting the first variation of the action

S[q(t)] =

tb∫
ta

dtL(q, q̇, t) (2.73)

to zero gives the Euler-Lagrange equations,

d

dt

momentum pσ︷ ︸︸ ︷(
∂L

∂q̇σ

)
=

force Fσ︷︸︸︷
∂L

∂qσ
. (2.74)

Thus, we have the familiar ṗσ = Fσ, also known as Newton’s second law. Note, however,
that the {qσ} are generalized coordinates, so pσ may not have dimensions of momentum,
nor Fσ of force. For example, if the generalized coordinate in question is an angle φ, then
the corresponding generalized momentum is the angular momentum about the axis of φ’s
rotation, and the generalized force is the torque.

Note that the equations of motion are second order in time. This follows from the fact
that L = L(q, q̇, t). Using the chain rule,

d

dt

(
∂L

∂q̇σ

)
=

∂2L

∂q̇σ ∂q̇σ′
q̈σ′ +

∂2L

∂q̇σ ∂qσ′
q̇σ′ +

∂L

∂t
. (2.75)

That the equations are second order in time can be regarded as an empirical fact. Suppose
the Lagrangian also depends on the generalized accelerations q̈σ. Then

δ

tb∫
ta

dtL(q, q̇, q̈, t) =
[
∂L

∂q̇σ
δqσ +

∂L

∂q̈σ
δq̇σ −

d

dt

(
∂L

∂q̈σ

)
δqσ

]tb
ta

+

tb∫
ta

dt

{
∂L

∂qσ
− d

dt

(
∂L

∂q̇σ

)
+
d2

dt2

(
∂L

∂q̈σ

)}
δqσ . (2.76)

The boundary term vanishes if we require δqσ(ta) = δqσ(tb) = δq̇σ(ta) = δq̇σ(tb) = 0 for all
σ. The equations of motion are now fourth order in time.
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2.2.1 Invariance of the Equations of Motion

Suppose

L̃(q, q̇, t) = L(q, q̇, t) +
d

dt
G(q, t) . (2.77)

Then
S̃[q(t)] = S[q(t)] +G(qb, tb)−G(qa, ta) . (2.78)

Since the difference S̃−S is a function only of the endpoint values {qa, qb}, their variations
are identical: δS̃ = δS. This means that L and L̃ result in the same equations of motion.
Thus, the equations of motion are invariant under a shift of L by a total time derivative of
a function of coordinates and time.

2.2.2 Lagrangian for a Free Particle

For a free particle, we can use Cartesian coordinates for each particle as our system of
generalized coordinates. For a single particle, the Lagrangian L(x,v, t) must be a function
solely of v2. This is because homogeneity with respect to space and time preclude any
dependence of L on x or on t, and isotropy of space means L must depend on v2. We
next invoke Galilean relativity, which says that the equations of motion are invariant under
transformation to a reference frame moving with constant velocity. Let V be the velocity
of the new reference frame K′ relative to our initial reference frame K. Then x′ = x− V t,
and v′ = v − V . In order that the equations of motion be invariant under the change in
reference frame, we demand

L′(v′) = L(v) +
d

dt
G(x, t) . (2.79)

The only possibility is L = 1
2mv

2, where the constant m is the mass of the particle. Note:

L′ = 1
2m(v − V )2 = 1

2mv
2 +

d

dt

(
1
2mV

2 t−mV · x
)

= L+
dG

dt
. (2.80)

For K interacting particles,

L = 1
2

∑
a

ma

(dxa
dt

)2
− U

(
{xa}, {ẋa}

)
. (2.81)

Here, U is the potential energy . Generally, U is of the form

U =
∑
a

U1(xa) +
∑
a<a′

v(xa − xa′) , (2.82)

however, as we shall see, velocity-dependent potentials appear in the case of charged parti-
cles interacting with electromagnetic fields. In general, though,

L = T − U , (2.83)

where T is the kinetic energy, and U is the potential energy.
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2.2.3 Example: The Double Pendulum

As an example of the generalized coordinate approach to Lagrangian dynamics, consider
the double pendulum system, sketched in Fig. ??. We choose as generalized coordinates the
two angles θ1 and θ2. In order to evaluate the Lagrangian, we must obtain the kinetic and
potential energies in terms of the generalized coordinates {θ1, θ2} and their corresponding
velocities {θ̇1, θ̇2}.

In Cartesian coordinates,

T = 1
2m1 (ẋ2

1 + ẏ2
1) + 1

2m2 (ẋ2
2 + ẏ2

2) (2.84)

U = m1 g y1 +m2 g y2 . (2.85)

We therefore express the Cartesian coordinates {x1, y1, x2, y2} in terms of the generalized
coordinates {θ1, θ2}:

x1 = `1 sin θ1 x2 = `1 sin θ1 + `2 sin θ2 (2.86)

y1 = −`1 cos θ1 y2 = −`1 cos θ1 − `2 cos θ2 . (2.87)

Thus, the velocities are

ẋ1 = `1 θ̇1 cos θ1 ẋ2 = `1 θ̇1 cos θ1 + `2 θ̇2 cos θ2 (2.88)

ẏ1 = `1 θ̇1 sin θ1 ẏ2 = `1 θ̇1 sin θ1 + `2 θ̇2 sin θ2 . (2.89)

Thus,

T = 1
2m1 `

2
1 θ̇

2
1 + 1

2m2

{
`21 θ̇

2
1 + 2`1 `2 cos(θ1 − θ2) θ̇1 θ̇2 + `22 θ̇

2
2

}
(2.90)

U = −m1 g `1 cos θ1 −m2 g `1 cos θ1 −m2 g `2 cos θ2 , (2.91)

and

L = T − U = 1
2(m1 +m2) `

2
1 θ̇

2
1 +m2 `1 `2 cos(θ1 − θ2) θ̇1 θ̇2 + 1

2m2 `
2
2 θ̇

2
2

+ (m1 +m2) g `1 cos θ1 +m2 g `2 cos θ2 . (2.92)

The generalized (canonical) momenta are

p1 =
∂L

∂θ̇1
= (m1 +m2) `

2
1 θ̇1 +m2 `1 `2 cos(θ1 − θ2) θ̇2 (2.93)

p2 =
∂L

∂θ̇2
= m2 `1 `2 cos(θ1 − θ2) θ̇1 +m2 `

2
2 θ̇2 , (2.94)

and the equations of motion are

ṗ1 = (m1 +m2) `
2
1 θ̈1 +m2 `1 `2 cos(θ1 − θ2) θ̈2 −m2 `1 `2 sin(θ1 − θ2) (θ̇1 − θ̇2) θ̇2

= −(m1 +m2) g `1 sin θ1 −m2 `1 `2 sin(θ1 − θ2) θ̇1 θ̇2 =
∂L

∂θ1
(2.95)
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Figure 2.4: The double pendulum, with generalized coordinates θ1 and θ2. All motion is
confined to a single plane.

and

ṗ2 = m2 `1 `2 cos(θ1 − θ2) θ̈1 −m2 `1 `2 sin(θ1 − θ2) (θ̇1 − θ̇2) θ̇1 +m2 `
2
2 θ̈2

= −m2 g `2 sin θ2 +m2 `1 `2 sin(θ1 − θ2) θ̇1 θ̇2 =
∂L

∂θ2
. (2.96)

We therefore find

`1 θ̈1 +
m2 `2

m1 +m2
cos(θ1 − θ2) θ̈2 +

m2 `2
m1 +m2

sin(θ1 − θ2) θ̇
2
2 + g sin θ1 = 0 (2.97)

`1 cos(θ1 − θ2) θ̈1 + `2 θ̈2 − `1 sin(θ1 − θ2) θ̇
2
1 + g sin θ2 = 0 . (2.98)

These are coupled, nonlinear second order ODEs. When the system is close to equilibrium,
we may assume that the amplitudes of the motion are small, and expand in powers of the
deviations from equilibrium. The linearized equations of motion are then

`1 θ̈1 +
m2 `2

m1 +m2
θ̈2 + g θ1 = 0 (2.99)

`1 θ̈1 + `2 θ̈2 + g θ2 = 0 . (2.100)

We can solve this coupled set of equations by a nifty trick. Let’s take a linear combination
of the first equation plus an undetermined coefficient, α, times the second:

(1 + α) `1 θ̈1 +
(

m2

m1 +m2
+ α

)
`2 θ̈2 + g (θ1 + α θ2) = 0 . (2.101)

We now demand that the ratio of the coefficients of θ2 and θ1 is the same as the ratio of
the coefficients of θ̈2 and θ̈1:

α =

(
m2

m1+m2
+ α

)
`2

(1 + α) `1
. (2.102)
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This is a quadratic equation, with solutions

α± =
`2 − `1 ±

√
(`2 − `1)2 + 4`1`2m2

m1+m2

2 `1
. (2.103)

When α takes on either of these values, the equation of motion becomes

(1 + α±) `1
d2

dt2
(
θ1 + α θ2

)
+ g

(
θ1 + α θ2

)
= 0 , (2.104)

and defining the (unnormalized) normal modes

ξ± ≡
(
θ1 + α θ2

)
, (2.105)

we find
ξ̈± + ω2

± ξ± = 0 , (2.106)

with
ω± =

√
g

(1 + α±) `1
. (2.107)

Thus, by switching to the normal coordinates, we decoupled the equations of motion, and
identified the two normal frequencies of oscillation. We shall have much more to say about
small oscillations further below.

Note that for `1 = `2 = ` and m1 = m2 = m, that

α± = ± 1√
2

, ξ± = θ1 ± 1√
2
θ2 , ω± =

√
2∓

√
2
√
g

`
. (2.108)

Note that the oscillation frequency for the ‘in-phase’ mode ξ+ is low, and that for the ‘out
of phase’ mode ξ− is high.

2.3 Conservative Mechanical Systems in One Dimension

For one-dimensional ‘conservative’ mechanical systems, Newton’s second law reads

mẍ = −dU
dx

, (2.109)

where F = −dU/dx. This may be written as an N = 2 system,

d

dt

(
x
v

)
=
(

v
− 1
m U ′(x)

)
. (2.110)

The total energy is conserved:

E = T + U = 1
2mẋ

2 + U(x) . (2.111)

17



Figure 2.5: A potential U(x) and the corresponding phase portraits. Separatrices are shown
in red.

This may be verified explicitly:

dE

dt
=

d

dt

[
1
2mẋ

2 + U(x)
]

=
[
mẍ+ U ′(x)

]
ẋ = 0 . (2.112)

The phase curves are thus curves of constant energy. Examples of phase curves are sketched
in Fig. 2.5.

A fixed point (x∗, v∗) of the dynamics satisfies U ′(x∗) = 0 and v∗ = 0. linearizing in
the vicinity of such a fixed point, we write δx = x− x∗ and δv = v − v∗, obtaining

d

dt

(
δx
δv

)
=
(

0 1
− 1
m U ′′(x∗) 0

)(
δx
δv

)
+ . . . , (2.113)

The trace and determinant of the above matrix are T = 0 and D = 1
m U ′′(x∗). Thus,

there are only two (generic) possibilities: centers, when U ′′(x∗) > 0, and saddles, when
U ′′(x∗) < 0. Examples of each are shown in Fig. 2.5.

Conservation of energy allows us to reduce the dynamics to those of an N = 1 system:

dx

dt
= ±

√√√√ 2
m

(
E − U(x)

)
. (2.114)

The ± sign above depends on the direction of motion. Points x(E) which satisfy

E = U(x) ⇒ x(E) = U−1(E) , (2.115)

where U−1 is the inverse function, are called turning points. We can integrate eqn. 2.114
to obtain

t(x)− t(x0) = ±
√

m
2

x∫
x0

dx′√
E − U(x′)

. (2.116)
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Figure 2.6: Phase curves in the vicinity of centers and saddles.

This is to be inverted to obtain the function x(t). For motion confined between two turning
points x±(E), the period of the motion is given by

T (E) =
√

2m

x+(E)∫
x−(E)

dx′√
E − U(x′)

. (2.117)

This has a geometric interpretation. The area A in phase space enclosed by a bounded
phase curve is

A(E) =
∮
E

v dx =
√

8
m

x+(E)∫
x−(E)

dx′
√
E − U(x′) . (2.118)

Thus, the period is proportional to the rate of change of A(E) with E:

T = m
∂A
∂E

. (2.119)

2.3.1 Small Oscillations

If we expand about a local minimum of U(x), we have

d

dt

(
δx
δv

)
=
(

0 1
−ω2

0 0

)(
δx
δv

)
, (2.120)

with ω2
0 = U ′′(x∗)/m > 0. Here δx = x − x∗ and δv = v − v∗ with v∗ = 0. This is a

harmonic oscillator: δẍ = −ω2
0 δx, with solution

δx(t) = δx0 cos(ω0t) + ω−1
0 δv0 sin(ω0t) (2.121)

δv(t) = δv0 cos(ω0t)− ω0 δx0 sin(ω0t) . (2.122)
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Figure 2.7: Phase curves for the harmonic oscillator.

The phase curves are ellipses:

ω0

(
δx(t)

)2 + ω−1
0

(
δv(t)

)2 = C , (2.123)

where C is a constant, independent of time. A sketch of the phase curves and of the phase
flow is shown in Fig. 2.7. Note that the x and v axes have different dimensions. Energy is
conserved:

E = 1
2m (δv)2 + 1

2mω
2
0 (δx)2 , (2.124)

Therefore we may find the length of the semimajor and semiminor axes by setting δv = 0
or δx = 0, which gives

δxmax =

√
2E
k

, δvmax =

√
2E
m

. (2.125)

The area of the elliptical phase curves is thus

A(E) = π δxmax δvmax =
2πE√
mk

. (2.126)

The period of motion is therefore

T (E) = m
∂A
∂E

= 2π
√
m

k
, (2.127)

which is independent of E.

2.3.2 Pendulum

Next, consider the simple pendulum, composed of a mass point m affixed to a massless rigid
rod of length `. The potential is U(θ) = −mg` cos θ, hence

m`2 θ̈ = −dU
dθ

= −mg` sin θ . (2.128)

This is equivalent to
d

dt

(
θ
ω

)
=
(

ω
−ω2

0 sin θ

)
, (2.129)
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Figure 2.8: Phase curves for the simple pendulum. The separatrix divides phase space into
regions of vibration and libration.

where ω = θ̇ is the angular velocity, and where ω0 =
√
g/` is the natural frequency of small

oscillations.

The conserved energy is
E = 1

2 m`
2 θ̇2 + U(θ) . (2.130)

Assuming the pendulum is released from rest at θ = θ0,

2E
m`2

= θ̇2 − 2ω2
0 cos θ = −2ω2

0 cos θ0 . (2.131)

The period for motion of amplitude θ0 is then

T
(
θ0
)

=
√

8
ω0

θ0∫
0

dθ√
cos θ − cos θ0

=
4
ω0

K
(
sin2 1

2θ0
)
, (2.132)

where K(z) is the complete elliptic integral of the first kind. Expanding K(z), we have

T
(
θ0
)

=
2π
ω0

{
1 + 1

4 sin2
(

1
2θ0
)

+ 9
64 sin4

(
1
2θ0
)

+ . . .

}
. (2.133)

For θ0 → 0, the period approaches the usual result 2π/ω0, valid for the linearized equation
θ̈ = −ω2

0 θ. As θ0 → π
2 , the period diverges logarithmically.

The phase curves for the pendulum are shown in Fig. 2.8. The small oscillations of
the pendulum are essentially the same as those of a harmonic oscillator. Indeed, within the
small angle approximation, sin θ ≈ θ, and the pendulum equations of motion are exactly
those of the harmonic oscillator. These oscillations are called librations. They involve
a back-and-forth motion in real space, and the phase space motion is contractable to a
point, in the topological sense. However, if the initial angular velocity is large enough, a
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Figure 2.9: Phase curves for two potentials. Left: Kepler effective potential U(x) = −x−1 +
1
2x

−2. Right: ‘tilted washboard’ potential U(x) = cos(x) + 1
2x.

qualitatively different kind of motion is observed, whose phase curves are rotations. In this
case, the pendulum bob keeps swinging around in the same direction, because, as we’ll see
in a later lecture, the total energy is sufficiently large. The phase curve which separates
these two topologically distinct motions is called a separatrix .

2.3.3 Other Potentials

Using the phase plotter application written by Ben Schmidel, available at

http : //physics.ucsd.edu/students/courses/fall2005/physics110a/PhasePlotter/index.html

it is possible to explore the phase curves for a wide variety of potentials. Two examples are
shown in Fig. 2.9. The first is the effective potential for the Kepler problem,

Ueff(r) = −k
r

+
`2

2µr2
, (2.134)

about which we shall have much more to say when we study central forces. Here r is the
separation between two gravitating bodies of masses m1,2, µ = m1m2/(m1 + m2) is the
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‘reduced mass’, and k = Gm1m2, where G is the Cavendish constant. We can then write

Ueff(r) = U0

{
− 1
x

+
1

2x2

}
, (2.135)

where r0 = `2/µk has the dimensions of length, and x ≡ r/r0, and where U0 = k/r0 =
µk2/`2. Thus, if distances are measured in units of r0 and the potential in units of U0, the
potential may be written in dimensionless form as U(x) = − 1

x + 1
2x2 .

The second example is the ‘tilted washboard’ potential

U(x) = U0

{
cos
(x
a

)
+

x

2a

}
. (2.136)

Again measuring x in units of a and U in units of U0, we arrive at U(x) = cos(x) + 1
2x.

This potential arises in the theory of current-biased Josephson junctions.

2.4 The Hamiltonian

The Lagrangian is a function of generalized coordinates, velocities, and time. The canonical
momentum conjugate to the generalized coordinate qσ is

pσ =
∂L

∂q̇σ
. (2.137)

The Hamiltonian is a function of coordinates, momenta, and time. It is defined as the
Legendre transform of L:

H(q, p, t) =
∑
σ

pσ q̇σ − L . (2.138)

Let’s examine the differential of H:

dH =
∑
σ

(
q̇σ dpσ + pσ dq̇σ −

∂L

∂qσ
dqσ −

∂L

∂q̇σ
dq̇σ

)
− ∂L

∂t
dt

=
∑
σ

(
q̇σ dpσ −

∂L

∂qσ
dqσ

)
− ∂L

∂t
dt , (2.139)

where we have invoked the definition of pσ to cancel the coefficients of dq̇σ. Since ṗσ =
∂L/∂qσ, we have Hamilton’s equations of motion,

q̇σ =
∂H

∂pσ
, ṗσ = −∂H

∂qσ
. (2.140)

Thus, we can write

dH =
∑
σ

(
q̇σ dpσ − ṗσ dqσ

)
− ∂L

∂t
dt . (2.141)
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Dividing by dt, we obtain
dH

dt
= −∂L

∂t
, (2.142)

which says that the Hamiltonian is conserved (i.e. it does not change with time) whenever
there is no explicit time dependence to L.

2.5 Is H = T + U ?

The most general form of the kinetic energy is

T = T2 + T1 + T0

= 1
2Mσσ′(q, t) q̇σ q̇σ′ +Bσ(q, t) q̇σ +W (q, t) , (2.143)

where Tn(q, q̇, t) is homogeneous of degree n in the velocities2. The Lagrangian is

L = T − U = 1
2Mσσ′(q, t) q̇σ q̇σ′ +Bσ(q, t) q̇σ +W (q, t)− U(q, t) . (2.144)

We have assumed U(q, t) is velocity-independent, but the above form for L = T −U is quite
general. (E.g. any velocity-dependence in U can be absorbed into the Bσ q̇σ term.) The
canonical momentum conjugate to qσ is

pσ =
∂L

∂q̇σ
= Mσσ′ q̇σ′ +Bσ , (2.145)

which is inverted to give
q̇σ = M−1

σσ′
(
pσ′ −Bσ′

)
. (2.146)

The Hamiltonian is then

H = pσ q̇σ − L

= pσM
−1
σσ′
(
pσ′ −Bσ′

)
− 1

2Mσσ′ M
−1
σα

(
pα −Bα

)
M−1
σ′β

(
pβ −Bβ

)
−BσM

−1
σσ′
(
pσ′ −Bσ′

)
−W + U

= 1
2 M

−1
σσ′(q, t)

(
pσ −Bσ

) (
pσ′ −Bσ′

)
−W (q, t) + U(q, t) (2.147)

= T2 − T0 + U . (2.148)

If T0 and T1 vanish, i.e. if T (q, q̇, t) is a homogeneous function of degree two in the generalized
velocities, and U(q, t) is velocity-independent, then H = T +U . But if T0 or T1 is nonzero,
then H 6= T + U .

2A homogeneous function of degree k satisfies f(λx1, . . . , λxn) = λkf(x1, . . . , xn). It is then easy to prove
Euler’s theorem,

Pn
i=1 xi

∂f
∂xi

= kf .
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Figure 2.10: A bead of mass m on a rotating hoop of radius a.

2.5.1 Example: A Bead on a Rotating Hoop

Consider a bead of mass m constrained to move along a hoop of radius a. The hoop is
further constrained to rotate with angular velocity ω about the ẑ-axis, as shown in Fig.
2.10.

The most convenient set of generalized coordinates is spherical polar (r, θ, φ), in which
case

T = 1
2m
(
ṙ2 + r2 θ̇2 + r2 sin2 θ φ̇2

)
= 1

2ma
2
(
θ̇2 + ω2 sin2 θ

)
. (2.149)

Thus, T2 = 1
2ma

2θ̇2 and T0 = 1
2ma

2ω2 sin2 θ. The potential energy is U(θ) = mga(1−cos θ).
The momentum conjugate to θ is pθ = ma2θ̇, and thus

H(θ, p) = T2 − T0 + U

= 1
2ma

2θ̇2 − 1
2ma

2ω2 sin2 θ +mga(1− cos θ)

=
p2
θ

2ma2
− 1

2ma
2ω2 sin2 θ +mga(1− cos θ) . (2.150)

For this problem, we can define the effective potential

Ueff(θ) ≡ U − T0 = mga(1− cos θ)− 1
2ma

2ω2 sin2 θ

= mga
(
1− cos θ − ω2

2ω2
0

sin2 θ
)
, (2.151)

where ω0 ≡ g/a2. The Lagrangian may then be written

L = 1
2ma

2θ̇2 − Ueff(θ) , (2.152)
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Figure 2.11: The effective potential Ueff(θ) = mga
[
1−cos θ− ω2

2ω2
0

sin2 θ
]
. (The dimensionless

potential Ũeff(x) = Ueff/mga is shown, where x = θ/π.) Left panels: ω = 1
2

√
3ω0. Right

panels: ω =
√

3ω0.

and thus the equations of motion are

ma2θ̈ = −∂Ueff

∂θ
. (2.153)

Equilibrium is achieved when U ′eff(θ) = 0, which gives

∂Ueff

∂θ
= mga sin θ

{
1− ω2

ω2
0

cos θ
}

= 0 , (2.154)

i.e. θ∗ = 0, θ∗ = π, or θ∗ = ± cos−1(ω2
0/ω

2), where the last pair of equilibria are present
only for ω2 > ω2

0. The stability of these equilibria is assessed by examining the sign of
U ′′eff(θ∗). We have

U ′′eff(θ) = mga
{

cos θ − ω2

ω2
0

(
2 cos2 θ − 1

)}
. (2.155)
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Thus,

U ′′eff(θ∗) =



mga
(
1− ω2

ω2
0

)
at θ∗ = 0

−mga
(
1 + ω2

ω2
0

)
at θ∗ = π

mga
(
ω2

ω2
0
− ω2

0
ω2

)
at θ∗ = ± cos−1

(ω2
0
ω2

)
.

(2.156)

Thus, θ∗ = 0 is stable for ω2 < ω2
0 but becomes unstable when the rotation frequency ω

is sufficiently large, i.e. when ω2 > ω2
0. In this regime, there are two new equilibria, at

θ∗ = ± cos−1(ω2
0/ω

2), which are both stable. The equilibrium at θ∗ = π is always unstable,
independent of the value of ω. The situation is depicted in Fig. 2.11.

2.6 Charged Particle in a Magnetic Field

Consider next the case of a charged particle moving in the presence of an electromagnetic
field. The particle’s potential energy is

U(r) = q φ(r, t)− q

c
A(r, t) · ṙ , (2.157)

which is velocity-dependent. The kinetic energy is T = 1
2m ṙ

2, as usual. Here φ(r) is the
scalar potential and A(r) the vector potential. The electric and magnetic fields are given
by

E = −∇φ− 1
c

∂A

∂t
, B = ∇×A . (2.158)

The canonical momentum is
p =

∂L

∂ṙ
= m ṙ +

q

c
A , (2.159)

and hence the Hamiltonian is

H(r,p, t) = p · ṙ − L

= mṙ2 +
q

c
A · ṙ − 1

2m ṙ
2 − q

c
A · ṙ + q φ

= 1
2m ṙ

2 + q φ

=
1

2m

(
p− q

c
A(r, t)

)2
+ q φ(r, t) . (2.160)

If A and φ are time-independent, then H(r,p) is conserved.

Let’s work out the equations of motion. We have

d

dt

(
∂L

∂ṙ

)
=
∂L

∂r
(2.161)
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which gives

m r̈ +
q

c

dA

dt
= −q∇φ+

q

c
∇(A · ṙ) , (2.162)

or, in component notation,

mẍi +
q

c

∂Ai
∂xj

ẋj +
q

c

∂Ai
∂t

= −q ∂φ
∂xi

+
q

c

∂Aj
∂xi

ẋj , (2.163)

which is to say

mẍi = −q ∂φ
∂xi

− q

c

∂Ai
∂t

+
q

c

(
∂Aj
∂xi

− ∂Ai
∂xj

)
ẋj . (2.164)

It is convenient to express the cross product in terms of the completely antisymmetric tensor
of rank three, εijk:

Bi = εijk
∂Ak
∂xj

, (2.165)

and using the result
εijk εimn = δjm δkn − δjn δkm , (2.166)

we have εijk Bi = ∂j Ak − ∂k Aj , and

mẍi = −q ∂φ
∂xi

− q

c

∂Ai
∂t

+
q

c
εijk ẋj Bk , (2.167)

or, in vector notation,

m r̈ = −q∇φ− q

c

∂A

∂t
+
q

c
ṙ × (∇×A)

= qE +
q

c
ṙ ×B , (2.168)

which is, of course, the Lorentz force law.

2.7 Noether’s Theorem: Continuous Symmetry Implies Con-
served Charges

Consider a particle moving in two dimensions under the influence of an external potential
U(r). The potential is a function only of the magnitude of the vector r. The Lagrangian is
then

L = T − U = 1
2m
(
ṙ2 + r2 φ̇2

)
− U(r) , (2.169)

where we have chosen generalized coordinates (r, φ). The momentum conjugate to φ is
pφ = mr2 φ̇. The generalized force Fφ clearly vanishes, since L does not depend on the
coordinate φ. (One says that L is ‘cyclic’ in φ.) Thus, although r = r(t) and φ = φ(t)
will in general be time-dependent, the combination pφ = mr2 φ̇ is constant. This is the
conserved angular momentum about the ẑ axis.
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In general, whenever the system exhibits a continuous symmetry , there is an associated
conserved charge. (The terminology ‘charge’ is from field theory.) Indeed, this is a rigorous
result, known as Noether’s Theorem. Consider a one-parameter family of transformations,

qσ −→ q̃σ(q, ζ) , (2.170)

where ζ is the continuous parameter. Suppose further (without loss of generality) that at
ζ = 0 this transformation is the identity, i.e. q̃σ(q, ζ) = qσ. The transformation may be
nonlinear in the generalized coordinates. Suppose further that the Lagrangian L s invariant
under the replacement q → q̃. Then we must have

0 =
d

dζ

∣∣∣∣∣
ζ=0

L(q̃, ˙̃q, t) =
∂L

∂qσ

∂q̃σ
∂ζ

∣∣∣∣∣
ζ=0

+
∂L

∂q̇σ

∂ ˙̃qσ
∂ζ

∣∣∣∣∣
ζ=0

=
d

dt

(
∂L

∂q̇σ

)
∂q̃σ
∂ζ

∣∣∣∣∣
ζ=0

+
∂L

∂q̇σ

d

dt

(
∂q̃σ
∂ζ

)
ζ=0

=
d

dt

(
∂L

∂q̇σ

∂q̃σ
∂ζ

)
ζ=0

. (2.171)

Thus, there is an associated conserved quantity

Λ =
∂L

∂q̇σ

∂q̃σ
∂ζ

∣∣∣∣∣
ζ=0

. (2.172)

If there are several one-parameter families of transformations which leave L invariant, then
to each such family there corresponds a conserved quantity

Λa =
∂L

∂q̇σ

∂q̃σ

∂ζa

∣∣∣∣∣
ζ=0

. (2.173)

Suppose that the Lagrangian of a mechanical system is invariant under a uniform trans-
lation of all particles in the n̂ direction. Then our one-parameter family of transformations
is given by

x̃a = xa + ζ n̂ , (2.174)

and the associated conserved Noether charge is

Λ =
∑
a

∂L

∂ẋa
· n̂ = n̂ · P , (2.175)

where P =
∑

a pa is the total momentum of the system.

If the Lagrangian of a mechanical system is invariant under rotations about an axis n̂,
then

x̃a = R(ζ, n̂)xa
= xa + ζ n̂× xa +O(ζ2) , (2.176)
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where we have expanded the rotation matrix R(ζ, n̂) in powers of ζ. The conserved Noether
charge associated with this symmetry is

Λ =
∑
a

∂L

∂ẋa
· n̂× xa = n̂ ·

∑
a

xa × pa = n̂ ·L , (2.177)

where L is the total angular momentum of the system.

2.7.1 Advanced Discussion

Observant readers might object that demanding invariance of L is too strict. We should
instead be demanding invariance of the action S3. Suppose S is invariant under

t→ t̃(q, t, ζ) (2.178)

qσ(t) → q̃σ(q, t, ζ) . (2.179)

Then invariance of S means

S =

tb∫
ta

dtL(q, q̇, t) =

t̃b∫
t̃a

dtL(q̃, ˙̃q, t) . (2.180)

Note that t is a dummy variable of integration, so it doesn’t matter whether we call it t
or t̃. The endpoints of the integral, however, do change under the transformation. Now
consider an infinitesimal transformation, for which δt = t̃− t and δq = q̃

(
t̃
)
− q(t) are both

small. Invariance of S means

S =

tb∫
ta

dtL(q, q̇, t) =

tb+δtb∫
ta+δta

dt
{
L(q, q̇, t) +

∂L

∂qσ
δ̄qσ +

∂L

∂q̇σ
δ̄q̇σ + . . .

}
, (2.181)

where

δ̄qσ(t) ≡ q̃σ(t)− qσ(t)

= q̃σ
(
t̃
)
− q̃σ

(
t̃
)

+ q̃σ(t)− qσ(t)

= δqσ − q̇σ δt+O(δq δt) (2.182)

Subtracting the top line from the bottom, we obtain

0 = Lb δtb − La δta +
∂L

∂q̇σ

∣∣∣∣
b

δ̄qσ,b −
∂L

∂q̇σ

∣∣∣∣
a

δ̄qσ,a +

tb+δtb∫
ta+δta

dt

{
∂L

∂qσ
− d

dt

(
∂L

∂q̇σ

)}
δ̄q(t)

=

tb∫
ta

dt
d

dt

{(
L− ∂L

∂q̇σ
q̇σ

)
δt+

∂L

∂q̇σ
δqσ

}
. (2.183)

3Indeed, we should be demanding that S only change by a function of the endpoint values.
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Thus, if ζ ≡ δζ is infinitesimal, and

δt = A(q, t) δζ (2.184)

δqσ = Bσ(q, t) δζ , (2.185)

then the conserved charge is

Λ =
(
L− ∂L

∂q̇σ
q̇σ

)
A(q, t) +

∂L

∂q̇σ
Bσ(q, t)

= −H(q, p, t)A(q, t) + pσ Bσ(q, t) . (2.186)

Thus, when A = 0, we recover our earlier results, obtained by assuming invariance of L.
Note that conservation of H follows from time translation invariance: t→ t+ ζ, for which
A = 1 and Bσ = 0.

2.8 Field Theory: Systems with Several Independent Vari-
ables

Suppose φa(x) depends on several independent variables: {x1, x2, . . . , xn}. Furthermore,
suppose

S
[
{φa(x)

]
=
∫
Ω

dxL(φa ∂µφa,x) , (2.187)

i.e. the Lagrangian density L is a function of the fields φa and their partial derivatives
∂φa/∂xµ. Here Ω is a region in RK . Then the first variation of S is

δS =
∫
Ω

dx

{
∂L
∂φa

δφa +
∂L

∂(∂µφa)
∂ δφa
∂xµ

}

=
∮
∂Ω

dΣ nµ
∂L

∂(∂µφa)
δφa −

∫
Ω

dx

{
∂L
∂φa

− ∂

∂xµ

(
∂L

∂(∂µφa)

)}
δφa , (2.188)

where ∂Ω is the (n− 1)-dimensional boundary of Ω, dΣ is the differential surface area, and
nµ is the unit normal. If we demand ∂L/∂(∂µφa)

∣∣
∂Ω

= 0 of δφa
∣∣
∂Ω

= 0, the surface term
vanishes, and we conclude

δS

δφa(x)
=

∂L
∂φa

− ∂

∂xµ

(
∂L

∂(∂µφa)

)
. (2.189)

As an example, consider the case of a stretched string of linear mass density µ and
tension τ . The action is a functional of the height y(x, t), where the coordinate along the
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string, x, and time, t, are the two independent variables. The Lagrangian density is

L = 1
2µ

(
∂y

∂t

)2

− 1
2τ

(
∂y

∂x

)2

, (2.190)

whence the Euler-Lagrange equations are

0 =
δS

δy(x, t)
= − ∂

∂x

(
∂L
∂y′

)
− ∂

∂t

(
∂L
∂ẏ

)
= τ

∂2y

∂x2
− µ

∂2y

∂t2
, (2.191)

where y′ = ∂y
∂x and ẏ = ∂y

∂t . Thus, µÿ = τy′′, which is the Helmholtz equation. We’ve
assumed boundary conditions where δy(xa, t) = δy(xb, t) = δy(x, ta) = δy(x, tb) = 0.

The Lagrangian density for an electromagnetic field with sources is

L = − 1
16π Fµν F

µν − JµA
µ . (2.192)

The equations of motion are then

∂L
∂Aν

− ∂

∂xν

(
∂L

∂(∂µAν)

)
= 0 ⇒ ∂µ F

µν = 4πJν , (2.193)

which are Maxwell’s equations.

2.8.1 Conserved Currents in Field Theory

Recall the result of Noether’s theorem for mechanical systems:

d

dt

(
∂L

∂q̇σ

∂q̃σ
∂ζ

)
ζ=0

= 0 , (2.194)

where q̃σ = q̃σ(q, ζ) is a one-parameter (ζ) family of transformations of the generalized
coordinates which leaves L invariant. We generalize to field theory by replacing

qσ(t) −→ φa(x, t) , (2.195)

where {φa(x, t)} are a set of fields, which are functions of the independent variables {x, y, z, t}.
We will adopt covariant relativistic notation and write for four-vector xµ = (ct, x, y, z). The
generalization of dQ/dt = 0 is

∂

∂xµ

(
∂L

∂ (∂µφa)
∂φ̃a
∂ζ

)
ζ=0

= 0 , (2.196)
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where there is an implied sum on both µ and a. We can write this as ∂µ Jµ = 0, where

Jµ ≡ ∂L
∂ (∂µφa)

∂φ̃a
∂ζ

∣∣∣∣∣
ζ=0

. (2.197)

We call Q = J0/c the total charge. If we assume J = 0 at the spatial boundaries of our
system, then integrating the conservation law ∂µ J

µ over the spatial region Ω gives

dQ

dt
=
∫
Ω

d3x ∂0 J
0 = −

∫
Ω

d3x∇ · J = −
∮
∂Ω

dΣ n̂ · J = 0 , (2.198)

assuming J = 0 at the boundary ∂Ω.

As an example, consider the case of a complex scalar field, with Lagrangian density4

L(ψ, , ψ∗, ∂µψ, ∂µψ∗) = 1
2K (∂µψ∗)(∂µψ)− U

(
ψ∗ψ

)
. (2.199)

This is invariant under the transformation ψ → eiζ ψ, ψ∗ → e−iζ ψ∗. Thus,

∂ψ̃

∂ζ
= i eiζ ψ ,

∂ψ̃∗

∂ζ
= −i e−iζ ψ∗ , (2.200)

and, summing over both ψ and ψ∗ fields, we have

Jµ =
∂L

∂ (∂µψ)
· (iψ) +

∂L
∂ (∂µψ∗)

· (−iψ∗)

=
K

2i
(
ψ∗∂µψ − ψ ∂µψ∗

)
. (2.201)

The potential, which depends on |ψ|2, is independent of ζ. Hence, this form of conserved
4-current is valid for an entire class of potentials.

2.8.2 Gross-Pitaevskii Model

As one final example of a field theory, consider the Gross-Pitaevskii model, with

L = ih̄ ψ∗
∂ψ

∂t
− h̄2

2m
∇ψ∗ ·∇ψ − g

(
|ψ|2 − n0

)2
. (2.202)

4We raise and lower indices using the Minkowski metric gµν = diag (+,−,−,−).
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This describes a Bose fluid with repulsive short-ranged interactions. Here ψ(x, t) is again
a complex scalar field, and ψ∗ is its complex conjugate. Using the Leibniz rule, we have

δS[ψ∗, ψ] = S[ψ∗ + δψ∗, ψ + δψ]

=
∫
dt

∫
ddx

{
ih̄ ψ∗

∂δψ

∂t
+ ih̄ δψ∗

∂ψ

∂t
− h̄2

2m
∇ψ∗ ·∇δψ − h̄2

2m
∇δψ∗ ·∇ψ

− 2g
(
|ψ|2 − n0

)
(ψ∗δψ + ψδψ∗)

}
=
∫
dt

∫
ddx

{[
− ih̄

∂ψ∗

∂t
+
h̄2

2m
∇2ψ∗ − 2g

(
|ψ|2 − n0

)
ψ∗
]
δψ

+
[
ih̄
∂ψ

∂t
+
h̄2

2m
∇2ψ − 2g

(
|ψ|2 − n0

)
ψ

]
δψ∗

}
, (2.203)

where we have integrated by parts where necessary and discarded the boundary terms.
Extremizing S[ψ∗, ψ] therefore results in the nonlinear Schrödinger equation (NLSE),

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + 2g

(
|ψ|2 − n0

)
ψ (2.204)

as well as its complex conjugate,

−ih̄ ∂ψ
∗

∂t
= − h̄2

2m
∇2ψ∗ + 2g

(
|ψ|2 − n0

)
ψ∗ . (2.205)

Note that these equations are indeed the Euler-Lagrange equations:

δS

δψ
=
∂L
∂ψ

− ∂

∂xµ

(
∂L
∂ ∂µψ

)
(2.206)

δS

δψ∗
=

∂L
∂ψ∗

− ∂

∂xµ

(
∂L

∂ ∂µψ∗

)
, (2.207)

with xµ = (t,x)5 Plugging in

∂L
∂ψ

= −2g
(
|ψ|2 − n0

)
ψ∗ ,

∂L
∂ ∂tψ

= ih̄ ψ∗ ,
∂L
∂∇ψ

= − h̄2

2m
∇ψ∗ (2.208)

and

∂L
∂ψ∗

= ih̄ ψ − 2g
(
|ψ|2 − n0

)
ψ ,

∂L
∂ ∂tψ∗

= 0 ,
∂L

∂∇ψ∗
= − h̄2

2m
∇ψ , (2.209)

we recover the NLSE and its conjugate.

The Gross-Pitaevskii model also possesses a U(1) invariance, under

ψ(x, t) → ψ̃(x, t) = eiζ ψ(x, t) , ψ∗(x, t) → ψ̃∗(x, t) = e−iζ ψ∗(x, t) . (2.210)
5In the nonrelativistic case, there is no utility in defining x0 = ct, so we simply define x0 = t.
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Thus, the conserved Noether current is then

Jµ =
∂L
∂ ∂µψ

∂ψ̃

∂ζ

∣∣∣∣∣
ζ=0

+
∂L

∂ ∂µψ∗
∂ψ̃∗

∂ζ

∣∣∣∣∣
ζ=0

J0 = −h̄ |ψ|2 (2.211)

J = − h̄2

2im
(
ψ∗∇ψ − ψ∇ψ∗

)
. (2.212)

Dividing out by h̄, taking J0 ≡ −h̄ρ and J ≡ −h̄j, we obtain the continuity equation,

∂ρ

∂t
+ ∇ · j = 0 , (2.213)

where
ρ = |ψ|2 , j =

h̄

2im
(
ψ∗∇ψ − ψ∇ψ∗

)
. (2.214)

are the particle density and the particle current, respectively.

2.9 Constraints

A mechanical system of N point particles in d dimensions possesses n = dN degrees of free-
dom6. To specify these degrees of freedom, we can choose any independent set of generalized
coordinates {q1, . . . , qn}. Oftentimes, however, not all n coordinates are independent.

Consider, for example, the situation in Fig. 2.12, where a cylinder of radius a rolls
over a half-cylinder of radius R. If there is no slippage, then the angles θ1 and θ2 are not
independent, and they obey the equation of constraint ,

Rθ1 = a (θ2 − θ1) . (2.215)

In this case, we can easily solve the constraint equation and substitute θ2 =
(
1 + R

a

)
θ1. In

other cases, though, the equation of constraint might not be so easily solved (e.g. it may be
nonlinear). How then do we proceed?

6For N rigid bodies, the number of degrees of freedom is n′ = 1
2
d(d + 1)N , corresponding to d center-

of-mass coordinates and 1
2
d(d − 1) angles of orientation for each particle. The dimension of the group of

rotations in d dimensions is 1
2
d(d − 1), corresponding to the number of parameters in a general rank-d

orthogonal matrix (i.e. an element of the group O(d)).
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Figure 2.12: A cylinder of radius a rolls along a half-cylinder of radius R. When there is
no slippage, the angles θ1 and θ2 obey the constraint equation Rθ1 = a(θ2 − θ1).

2.9.1 Constraints and Variational Calculus

Before addressing the subject of constrained dynamical systems, let’s consider the issue of
constraints in the broader context of variational calculus. Suppose we have a functional

F [y(x)] =

xb∫
xa

dxL(y, y′, x) , (2.216)

which we want to extremize subject to some constraints. Here y may stand for a set of
functions {yσ(x)}. There are two classes of constraints we will consider:

1. Integral constraints: These are of the form

xb∫
xa

dxNl(y, y
′, x) = Cl , (2.217)

where k labels the constraint.

2. Holonomic constraints: These are of the form

Gk(y, x) = 0 . (2.218)

The cylinders system in Fig. 2.12 provides an example of a holonomic constraint. There,
G(θ, t) = Rθ1 − a (θ2 − θ1) = 0. As an example of a problem with an integral constraint,

36



suppose we want to know the shape of a hanging rope of fixed length C. This means we
minimize the rope’s potential energy,

U [y(x)] = λg

xb∫
xa

ds y(x) = λg

xb∫
xa

dx y

√
1 + y′2 , (2.219)

where λ is the linear mass density of the rope, subject to the fixed-length constraint

C =

xb∫
xa

ds =

xb∫
xa

dx

√
1 + y′2 . (2.220)

Note ds =
√
dx2 + dy2 is the differential element of arc length along the rope. To solve

problems like these, we turn to Lagrange’s method of undetermined multipliers.

2.9.2 Constrained Extremization of Functions

Given F (x1, . . . , xn) to be extremized subject to k constraints of the formGj(x1, . . . , xn) = 0
where j = 1, . . . , k, construct

F ∗
(
x1, . . . , xn;λ1, . . . , λk

)
≡ F (x1, . . . , xn) +

k∑
j=1

λj Gj(x1, . . . , xn) (2.221)

which is a function of the (n + k) variables
{
x1, . . . , xn;λ1, . . . , λk

}
. Now freely extremize

the extended function F ∗:

dF ∗ =
n∑
σ=1

∂F ∗

∂xσ
dxσ +

k∑
j=1

∂F ∗

∂λj
dλj (2.222)

=
n∑
σ=1

 ∂F

∂xσ
+

k∑
j=1

λj
∂Gj
∂xσ

 dxσ +
k∑
j=1

Gj dλj = 0 (2.223)

This results in the (n+ k) equations

∂F

∂xσ
+

k∑
j=1

λj
∂Gj
∂xσ

= 0 (σ = 1, . . . , n) (2.224)

Gj = 0 (j = 1, . . . , k) . (2.225)

The interpretation of all this is as follows. The n equations in 2.224 can be written in
vector form as

∇F +
k∑
j=1

λj ∇Gj = 0 . (2.226)
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This says that the (n-component) vector ∇F is linearly dependent upon the k vectors
∇Gj . Thus, any movement in the direction of ∇F must necessarily entail movement along

one or more of the directions ∇Gj . This would require violating the constraints, since

movement along ∇Gj takes us off the level set Gj = 0. Were ∇F linearly independent of

the set {∇Gj}, this would mean that we could find a differential displacement dx which

has finite overlap with ∇F but zero overlap with each ∇Gj . Thus x+dx would still satisfy

Gj(x+ dx) = 0, but F would change by the finite amount dF = ∇F (x) · dx.

2.9.3 Extremization of Functionals : Integral Constraints

Given a functional

F
[
{yσ(x)}

]
=

xb∫
xa

dxL
(
{yσ}, {y′σ}, x

)
(σ = 1, . . . , n) (2.227)

subject to boundary conditions δyσ(xa) = δyσ(xb) = 0 and k constraints of the form

xb∫
xa

dxNl

(
{yσ}, {y′σ}, x

)
= Cl (l = 1, . . . , k) , (2.228)

construct the extended functional

F ∗
[
{yσ(x)}; {λj}

]
≡

xb∫
xa

dx

{
L
(
{yσ}, {y′σ}, x

)
+

k∑
l=1

λlNl

(
{yσ}, {y′σ}, x

)}
−

k∑
l=1

λl Cl (2.229)

and freely extremize over {y1, . . . , yn;λ1, . . . , λk}. This results in (n+ k) equations

∂L

∂yσ
− d

dx

(
∂L

∂y′σ

)
+

k∑
l=1

λl

{
∂Nl

∂yσ
− d

dx

(
∂Nl

∂y′σ

)}
= 0 (σ = 1, . . . , n) (2.230)

xb∫
xa

dxNl

(
{yσ}, {y′σ}, x

)
= Cl (l = 1, . . . , k) . (2.231)

2.9.4 Extremization of Functionals : Holonomic Constraints

Given a functional

F
[
{yσ(x)}

]
=

xb∫
xa

dxL
(
{yσ}, {y′σ}, x

)
(σ = 1, . . . , n) (2.232)
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subject to boundary conditions δyσ(xa) = δyσ(xb) = 0 and k constraints of the form

Gj
(
{yσ(x)}, x

)
= 0 (j = 1, . . . , k) , (2.233)

construct the extended functional

F ∗
[
{yσ(x)}; {λj(x)}

]
≡

xb∫
xa

dx

{
L
(
{yσ}, {y′σ}, x

)
+

k∑
j=1

λj Gj
(
{yσ}

)}
(2.234)

and freely extremize over
{
y1, . . . , yn;λ1, . . . , λk

}
:

δF ∗ =

xb∫
xa

dx

{
n∑
σ=1

(
∂L

∂yσ
− d

dx

(
∂L

∂y′σ

)
+

k∑
j=1

λj
∂Gj
∂yσ

)
δyσ +

k∑
j=1

Gj δλj

}
= 0 , (2.235)

resulting in the (n+ k) equations

d

dx

(
∂L

∂y′σ

)
− ∂L

∂yσ
=

k∑
j=1

λj
∂Gj
∂yσ

(σ = 1, . . . , n) (2.236)

Gj
(
{yσ}, x

)
= 0 (j = 1, . . . , k) . (2.237)

2.9.5 Examples of Extremization with Constraints

Volume of a cylinder : As a warm-up problem, let’s maximize the volume V = πa2h of a
cylinder of radius a and height h, subject to the constraint

G(a, h) = 2πa+
h2

b
− ` = 0 . (2.238)

We therefore define
V ∗(a, h, λ) ≡ V (a, h) + λG(a, h) , (2.239)

and set

∂V ∗

∂a
= 2πah+ 2πλ = 0 (2.240)

∂V ∗

∂h
= πa2 + 2λ

h

b
= 0 (2.241)

∂V ∗

∂λ
= 2πa+

h2

b
− ` = 0 . (2.242)

Solving these three equations simultaneously gives

a =
2`
5π

, h =

√
b`

5
, λ =

2π
53/2

b1/2 `3/2 , V =
4

55/2 π
`5/2 b1/2 . (2.243)
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Hanging rope : We minimize the energy functional

E
[
y(x)

]
= µg

x2∫
x1

dx y

√
1 + y′2 , (2.244)

where µ is the linear mass density, subject to the constraint of fixed total length,

C
[
y(x)

]
=

x2∫
x1

dx

√
1 + y′2 . (2.245)

Thus,

E∗
[
y(x), λ

]
= E

[
y(x)

]
+ λC

[
y(x)

]
=

x2∫
x1

dxL∗(y, y′, x) , (2.246)

with
L∗(y, y′, x) = (µgy + λ)

√
1 + y′2 . (2.247)

Since ∂L∗

∂x = 0 we have that

J = y′
∂L∗

∂y′
− L∗ = − µgy + λ√

1 + y′2
(2.248)

is constant. Thus,
dy

dx
= ±J −1

√
(µgy + λ)2 − J 2 , (2.249)

with solution
y(x) = − λ

µg
+
J
µg

cosh
(µg
J

(x− a)
)
. (2.250)

Here, J , a, and λ are constants to be determined by demanding y(xi) = yi (i = 1, 2), and
that the total length of the rope is C.

Geodesic on a curved surface : Consider next the problem of a geodesic on a curved surface.
Let the equation for the surface be

G(x, y, z) = 0 . (2.251)

We wish to extremize the distance,

D =

b∫
a

ds =

b∫
a

√
dx2 + dy2 + dz2 . (2.252)

We introduce a parameter t defined on the unit interval: t ∈ [0, 1], such that x(0) = xa,
x(1) = xb, etc. Then D may be regarded as a functional, viz.

D
[
x(t), y(t), z(t)

]
=

1∫
0

dt
√
ẋ2 + ẏ2 + ż2 . (2.253)
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We impose the constraint by forming the extended functional, D∗:

D∗[x(t), y(t), z(t), λ(t)
]
≡

1∫
0

dt

{√
ẋ2 + ẏ2 + ż2 + λG(x, y, z)

}
, (2.254)

and we demand that the first functional derivatives of D∗ vanish:

δD∗

δx(t)
= − d

dt

(
ẋ√

ẋ2 + ẏ2 + ż2

)
+ λ

∂G

∂x
= 0 (2.255)

δD∗

δy(t)
= − d

dt

(
ẏ√

ẋ2 + ẏ2 + ż2

)
+ λ

∂G

∂y
= 0 (2.256)

δD∗

δz(t)
= − d

dt

(
ż√

ẋ2 + ẏ2 + ż2

)
+ λ

∂G

∂z
= 0 (2.257)

δD∗

δλ(t)
= G(x, y, z) = 0 . (2.258)

Thus,

λ(t) =
vẍ− ẋv̇

v2 ∂xG
=
vÿ − ẏv̇

v2 ∂yG
=
vz̈ − żv̇

v2 ∂zG
, (2.259)

with v =
√
ẋ2 + ẏ2 + ż2 and ∂x ≡ ∂

∂x , etc. These three equations are supplemented by
G(x, y, z) = 0, which is the fourth.

2.9.6 Application to Mechanics

Let us write our system of constraints in the differential form
n∑
σ=1

gjσ(q, t) dqσ + hj(q, t)dt = 0 (j = 1, . . . , k) . (2.260)

If the partial derivatives satisfy

∂gjσ
∂qσ′

=
∂gjσ′

∂qσ
,

∂gjσ
∂t

=
∂hj
∂qσ

, (2.261)

then the differential can be integrated to give dG(q, t) = 0, where

gjσ =
∂Gj
∂qσ

, hj =
∂Gj
∂t

. (2.262)

The action functional is

S[{qσ(t)}] =

tb∫
ta

dtL
(
{qσ}, {q̇σ}, t

)
(σ = 1, . . . , n) , (2.263)
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subject to boundary conditions δqσ(ta) = δqσ(tb) = 0. The first variation of S is given by

δS =

tb∫
ta

dt

n∑
σ=1

{
∂L

∂qσ
− d

dt

(
∂L

∂q̇σ

)}
δqσ . (2.264)

Since the {qσ(t)} are no longer independent, we cannot infer that the term in brackets
vanishes for each σ. What are the constraints on the variations δqσ(t)? The constraints are
expressed in terms of virtual displacements which take no time: δt = 0. Thus,

n∑
σ=1

gjσ(q, t) δqσ(t) = 0 . (2.265)

We may now relax the constraint by introducing k undetermined functions λj(t), by adding
integrals of the above equations with undetermined coefficient functions to δS:

n∑
σ=1

{
∂L

∂qσ
− d

dt

(
∂L

∂q̇σ

)
+

k∑
j=1

λj(t) gjσ(q, t)

}
δqσ(t) = 0 . (2.266)

Now we can demand that the term in brackets vanish for all σ. Thus, we obtain a set of
(n+ k) equations,

d

dt

(
∂L

∂q̇σ

)
− ∂L

∂qσ
=

k∑
j=1

λj(t) gjσ(q, t) ≡ Qσ (2.267)

gjσ(q, t) q̇σ + hj(q, t) = 0 , (2.268)

in (n+ k) unknowns
{
q1, . . . , qn, λ1, . . . , λk

}
. Here, Qσ is the force of constraint conjugate

to the generalized coordinate qσ. Thus, with

pσ =
∂L

∂q̇σ
, Fσ =

∂L

∂qσ
, Qσ =

k∑
j=1

λj gjσ , (2.269)

we write Newton’s second law as
ṗσ = Fσ +Qσ . (2.270)

Note that we can write
δS

δq(t)
=
∂L

∂q
− d

dt

(
∂L

∂q̇

)
(2.271)

and that the instantaneous constraints may be written

gj · δq = 0 (j = 1, . . . , k) . (2.272)

Thus, by demanding
δS

δq(t)
+

k∑
j=1

λj gj = 0 (2.273)

we require that the functional derivative be linearly dependent on the k vectors gj .
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2.9.7 One cylinder rolling atop another

As an example of the constraint formalism, consider the system in Fig. 2.12, where a
cylinder of radius a rolls atop a cylinder of radius R. We have two constraints:

r = R+ a (cylinders in contact) (2.274)
Rθ1 = a (θ2 − θ1) (no slipping) , (2.275)

from which we obtain the gjσ:

gjσ =
(

1 0 0
0 R+ a −a

)
, (2.276)

which is to say

∂G1

∂r
= 1

∂G1

∂θ1
= 0

∂G1

∂θ2
= 0 (2.277)

∂G2

∂r
= 0

∂G2

∂θ1
= R+ a

∂G2

∂θ2
= −a . (2.278)

The Lagrangian is

L = T − U = 1
2M
(
ṙ2 + r2 θ̇2

1

)
+ 1

2I θ̇
2
2 −Mgr cos θ1 , (2.279)

where M and I are the mass and rotational inertia of the rolling cylinder, respectively.
Note that the kinetic energy is a sum of center-of-mass translation Ttr = 1

2M
(
ṙ2 + r2 θ̇2

1

)
and rotation about the center-of-mass, Trot = 1

2I θ̇
2
2. The equations of motion are

d

dt

(
∂L

∂r

)
− ∂L

∂r
= Mr̈ −Mr θ̇2

1 +Mg cos θ1 = λ1 ≡ Qr (2.280)

d

dt

(
∂L

∂θ1

)
− ∂L

∂θ1
= Mr2θ̈1 + 2Mrṙ θ̇1 −Mgr sin θ1 = (R+ a)λ2 ≡ Qθ1 (2.281)

d

dt

(
∂L

∂θ2

)
− ∂L

∂θ2
= Iθ̈2 = −aλ2 ≡ Qθ2 . (2.282)

To these three equations we add the two constraints, resulting in five equations in the five
unknowns

{
r, θ1, θ2, λ1, λ2

}
.

We solve by first implementing the constraints, which give r = (R+ a) a constant (i.e.
ṙ = 0), and θ̇2 =

(
1 + R

a

)
θ̇1. Substituting these into the above equations gives

−M(R+ a) θ̇2
1 +Mg cos θ1 = λ1 (2.283)

M(R+ a)2θ̈1 −Mg(R+ a) sin θ1 = (R+ a)λ2 (2.284)

I

(
R+ a

a

)
θ̈1 = −aλ2 . (2.285)
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From eqn. 2.285 we obtain

λ2 = −I
a
θ̈2 = −R+ a

a2
I θ̈1 , (2.286)

which we substitute into eqn. 2.284 to obtain(
M +

I

a2

)
(R+ a)2θ̈1 −Mg(R+ a) sin θ1 = 0 . (2.287)

Multiplying by θ̇1, we obtain an exact differential, which may be integrated to yield

1
2M

(
1 +

I

Ma2

)
θ̇2
1 +

Mg

R+ a
cos θ1 =

Mg

R+ a
cos θ◦1 . (2.288)

Here, we have assumed that θ̇1 = 0 when θ1 = θ◦1, i.e. the rolling cylinder is released from
rest at θ1 = θ◦1. Finally, inserting this result into eqn. 2.283, we obtain the radial force of
constraint,

Qr =
Mg

1 + α

{
(3 + α) cos θ1 − 2 cos θ◦1

}
, (2.289)

where α = I/Ma2 is a dimensionless parameter (0 ≤ α ≤ 1). This is the radial component
of the normal force between the two cylinders. When Qr vanishes, the cylinders lose contact
– the rolling cylinder flies off. Clearly this occurs at an angle θ1 = θ∗1, where

θ∗1 = cos−1

(
2 cos θ◦1
3 + α

)
. (2.290)

The detachment angle θ∗1 is an increasing function of α, which means that larger I delays
detachment. This makes good sense, since when I is larger the gain in kinetic energy is
split between translational and rotational motion of the rolling cylinder.

2.9.8 Frictionless Motion along a Curve

Consider the situation in Fig. 2.13 where a skier moves frictionlessly under the influence of
gravity along a general curve y = h(x). The Lagrangian for this problem is

L = 1
2m(ẋ2 + ẏ2)−mgy (2.291)

and the (holonomic) constraint is

G(x, y) = y − h(x) = 0 . (2.292)

Accordingly, the Euler-Lagrange equations are

d

dt

(
∂L

∂q̇σ

)
− ∂L

∂qσ
= λ

∂G

∂qσ
, (2.293)
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Figure 2.13: Frictionless motion under gravity along a curved surface. The skier flies off
the surface when the normal force vanishes.

where q1 = x and q2 = y. Thus, we obtain

mẍ = −λh′(x) = Qx (2.294)
mÿ +mg = λ = Qy . (2.295)

We eliminate y in favor of x by invoking the constraint. Since we need ÿ, we must differen-
tiate the constraint, which gives

ẏ = h′(x) ẋ , ÿ = h′(x) ẍ+ h′′(x) ẋ2 . (2.296)

Using the second Euler-Lagrange equation, we then obtain

λ

m
= g + h′(x) ẍ+ h′′(x) ẋ2 . (2.297)

Finally, we substitute this into the first E-L equation to obtain an equation for x alone:(
1 +

[
h′(x)

]2)
ẍ+ h′(x)h′′(x) ẋ2 + g h′(x) = 0 . (2.298)

Had we started by eliminating y = h(x) at the outset, writing

L(x, ẋ) = 1
2m
(
1 +

[
h′(x)

]2)
ẋ2 −mg h(x) , (2.299)

we would also have obtained this equation of motion.

The skier flies off the curve when the vertical force of constraint Qy = λ starts to
become negative, because the curve can only supply a positive normal force. Suppose the
skier starts from rest at a height y0. We may then determine the point x at which the skier
detaches from the curve by setting λ(x) = 0. To do so, we must eliminate ẋ and ẍ in terms
of x. For ẍ, we may use the equation of motion to write

ẍ = −
(
gh′ + h′ h′′ ẋ2

1 + h′2

)
, (2.300)
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which allows us to write

λ = m

(
g + h′′ ẋ2

1 + h′2

)
. (2.301)

To eliminate ẋ, we use conservation of energy,

E = mgy0 = 1
2m
(
1 + h′

2)
ẋ2 +mgh , (2.302)

which fixes

ẋ2 = 2g
(
y0 − h

1 + h′2

)
. (2.303)

Putting it all together, we have

λ(x) =
mg(

1 + h′2
){1 + h′

2 + 2(y0 − h)h′′
}
. (2.304)

The skier detaches from the curve when λ(x) = 0, i.e. when

1 + h′
2 + 2(y0 − h)h′′ = 0 . (2.305)

There is a somewhat easier way of arriving at the same answer. This is to note that
the skier must fly off when the local centripetal force equals the gravitational force normal
to the curve, i.e.

mv2(x)
R(x)

= mg cos θ(x) , (2.306)

where R(x) is the local radius of curvature. Now tan θ = h′, so cos θ =
(
1 + h′2

)−1/2. The
square of the velocity is v2 = ẋ2 + ẏ2 =

(
1 + h′2

)
ẋ2. What is the local radius of curvature

R(x)? This can be determined from the following argument, and from the sketch in Fig.
2.14. Writing x = x∗ + ε, we have

y = h(x∗) + h′(x∗) ε+ 1
2h

′′(x∗) ε2 + . . . . (2.307)

We now drop a perpendicular segment of length z from the point (x, y) to the line which is
tangent to the curve at

(
x∗, h(x∗)

)
. According to Fig. 2.14, this means(

ε
y

)
= η · 1√

1+h′2

(
1
h′

)
− z · 1√

1+h′2

(
−h′
1

)
. (2.308)

Thus, we have

y = h′ ε+ 1
2h

′′ ε2

= h′
(
η + z h′√
1 + h′2

)
+ 1

2h
′′
(
η + z h′√
1 + h′2

)2

=
η h′ + z h′2√

1 + h′2
+

h′′ η2

2
(
1 + h′2

) +O(ηz)

=
η h′ − z√
1 + h′2

, (2.309)

46



Figure 2.14: Finding the local radius of curvature: z = η2/2R.

from which we obtain

z = − h′′ η2

2
(
1 + h′2

)3/2 +O(η3) (2.310)

and therefore
R(x) = − 1

h′′(x)
·
(
1 +

[
h′(x)

]2)3/2
. (2.311)

Thus, the detachment condition,

mv2

R
= − mh′′ ẋ2√

1 + h′2
=

mg√
1 + h′2

= mg cos θ (2.312)

reproduces the result from eqn. 2.301.

2.9.9 Constraints and conservation laws

We have seen how invariance of the Lagrangian with respect to a one-parameter family of
coordinate transformations results in an associated conserved quantity Λ, and how a lack of
explicit time dependence in L results in the conservation of the Hamiltonian H. In deriving
both these results, however, we used the equations of motion ṗσ = Fσ. What happens when
we have constraints, in which case ṗσ = Fσ +Qσ?

Let’s begin with the Hamiltonian. We have H = q̇σ pσ − L, hence

dH

dt
=
(
pσ −

∂L

∂q̇σ

)
q̈σ +

(
ṗσ −

∂L

∂qσ

)
q̇σ −

∂L

∂t

= Qσ q̇σ −
∂L

∂t
. (2.313)
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We now use
Qσ q̇σ = λj gjσ q̇σ = −λj hj (2.314)

to obtain
dH

dt
= −λj hj −

∂L

∂t
. (2.315)

We therefore conclude that in a system with constraints of the form gjσ q̇σ + hj = 0, the
Hamiltonian is conserved if each hj = 0 and if L is not explicitly dependent on time. In

the case of holonomic constraints, hj = ∂Gj

∂t , so H is conserved if neither L nor any of the

constraints Gj is explicitly time-dependent.

Next, let us rederive Noether’s theorem when constraints are present. We assume a
one-parameter family of transformations qσ → q̃σ(ζ) leaves L invariant. Then

0 =
dL

dζ
=

∂L

∂q̃σ

∂q̃σ
∂ζ

+
∂L

∂ ˙̃qσ

∂ ˙̃qσ
∂ζ

=
( ˙̃pσ − Q̃σ

) ∂q̃σ
∂ζ

+ p̃σ
d

dt

(
∂q̃σ
∂ζ

)
=

d

dt

(
p̃σ
∂q̃σ
∂ζ

)
− λj g̃jσ

∂q̃σ
∂ζ

. (2.316)

Now let us write the constraints in differential form as

g̃jσ dq̃σ + h̃j dt+ k̃j dζ = 0 . (2.317)

We now have
Λ ≡ p̃σ

∂q̃σ
∂ζ

⇒ dΛ

dt
= λj k̃j , (2.318)

which says that if the constraints are independent of ζ then Λ is conserved. For holonomic
constraints, this means that

Gj
(
q̃(ζ), t

)
= 0 ⇒ k̃j =

∂Gj
∂ζ

= 0 , (2.319)

i.e. Gj(q̃, t) has no explicit ζ dependence. Again, there is a conserved Noether charge
associated with each continuous one-parameter family which leaves L and the constraints
invariant:

Λa =
∂L

∂ ˙̃qσ

∂q̃σ
∂ζa

∣∣∣∣
ζ=0

. (2.320)

2.10 Central Forces and Orbital Mechanics

Consider two particles interacting via a potential U(r1, r2) = U
(
|r1 − r2|

)
. Such a poten-

tial, which depends only on the relative distance between the particles, is called a central
potential. The Lagrangian of this system is then

L = T − U = 1
2m1ṙ

2
1 + 1

2m2ṙ
2
2 − U

(
|r1 − r2|

)
. (2.321)
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Figure 2.15: Center-of-mass (R) and relative (r) coordinates.

2.10.1 Center-of-Mass (CM) and Relative Coordinates

The two-body central force problem may always be reduced to two independent one-body
problems, by transforming to center-of-mass (R) and relative (r) coordinates (see Fig.
2.15), viz.

R =
m1r1 +m2r2

m1 +m2
r1 = R+

m2

m1 +m2
r (2.322)

r = r1 − r2 r2 = R− m1

m1 +m2
r (2.323)

We then have

L = 1
2m1ṙ1

2 + 1
2m2ṙ2

2 − U
(
|r1 − r2|

)
(2.324)

= 1
2MṘ

2 + 1
2µṙ

2 − U(r) . (2.325)

where

M = m1 +m2 (total mass) (2.326)

µ =
m1m2

m1 +m2
(reduced mass) . (2.327)
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2.10.2 Solution to the CM problem

We have ∂L/∂R = 0, which gives R̈ = 0 and hence

R(t) = R(0) + Ṙ(0) t . (2.328)

Thus, the CM problem is trivial. The center-of-mass moves at constant velocity.

2.10.3 Solution to the Relative Coordinate Problem

Angular momentum conservation: We have that ` = r × p = µr × ṙ is a constant of the
motion. This means that the motion r(t) is confined to a plane perpendicular to `. It is
convenient to adopt two-dimensional polar coordinates (r, φ). The magnitude of ` is

` = µr2φ̇ = 2µȦ (2.329)

where dA = 1
2r

2dφ is the differential element of area subtended relative to the force center.
The relative coordinate vector for a central force problem subtends equal areas in equal times.
This is known as Kepler’s Second Law.

Energy conservation: The equation of motion for the relative coordinate is

d

dt

(
∂L

∂ṙ

)
=
∂L

∂r
⇒ µr̈ = −∂U

∂r
. (2.330)

Taking the dot product with ṙ, we have

0 = µr̈ · ṙ +
∂U

∂r
· ṙ

=
d

dt

{
1
2µṙ

2 + U(r)
}

=
dE

dt
. (2.331)

Thus, the relative coordinate contribution to the total energy is itself conserved. The total
energy is of course Etot = E + 1

2MṘ
2.

Since ` is conserved, and since r · ` = 0, all motion is confined to a plane perpendicular
to `. Choosing coordinates such that ẑ = ˆ̀, we have

E = 1
2µṙ

2 + U(r) = 1
2µṙ

2 +
`2

2µr2
+ U(r)

= 1
2µṙ

2 + Ueff(r) (2.332)

Ueff(r) =
`2

2µr2
+ U(r) . (2.333)

Integration of the Equations of Motion, Step I: The second order equation for r(t)
is

dE

dt
= 0 ⇒ µr̈ =

`2

µr3
− dU(r)

dr
= −dUeff(r)

dr
. (2.334)
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However, conservation of energy reduces this to a first order equation, via

ṙ = ±
√

2
µ

(
E − Ueff(r)

)
⇒ dt = ±

√
µ
2 dr√

E − `2

2µr2
− U(r)

. (2.335)

This gives t(r), which must be inverted to obtain r(t). In principle this is possible. Note
that a constant of integration also appears at this stage – call it r0 = r(t = 0).

Integration of the Equations of Motion, Step II: After finding r(t) one can inte-
grate to find φ(t) using the conservation of `:

φ̇ =
`

µr2
⇒ dφ =

`

µr2(t)
dt . (2.336)

This gives φ(t), and introduces another constant of integration – call it φ0 = φ(t = 0).

Pause to Reflect on the Number of Constants: Confined to the plane perpendicular
to `, the relative coordinate vector has two degrees of freedom. The equations of motion
are second order in time, leading to four constants of integration. Our four constants are
E, `, r0, and φ0. Life is good!

Geometric Equation of the Orbit: From ` = µr2φ̇, we have

d

dt
=

`

µr2
d

dφ
, (2.337)

leading to
d2r

dφ2
− 2
r

(
dr

dφ

)2
=
µr4

`2
F (r) + r (2.338)

where F (r) = −dU(r)/dr is the magnitude of the central force. This second order equation
may be reduced to a first order one using energy conservation:

E = 1
2µṙ

2 + Ueff(r)

=
`2

2µr4

(
dr

dφ

)2
+ Ueff(r) . (2.339)

Thus,

dφ = ± `√
2µ
· dr

r2
√
E − Ueff(r)

, (2.340)

which can be integrated to yield φ(r), and then inverted to yield r(φ). Note that only
one integration need be performed to obtain the geometric shape of the orbit, while two
integrations – one for r(t) and one for φ(t) – must be performed to obtain the full motion
of the system.
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It is sometimes convenient to rewrite this equation in terms of the variable s = 1/r:

d2s

dφ2
+ s = − µ

`2s2
F
(
s−1
)
. (2.341)

As an example, suppose the geometric orbit is r(φ) = k eαφ, known as a logarithmic
spiral. What is the force? We invoke (2.338), with s′′(φ) = α2 s, yielding

F
(
s−1
)

= −(1 + α2)
`2

µ
s3 ⇒ F (r) = −C

r3
(2.342)

with
α2 =

µC

`2
− 1 . (2.343)

The general solution for s(φ) for this force law is

s(φ) =


A cosh(αφ) +B sinh(−αφ) if `2 > µC

A′ cos
(
|α|φ

)
+B′ sin

(
|α|φ

)
if `2 < µC .

(2.344)

The logarithmic spiral shape is a special case of the first kind of orbit.

2.10.4 Precession

Almost Circular Orbits: A circular orbit with r(t) = r0 satisfies r̈ = 0, which means
that U ′eff(r0) = 0, which says that F (r0) = −`2/µr30. This is negative, indicating that a
circular orbit is possible only if the force is attractive over some range of distances. Since
ṙ = 0 as well, we must also have E = Ueff(r0). An almost circular orbit has r(t) = r0 +η(t),
where |η/r0| � 1. To lowest order in η, one derives the equations

d2η

dt2
= −ω2 η , ω2 =

1
µ
U ′′eff(r0) . (2.345)

If ω2 > 0, the circular orbit is stable and the perturbation oscillates harmonically. If
ω2 < 0, the circular orbit is unstable and the perturbation grows exponentially. For the
geometric shape of the perturbed orbit, we write r = r0 + η, and from (2.338) we obtain

d2η

dφ2
=
(
µr40
`2

F ′(r0)− 3
)
η = −β2 η , (2.346)

with

β2 = 3 +
d lnF (r)
d ln r

∣∣∣∣∣
r0

=
(
µωr0
`

)2

. (2.347)

The solution here is
η(φ) = η0 cosβ(φ− δ0) , (2.348)
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Figure 2.16: Stable and unstable circular orbits. Left panel: U(r) = −k/r produces a stable
circular orbit. Right panel: U(r) = −k/r4 produces an unstable circular orbit.

where η0 and δ0 are initial conditions. Setting η = η0, we obtain the sequence of φ values

φn = δ0 +
2πn
β

, (2.349)

at which η(φ) is a local maximum, i.e. at apoapsis, where r = r0 + η0. Setting r = r0 − η0

is the condition for closest approach, i.e. periapsis. This yields the identical set if angles,
just shifted by π. The difference,

∆φ = φn+1 − φn − 2π = 2π
(
β−1 − 1

)
, (2.350)

is the amount by which the apsides (i.e. periapsis and apoapsis) precess during each cycle.
If β > 1, the apsides advance, i.e. it takes less than a complete revolution ∆φ = 2π between
successive periapses. If β < 1, the apsides retreat, and it takes longer than a complete
revolution between successive periapses. The situation is depicted in Fig. 2.17 for the case
β = 1.1. Below, we will exhibit a soluble model in which the precessing orbit may be
determined exactly. Finally, note that if β = p/q is a rational number, then the orbit is
closed , i.e. it eventually retraces itself, after every q revolutions.

As an example, let U(r) = kr−α. Solving for a circular orbit, we write

U ′eff(r) =
αk

rα+1
− `2

µr3
= 0 , (2.351)

which has a solution only for αk > 0, corresponding to an attractive potential. We then
find

r0 =
(

`2

αkµ

)1/(2−α)

. (2.352)

The force law is F (r) = −αk r−(1+α), yielding β2 = 2 − α. The shape of the perturbed
orbits follows from η′′ = −β2 η. Thus, while circular orbits exist whenever αk > 0, small
perturbations about these orbits are stable only for β2 > 0, i.e. for α < 2. One then has
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Figure 2.17: Precession in a soluble model, with geometric orbit r(φ) = r0/(1 − ε cosβφ),
shown here with β = 1.1. Periapsis and apoapsis advance by ∆φ = 2π(1− β−1) per cycle.

η(φ) = A cosβ(φ − φ0). The perturbed orbits are closed, at least to lowest order in η, for
α = 2 − (p/q)2, i.e. for β = p/q. The situation is depicted in Fig. 2.16, for the potentials
U(r) = −k/r (α = 1) and U(r) = −k/r4 (α = 4).

Precession in a Soluble Model: Let’s start with the answer and work backwards.
Consider the geometrical orbit,

r(φ) =
r0

1− ε cosβφ
. (2.353)

Our interest is in bound orbits, for which 0 ≤ ε < 1 (see Fig. 2.17). What sort of potential
gives rise to this orbit? Writing s = 1/r as before, we have

s(φ) = s0 (1− ε cosβφ) . (2.354)

Substituting into (2.341), we have

− µ

`2s2
F
(
s−1
)

=
d2s

dφ2
+ s

= β2 s0 ε cosβφ+ s

= (1− β2) s+ β2 s0 , (2.355)

from which we conclude
F (r) = − k

r2
+
C

r3
, (2.356)
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with

k = β2s0
`2

µ
, C = (β2 − 1)

`2

µ
. (2.357)

The corresponding potential is

U(r) = −k
r

+
C

2r2
+ U∞ , (2.358)

where U∞ is an arbitrary constant, conveniently set to zero. If µ and C are given, we have

r0 =
`2

µk
+
C

k
, β =

√
1 +

µC

`2
. (2.359)

When C = 0, these expressions recapitulate those from the Kepler problem. Note that
when `2 + µC < 0 that the effective potential is monotonically increasing as a function of
r. In this case, the angular momentum barrier is overwhelmed by the (attractive, C < 0)
inverse square part of the potential, and Ueff(r) is monotonically increasing. The orbit then
passes through the force center. It is a useful exercise to derive the total energy for the
orbit,

E = (ε2 − 1)
µk2

2(`2 + µC)
⇐⇒ ε2 = 1 +

2E(`2 + µC)
µk2

. (2.360)

2.10.5 The Kepler Problem: U(r) = −k r−1

Geometric Shape of Orbits: The force is F (r) = −kr−2, hence the equation for the
geometric shape of the orbit is

d2s

dφ2
+ s = − µ

`2s2
F (s−1) =

µk

`2
, (2.361)

with s = 1/r. Thus, the most general solution is

s(φ) = s0 − C cos(φ− φ0) , (2.362)

where C and φ0 are constants. Thus,

r(φ) =
r0

1− ε cos(φ− φ0)
, (2.363)

where r0 = `2/µk and where we have defined a new constant ε ≡ Cr0.

Laplace-Runge-Lenz vector: Consider the vector

A = p× `− µk r̂ , (2.364)
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Figure 2.18: The effective potential for the Kepler problem, and associated phase curves.
The orbits are geometrically described as conic sections: hyperbolae (E > 0), parabolae
(E = 0), ellipses (Emin < E < 0), and circles (E = Emin).

where r̂ = r/|r| is the unit vector pointing in the direction of r. We may now show that A
is conserved:

dA

dt
=

d

dt

{
p× `− µk

r

r

}
= ṗ× `+ p× ˙̀ − µk

rṙ − rṙ
r2

= −kr
r3
× (µr × ṙ)− µk

ṙ

r
+ µk

ṙr

r2

= −µk r(r · ṙ)
r3

+ µk
ṙ(r · r)
r3

− µk
ṙ

r
+ µk

ṙr

r2
= 0 . (2.365)

So A is a conserved vector which clearly lies in the plane of the motion. A points toward
periapsis, i.e. toward the point of closest approach to the force center.

Let’s assume apoapsis occurs at φ = φ0. Then

A · r = −Ar cos(φ− φ0) = `2 − µkr (2.366)

giving

r(φ) =
`2

µk −A cos(φ− φ0)
=

a(1− ε2)

1− ε cos(φ− φ0)
, (2.367)

where

ε =
A

µk
, a(1− ε2) =

`2

µk
. (2.368)
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Figure 2.19: Keplerian orbits are conic sections, classified according to eccentricity: hyper-
bola (ε > 1), parabola (ε = 1), ellipse (0 < ε < 1), and circle (ε = 0). The Laplace-Runge-
Lenz vector, A, points toward periapsis.

The orbit is a conic section with eccentricity ε. Squaring A, onefinds

A2 = (p× `)2 − 2µkr̂ · p× `+ µ2k2

= p2`2 − 2µ`2
k

r
+ µ2k2

= 2µ`2
(
p2

2µ
− k

r
+
µk2

2`2

)
= 2µ`2

(
E +

µk2

2`2

)
(2.369)

and thus

a = − k

2E
, ε2 = 1 +

2E`2

µk2
. (2.370)

There are four classes of conic sections:

• Circle: ε = 0, E = −µk2/2`2, radius a = `2/µk. The force center lies at the center of
circle.

• Ellipse: 0 < ε < 1, −µk2/2`2 < E < 0, semimajor axis a = −k/2E, semiminor axis
b = a

√
1− ε2. The force center is at one of the foci.

• Parabola: ε = 1, E = 0, force center is the focus.

• Hyperbola: ε > 1, E > 0, force center is closest focus (attractive) or farthest focus
(repulsive).
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Figure 2.20: The Keplerian ellipse, with the force center at the left focus. The focal distance
is f = εa, where a is the semimajor axis length. The length of the semiminor axis is
b =

√
1− ε2 a.

To see that the Keplerian orbits are indeed conic sections, consider the ellipse of Fig.
2.20. The law of cosines gives

ρ2 = r2 + 4f2 − 4rf cosφ , (2.371)

where f = εa is the focal distance. Now for any point on an ellipse, the sum of the distances
to the left and right foci is a constant, and taking φ = 0 we see that this constant is 2a.
Thus, ρ = 2a− r, and we have

(2a− r)2 = 4a2 − 4ar + r2 = r2 + 4ε2a2 − 4εr cosφ

⇒ r(1− ε cosφ) = a(1− ε2) . (2.372)

Thus, we obtain

r(φ) =
a (1− ε2)
1− ε cosφ

, (2.373)

and we therefore conclude that

r0 =
`2

µk
= a (1− ε2) . (2.374)

Next let us examine the energy,

E = 1
2µṙ

2 + Ueff(r)

= 1
2µ

(
`

µr2
dr

dφ

)2

+
`2

2µr2
− k

r

=
`2

2µ

(
ds

dφ

)2

+
`2

2µ
s2 − ks , (2.375)

with
s =

1
r

=
µk

`2

(
1− ε cosφ

)
. (2.376)
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Figure 2.21: The Keplerian hyperbolae, with the force center at the left focus. The left
(blue) branch corresponds to an attractive potential, while the right (red) branch corre-
sponds to a repulsive potential. The equations of these branches are r = ρ = ∓2a, where
the top sign corresponds to the left branch and the bottom sign to the right branch.

Thus,
ds

dφ
=
µk

`2
ε sinφ , (2.377)

and (
ds

dφ

)2

=
µ2k2

`4
ε2 sin2φ

=
µ2k2ε2

`4
−
(
µk

`2
− s

)2

= −s2 +
2µk
`2

s+
µ2k2

`4
(
ε2 − 1

)
. (2.378)

Substituting this into eqn. 2.375, we obtain

E =
µk2

2`2
(
ε2 − 1

)
. (2.379)

For the hyperbolic orbit, depicted in Fig. 2.21, we have r − ρ = ∓2a, depending on
whether we are on the attractive or repulsive branch, respectively. We then have

(r ± 2a)2 = 4a2 ± 4ar + r2 = r2 + 4ε2a2 − 4εr cosφ

⇒ r(±1 + ε cosφ) = a(ε2 − 1) . (2.380)

This yields

r(φ) =
a (ε2 − 1)
±1 + ε cosφ

. (2.381)
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Period of Bound Kepler Orbits: From ` = µr2φ̇ = 2µȦ, the period is τ = 2µA/`,
where A = πa2

√
1− ε2 is the area enclosed by the orbit. This gives

τ = 2π
(
µa3

k

)1/2

= 2π
(
a3

GM

)1/2

(2.382)

as well as
a3

τ2
=
GM

4π2
, (2.383)

where k = Gm1m2 and M = m1 +m2 is the total mass. For planetary orbits, m1 = M� is
the solar mass and m2 = mp is the planetary mass. We then have

a3

τ2
=
(
1 +

mp

M�

)GM�
4π2

≈ GM�
4π2

, (2.384)

which is to an excellent approximation independent of the planetary mass. (Note that
mp/M� ≈ 10−3 even for Jupiter.) This analysis also holds, mutatis mutandis, for the
case of satellites orbiting the earth, and indeed in any case where the masses are grossly
disproportionate in magnitude.

Escape Velocity: The threshold for escape from a gravitational potential occurs at E = 0.
Since E = T + U is conserved, we determine the escape velocity for a body a distance r
from the force center by setting

E = 0 = 1
2µv

2
esc(r)−

GMm

r
⇒ vesc(r) =

√
2G(M +m)

r
. (2.385)

When M � m, vesc(r) =
√

2GM/r. Thus, for an object at the surface of the earth,
vesc =

√
2gRE = 11.2 km/s.

Satellites and Spacecraft: A satellite in a circular orbit a distance h above the earth’s
surface has an orbital period

τ =
2π√
GME

(RE + h)3/2 , (2.386)

where we take msatellite �ME. For low earth orbit (LEO), h� RE = 6.37× 106 m, in which
case τLEO = 2π

√
RE/g = 1.4 hr.

Consider a weather satellite in an elliptical orbit whose closest approach to the earth
(perigee) is 200 km above the earth’s surface and whose farthest distance (apogee) is 7200
km above the earth’s surface. What is the satellite’s orbital period? From Fig. 2.20, we see
that

dapogee = RE + 7200 km = 13571 km
dperigee = RE + 200 km = 6971 km

a = 1
2(dapogee + dperigee) = 10071 km . (2.387)
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We then have
τ =

( a

RE

)3/2
· τLEO ≈ 2.65 hr . (2.388)

What happens if a spacecraft in orbit about the earth fires its rockets? Clearly the
energy and angular momentum of the orbit will change, and this means the shape will
change. If the rockets are fired (in the direction of motion) at perigee, then perigee itself
is unchanged, because v · r = 0 is left unchanged at this point. However, E is increased,
hence the eccentricity ε =

√
1 + 2E`2

µk2 increases. This is the most efficient way of boosting
a satellite into an orbit with higher eccentricity. Conversely, and somewhat paradoxically,
when a satellite in LEO loses energy due to frictional drag of the atmosphere, the energy
E decreases. Initially, because the drag is weak and the atmosphere is isotropic, the orbit
remains circular. Since E decreases, 〈T 〉 = −E must increase, which means that the
frictional forces cause the satellite to speed up!

2.10.6 Two Examples of Orbital Mechanics

Problem #1: At perigee of an elliptical Keplerian orbit, a satellite receives an impulse
∆p = p0r̂. Describe the resulting orbit.

Solution #1: Since the impulse is radial, the angular momentum ` = r× p is unchanged.
The energy, however, does change, with ∆E = p2

0/2µ. Thus,

ε2f = 1 +
2Ef`

2

µk2
= ε2i +

(
`p0

µk

)2

. (2.389)

The new semimajor axis length is

af =
`2/µk

1− ε2f
= ai ·

1− ε2i
1− ε2f

=
ai

1− (aip2
0/µk)

. (2.390)

The shape of the final orbit must also be a Keplerian ellipse, described by

rf(φ) =
`2

µk
· 1

1− εf cos(φ+ δ)
, (2.391)

where the phase shift δ is determined by setting

ri(π) = rf(π) =
`2

µk
· 1

1 + εi
. (2.392)

Solving for δ, we obtain
δ = cos−1

(
εi/εf

)
. (2.393)
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Figure 2.22: At perigee of an elliptical orbit ri(φ), a radial impulse ∆p is applied. The
shape of the resulting orbit rf(φ) is shown.

The situation is depicted in Fig. 2.22.

Problem #2: Which is more energy efficient – to send nuclear waste outside the solar system,
or to send it into the Sun?

Solution #2: Escape velocity for the solar system is vesc,�(r) =
√

2GM�/r. At a distance
aE, we then have vesc,�(aE) =

√
2 vE, where vE =

√
GM�/aE = 2πaE/τE = 29.9 km/s is the

velocity of the earth in its orbit. The satellite is launched from earth, and clearly the most
energy efficient launch will be one in the direction of the earth’s motion, in which case the
velocity after escape from earth must be u =

(√
2−1

)
vE = 12.4 km/s. The speed just above

the earth’s atmosphere must then be ũ, where

1
2mũ

2 − GMEm

RE

= 1
2mu

2 , (2.394)

or, in other words,
ũ2 = u2 + v2

esc,E . (2.395)

We compute ũ = 16.7 km/s.

The second method is to place the trash ship in an elliptical orbit whose perihelion is
the Sun’s radius, R� = 6.98× 108 m, and whose aphelion is aE. Using the general equation
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Figure 2.23: The larger circular orbit represents the orbit of the earth. The elliptical orbit
represents that for an object orbiting the Sun with distance at perihelion equal to the Sun’s
radius.

r(φ) = (`2/µk)/(1− ε cosφ) for a Keplerian ellipse, we therefore solve the two equations

r(φ = π) = R� =
1

1 + ε
· `

2

µk
(2.396)

r(φ = 0) = aE =
1

1− ε
· `

2

µk
. (2.397)

We thereby obtain

ε =
aE −R�
aE +R�

= 0.991 , (2.398)

which is a very eccentric ellipse, and

`2

µk
=

a2
E v

2

G(M� +m)
≈ aE ·

v2

v2
E

= (1− ε) aE =
2aER�
aE +R�

. (2.399)

Hence,

v2 =
2R�

aE +R�
v2

E , (2.400)

and the necessary velocity relative to earth is

u =

(√
2R�

aE +R�
− 1

)
vE ≈ −0.904 vE , (2.401)

i.e. u = −27.0 km/s. Launch is in the opposite direction from the earth’s orbital motion,
and from ũ2 = u2 + v2

esc,E we find ũ = −29.2 km/s, which is larger (in magnitude) than in
the first scenario. Thus, it is cheaper to ship the trash out of the solar system than to send
it crashing into the Sun, by a factor ũ2

I /ũ
2
II = 0.327.
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2.11 Mission to Neptune

Four earth-launched spacecraft have escaped the solar system: Pioneer 10 (launch 3/3/72),
Pioneer 11 (launch 4/6/73), Voyager 1 (launch 9/5/77), and Voyager 2 (launch 8/20/77).7

The latter two are still functioning, and each are moving away from the Sun at a velocity
of roughly 3.5 AU/yr.

As the first objects of earthly origin to leave our solar system, both Pioneer spacecraft
featured a graphic message in the form of a 6” x 9” gold anodized plaque affixed to the
spacecrafts’ frame. This plaque was designed in part by the late astronomer and popular
science writer Carl Sagan. The humorist Dave Barry, in an essay entitled Bring Back Carl’s
Plaque, remarks,

But the really bad part is what they put on the plaque. I mean, if we’re going to
have a plaque, it ought to at least show the aliens what we’re really like, right?
Maybe a picture of people eating cheeseburgers and watching “The Dukes of
Hazzard.” Then if aliens found it, they’d say, “Ah. Just plain folks.”

But no. Carl came up with this incredible science-fair-wimp plaque that features
drawings of – you are not going to believe this – a hydrogen atom and naked
people. To represent the entire Earth! This is crazy! Walk the streets of any
town on this planet, and the two things you will almost never see are hydrogen
atoms and naked people.

During August, 1989, Voyager 2 investigated the planet Neptune. A direct trip to
Neptune along a Keplerian ellipse with rp = aE = 1AU and ra = aN = 30.06 AU would take
30.6 years. To see this, note that rp = a (1− ε) and ra = a (1 + ε) yield

a = 1
2

(
aE + aN

)
= 15.53 AU , ε =

aN − aE

aN + aE

= 0.9356 . (2.402)

Thus,

τ = 1
2 τE ·

( a
aE

)3/2
= 30.6 yr . (2.403)

The energy cost per kilogram of such a mission is computed as follows. Let the speed of
the probe after its escape from earth be vp = λvE, and the speed just above the atmosphere
(i.e. neglecting atmospheric friction) is v0. For the most efficient launch possible, the probe
is shot in the direction of earth’s instantaneous motion about the Sun. Then we must have

1
2mv2

0 −
GMEm

RE

= 1
2m (λ− 1)2 v2

E , (2.404)

7There is a very nice discussion in the Barger and Olsson book on ‘Grand Tours of the Outer Planets’.
Here I reconstruct and extend their discussion.
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Figure 2.24: The unforgivably dorky Pioneer 10 and Pioneer 11 plaque.

since the speed of the probe in the frame of the earth is vp − vE = (λ− 1) vE. Thus,

E

m
= 1

2v
2
0 =

[
1
2(λ− 1)2 + h

]
v2

E (2.405)

v2
E =

GM�
aE

= 6.24× 107 J/kg ,

where
h ≡ ME

M�
· aE

RE

= 7.050× 10−2 . (2.406)

Therefore, a convenient dimensionless measure of the energy is

η ≡ 2E
mv2

E

=
v2
0

v2
E

= (λ− 1)2 + 2h . (2.407)

As we shall derive below, a direct mission to Neptune requires

λ ≥
√

2aN

aN + aE

= 1.3913 , (2.408)

which is close to the criterion for escape from the solar system, λesc =
√

2. Note that about
52% of the energy is expended after the probe escapes the Earth’s pull, and 48% is expended
in liberating the probe from Earth itself.
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Figure 2.25: Mission to Neptune. The figure at the lower right shows the orbits of Earth,
Jupiter, and Neptune in black. The cheapest (in terms of energy) direct flight to Neptune,
shown in blue, would take 30.6 years. By swinging past the planet Jupiter, the satellite can
pick up great speed and with even less energy the mission time can be cut to 8.5 years (red
curve). The inset in the upper left shows the scattering event with Jupiter.

This mission can be done much more economically by taking advantage of a Jupiter
flyby, as shown in Fig. 2.25. The idea of a flyby is to steal some of Jupiter’s momentum
and then fly away very fast before Jupiter realizes and gets angry. The CM frame of the
probe-Jupiter system is of course the rest frame of Jupiter, and in this frame conservation
of energy means that the final velocity uf is of the same magnitude as the initial velocity
ui. However, in the frame of the Sun, the initial and final velocities are vJ +ui and vJ +uf ,
respectively, where vJ is the velocity of Jupiter in the rest frame of the Sun. If, as shown in
the inset to Fig. 2.25, uf is roughly parallel to vJ, the probe’s velocity in the Sun’s frame
will be enhanced. Thus, the motion of the probe is broken up into three segments:

I : Earth to Jupiter
II : Scatter off Jupiter’s gravitational pull

III : Jupiter to Neptune

We now analyze each of these segments in detail. In so doing, it is useful to recall that the
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general form of a Keplerian orbit is

r(φ) =
d

1− ε cosφ
, d =

`2

µk
=
∣∣ε2 − 1

∣∣ a . (2.409)

The energy is

E = (ε2 − 1)
µk2

2`2
, (2.410)

with k = GMm, where M is the mass of either the Sun or a planet. In either case, M
dominates, and µ = Mm/(M + m) ' m to extremely high accuracy. The time for the
trajectory to pass from φ = φ1 to φ = φ2 is

T =
∫
dt =

φ2∫
φ1

dφ

φ̇
=
µ

`

φ2∫
φ1

dφ r2(φ) =
`3

µk2

φ2∫
φ1

dφ[
1− ε cosφ

]2 . (2.411)

For reference,

aE = 1AU aJ = 5.20 AU aN = 30.06 AU

ME = 5.972× 1024 kg MJ = 1.900× 1027 kg M� = 1.989× 1030 kg

with 1 AU = 1.496 × 108 km. Here aE,J,N and ME,J,� are the orbital radii and masses of
Earth, Jupiter, and Neptune, and the Sun. The last thing we need to know is the radius of
Jupiter,

RJ = 9.558× 10−4 AU .

We need RJ because the distance of closest approach to Jupiter, or perijove, must be RJ or
greater. Otherwise the probe crashes into Jupiter!

2.11.1 I. Earth to Jupiter

The probe’s velocity at perihelion is vp = λvE. The angular momentum is ` = µaE · λvE,
whence

d =
(aEλvE)2

GM�
= λ2 aE . (2.412)

From r(π) = aE, we obtain
ε = λ2 − 1 . (2.413)

This orbit will intersect the orbit of Jupiter if ra ≥ aJ, which means

d

1− ε
≥ aJ ⇒ λ ≥

√
2aJ

aJ + aE

= 1.2952 . (2.414)

If this inequality holds, then intersection of Jupiter’s orbit will occur for

φJ = 2π − cos−1

(
aJ − λ2aE

(λ2 − 1) aJ

)
. (2.415)
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Finally, the time for this portion of the trajectory is

τEJ = τE · λ3

φJ∫
π

dφ

2π
1[

1− (λ2 − 1) cosφ
]2 . (2.416)

2.11.2 II. Encounter with Jupiter

We are interested in the final speed vf of the probe after its encounter with Jupiter. We
will determine the speed vf and the angle δ which the probe makes with respect to Jupiter
after its encounter. According to the geometry of Fig. 2.25,

v2
f = v2

J + u2 − 2uvJ cos(χ+ γ) (2.417)

cos δ =
v2

J + v2
f − u2

2vfvJ

(2.418)

Note that
v2

J =
GM�
aJ

=
aE

aJ

· v2
E . (2.419)

But what are u, χ, and γ?

To determine u, we invoke

u2 = v2
J + v2

i − 2vJvi cosβ . (2.420)

The initial velocity (in the frame of the Sun) when the probe crosses Jupiter’s orbit is given
by energy conservation:

1
2m(λvE)2 − GM�m

aE

= 1
2mv

2
i −

GM�m

aJ

, (2.421)

which yields

v2
i =

(
λ2 − 2 +

2aE

aJ

)
v2

E . (2.422)

As for β, we invoke conservation of angular momentum:

µ(vi cosβ)aJ = µ(λvE)aE ⇒ vi cosβ = λ
aE

aJ

vE . (2.423)

The angle γ is determined from

vJ = vi cosβ + u cos γ . (2.424)

Putting all this together, we obtain

vi = vE

√
λ2 − 2 + 2x (2.425)

u = vE

√
λ2 − 2 + 3x− 2λx3/2 (2.426)

cos γ =
√
x− λx√

λ2 − 2 + 3x− 2λx3/2
, (2.427)
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where
x ≡ aE

aJ

= 0.1923 . (2.428)

We next consider the scattering of the probe by the planet Jupiter. In the Jovian frame,
we may write

r(φ) =
κRJ (1 + εJ)
1 + εJ cosφ

, (2.429)

where perijove occurs at
r(0) = κRJ . (2.430)

Here, κ is a dimensionless quantity, which is simply perijove in units of the Jovian radius.
Clearly we require κ > 1 or else the probe crashes into Jupiter! The probe’s energy in this
frame is simply E = 1

2mu
2, which means the probe enters into a hyperbolic orbit about

Jupiter. Next, from

E =
k

2
ε2 − 1
`2/µk

(2.431)

`2

µk
= (1 + ε)κRJ (2.432)

we find

εJ = 1 + κ

(
RJ

aE

)(
M�
MJ

)(
u

vE

)2

. (2.433)

The opening angle of the Keplerian hyperbola is then φc = cos−1
(
ε−1

J

)
, and the angle χ is

related to φc through

χ = π − 2φc = π − 2 cos−1

(
1
εJ

)
. (2.434)

Therefore, we may finally write

vf =
√
x v2

E + u2 + 2u vE

√
x cos(2φc − γ) (2.435)

cos δ =
x v2

E + v2
f − u2

2 vf vE

√
x

. (2.436)

2.11.3 III. Jupiter to Neptune

Immediately after undergoing gravitational scattering off Jupiter, the energy and angular
momentum of the probe are

E = 1
2mv

2
f −

GM�m

aJ

(2.437)

and
` = µ vf aJ cos δ . (2.438)
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Figure 2.26: Total time for Earth-Neptune mission as a function of dimensionless velocity
at perihelion, λ = vp/vE. Six different values of κ, the value of perijove in units of the
Jovian radius, are shown: κ = 1.0 (thick blue), κ = 5.0 (red), κ = 20 (green), κ = 50
(blue), κ = 100 (magenta), and κ = ∞ (thick black).

We write the geometric equation for the probe’s orbit as

r(φ) =
d

1 + ε cos(φ− φJ − α)
, (2.439)

where

d =
`2

µk
=
(
vf aJ cos δ
vE aE

)2

aE . (2.440)

Setting E = (µk2/2`2)(ε2 − 1), we obtain the eccentricity

ε =

√√√√1 +

(
v2
f

v2
E

− 2aE

aJ

)
d

aE

. (2.441)
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Note that the orbit is hyperbolic – the probe will escape the Sun – if vf > vE ·
√

2x. The
condition that this orbit intersect Jupiter at φ = φJ yields

cosα =
1
ε

(
d

aJ

− 1
)
, (2.442)

which determines the angle α. Interception of Neptune occurs at

d

1 + ε cos(φN − φJ − α)
= aN ⇒ φN = φJ + α+ cos−1 1

ε

(
d

aN

− 1
)
. (2.443)

We then have

τJN = τE ·
(
d

aE

)3 φN∫
φJ

dφ

2π
1[

1 + ε cos(φ− φJ − α)
]2 . (2.444)

The total time to Neptune is then the sum,

τEN = τEJ + τJN . (2.445)

2.12 Conservative Forces in Higher Dimensions

The Lagrangian is L = 1
2mr̈

2 − U(r), and the equations of motion are

mr̈ = −∇U(r) ≡ F (r) . (2.446)

The work done on the particle in moving from ra to rb is

Wab =

rb∫
ra

dr · F (r)

= U
(
ra
)
− U

(
rb
)
. (2.447)

Since the total energy E = T + U is conserved,

Wab = Tb − Ta , (2.448)

and the work done on the system in going from a to b is the change in kinetic energy
∆T = Tb−Ta. Clearly the work done depends only on the endpoints; this is also clear from
application of Stokes’ theorem to the integral of F · dr around a closed path,∮

C

dr · F =
∫

int(C)

∇× F · n̂ dΣ = 0 , (2.449)

since ∇× F = −∇×∇U = 0. Thus, if γ1 and γ2 are two paths connecting ra to rb, then
applying the above result to the closed path C = γ−1

2 ◦ γ1 establishes that the work done
along these two paths is the same.
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2.12.1 Polar Coordinates in d = 2 Dimensions

We have

r = cosφ x̂+ sinφ ŷ =⇒ dr̂ = φ̂ dφ (2.450)

φ̂ = − sinφ x̂+ cosφ ŷ =⇒ dφ̂ = −r̂ dφ , (2.451)

from which we obtain
ṙ =

d

dt
(rr̂) = ṙ r̂ + r φ̇ φ̂ , (2.452)

and hence

a =
d2

dt2
(rr̂) = r̈ r̂ + ṙ ˙̂r + ṙ φ̇ φ̂+ r φ̈ φ̂+ r φ̇

˙̂
φ

=
(
r̈ − rφ̇2

)
r̂ +

(
2ṙφ̇+ rφ̈

)
φ̂

=
(
r̈ − rφ̇2

)
r̂ +

1
r

d

dt

(
r2φ̇
)
φ̂ . (2.453)

Newton’s second law,

mr̈ = −∇U = −r̂ ∂U
∂r

− φ̂
r

∂U

∂φ
, (2.454)

therefore gives

m
(
r̈ − rφ̇2

)
= −∂U

∂r
(2.455)

m
d

dt

(
r2φ̇
)

= −∂U
∂φ

. (2.456)

If U is independent of φ, the angular momentum ` = mr2φ̇ is conserved. Of course, all this
follows directly from writing the Lagrangian in polar coordinates,

L = 1
2m
(
ṙ2 + r2φ̇2

)
− U(r, φ) , (2.457)

and computing the Euler-Lagrange equations of motion.

Assuming U(r) is a central potential , which is to say that it is dependent only on the
magnitude r and not on φ, we may substitute φ̇ = `/mr2 into the equation for r̈, to obtain

mr̈ = −∂U
∂r

+
`2

2mr3
≡ −∂Ueff

∂r
, (2.458)

where the effective potential is defined as

Ueff(r) = U(r) +
`2

2mr2
. (2.459)

The second term, which diverges as r → 0, is called the angular momentum barrier . Mul-
tiplying both sides of mr̈ = −U ′eff(r) by ṙ, we have that

E = 1
2mṙ

2 + Ueff(r) (2.460)

is conserved. We will discuss this case in more detail shortly.
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2.13 Systems of Particles

Consider a system of many particles, with

T = 1
2

∑
a

maṙ
2
a (2.461)

U =
∑
a

V (ra) +
∑
a<b

v
(
|ra − rb|

)
. (2.462)

Here, V (r) is the external (or one-body) potential, and v(r−r′) is the interparticle potential,
which we assume to be central, depending only on the distance between any pair of particles.
The equations of motion are

ma r̈a = F (ext)
a + F (int)

a , (2.463)

with

F (ext)
a = −∂V (ra)

∂ra
(2.464)

F (int)
a = −

∑
b

∂v
(
|ra − rb|

)
ra

≡
∑
b

F (int)

ab . (2.465)

Here, F (int)

ab is the force exerted on particle a by particle b:

F (int)

ab =
∂v
(
|ra − rb|

)
∂ra

= − ra − rb
|ra − rb|

v′
(
|ra − rb|

)
. (2.466)

Note that F (int)

ab = −F (int)

ba , otherwise known as Newton’s Third Law. It is convenient to
abbreviate rab ≡ ra − rb, in which case we may write the interparticle force as F (int)

ab =
−r̂ab v′

(
rab
)
.

Consider now the total momentum of the system, P =
∑

a pa. Its rate of change is

dP

dt
=
∑
a

ṗa =
∑
a

F (ext)
a +

F
(int)
ab +F

(int)
ba =0︷ ︸︸ ︷∑

a 6=b
F (int)

ab = F (ext)

tot , (2.467)

since the sum over all internal forces cancels as a result of Newton’s Third Law. We write

P =
∑
a

maṙa = MṘ (2.468)

M =
∑
a

ma (total mass) (2.469)

R =
∑

amara∑
ama

(center-of-mass) . (2.470)
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Next, consider the total angular momentum,

L =
∑
a

ra × pa =
∑
a

mara × ṙa

dL

dt
=
∑
a

{
maṙa × ṙa +mara × r̈a

}
=
∑
a

ra × F (ext)
a +

∑
a 6=b

ra × F
(int)

ab

=
∑
a

ra × F (ext)
a +

rab×F
(int)
ab =0︷ ︸︸ ︷

1
2

∑
a 6=b

(ra − rb)× F
(int)

ab

= N (ext)

tot . (2.471)

Finally, it is useful to establish the result

T = 1
2

∑
a

maṙ
2
a = 1

2MṘ
2 + 1

2

∑
a

ma

(
ṙa − Ṙ

)2
, (2.472)

which says that the kinetic energy may be written as a sum of two terms, those being the
kinetic energy of the center-of-mass motion, and the kinetic energy of the particles relative
to the center-of-mass.

Recall the “work-energy theorem” for conservative systems,

0 =

final∫
initial

dE =

final∫
initial

dT +

final∫
initial

dU

= Tf − Ti −
∑
a

ra,f∫
ra,i

dra · Fa (2.473)

∆T = Tf − Ti =
∑
a

ra,f∫
ra,i

dra · Fa . (2.474)

Note that for continuous systems, we replace∑
a

maG
(
ra
)
−→

∫
d3r ρ(r)G(r) , (2.475)

where ρ(r) is the mass density, and G(r) is any function.
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2.14 Mechanical Similarity and Virial Theorem

2.14.1 Mechanical Similarity

In certain cases of interest, the potential is a homogeneous function of the coordinates. This
means

U
(
λr1, . . . , λrN

)
= λk U

(
r1, . . . , rN

)
. (2.476)

Here, k is the degree of homogeneity of U . Familiar examples include gravity,

U
(
r1, . . . , rN

)
= −G

∑
a<b

mamb

|ra − rb|
; k = −1 , (2.477)

and the harmonic oscillator,

U
(
q1, . . . , qn

)
= 1

2

∑
σ,σ′

Vσσ′ qσ qσ′ ; k = +2 . (2.478)

The sum of two homogeneous functions is itself homogeneous only if the component func-
tions themselves are of the same degree of homogeneity.

Now suppose we rescale distances and times, defining

ra = λr′a ∀a , t = βt′ . (2.479)

Clearly
dr′a
dt′

=
λ

β

dra
dt

, (2.480)

and so

L = 1
2

∑
a

ma

(
dra
dt

)2

− U
(
r1, . . . , rN

)
=
λ2

β2
1
2

∑
a

ma

(
dr′a
dt′

)2

− λk U
(
r′1, . . . , r

′
N

)
. (2.481)

We now demand
λ2

β2
= λk ⇒ β = λ1−1

2k , (2.482)

which yields

L

(
{ra},

{
dra
dt

}
, t

)
= λk L

(
{r′a},

{
dr′a
dt′

}
, t′
)
. (2.483)

This means that if ra(t) is a solution to the motion, then so is r′a(t
′), i.e.we may substitute

ra(t) −→ ra(t;λ) ≡ λ ra
(
λ

1
2k−1 t

)
(2.484)

to obtain a one-parameter family of solutions.
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If r(t) is periodic with period T , the ra(t;λ) is periodic with period T ′ = λ1−1
2k T .

Thus, (
T ′

T

)
=
(
L′

L

)1−1
2k

. (2.485)

Here, λ = L′/L is the ratio of length scales. Velocities, energies and angular momenta scale
accordingly:[

v
]

=
L

T
⇒ v′

v
=
L′

L

/
T ′

T
= λ

1
2k (2.486)

[
E
]

=
ML2

T 2
⇒ E′

E
=
(
L′

L

)2/(T ′
T

)2

= λk (2.487)

[
L
]

=
ML2

T
⇒ |L′|

|L|
=
(
L′

L

)2/T ′

T
= λ(1+

1
2k) . (2.488)

As examples, consider:

(i) Harmonic Oscillator : Here k = 2 and therefore

qσ(t) −→ qσ(t;λ) = λ qσ(t) . (2.489)

Thus, rescaling lengths alone gives another solution.

(ii) Kepler Problem : This is gravity, for which k = −1. Thus,

r(t) −→ r(t;λ) = λ r
(
λ−3/2t

)
. (2.490)

Thus, r3 ∝ t2, i.e. (
L′

L

)3

=
(
T ′

T

)2

, (2.491)

also known as Kepler’s Third Law.

2.14.2 Virial Theorem

The virial theorem is a statement about the time-averaged motion of a mechanical system.
Define the virial ,

G(q, p) =
∑
σ

pσ qσ . (2.492)

Then

dG

dt
=
∑
σ

(
ṗσ qσ + pσ q̇σ

)
=
∑
σ

qσ Fσ +
∑
σ

q̇σ
∂L

∂q̇σ
. (2.493)
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Now suppose that T = 1
2

∑
σ,σ′ Tσσ′ q̇σ q̇σ′ is homogeneous of degree k = 2 in q̇, and that U

is homogeneous of degree zero in q̇. Then∑
σ

q̇σ
∂L

∂q̇σ
=
∑
σ

q̇σ
∂T

∂q̇σ
= 2T, (2.494)

which follows from Euler’s theorem on homogeneous functions:

f
(
λx1, . . . , λ xN

)
= λk f

(
x1, . . . , xN

)
(2.495)

⇒
N∑
i=1

xi
∂

∂xi
f
(
x1, . . . , xN

)
= k f

(
x1, . . . , xN

)
. (2.496)

Now consider the time average of Ġ over a period τ :

〈dG
dt

〉
=

1
τ

τ∫
0

dt
dG

dt

=
1
τ

[
G(τ)−G(0)

]
. (2.497)

If G(t) is bounded, then in the limit τ →∞ we must have 〈Ġ〉 = 0. Any bounded motion,
such as the orbit of the earth around the Sun, will result in 〈Ġ〉τ→∞ = 0. But then〈dG

dt

〉
= 2 〈T 〉+

〈∑
σ

qσ Fσ
〉

= 0 , (2.498)

which implies

〈T 〉 = −1
2

〈∑
σ

qσ Fσ

〉
= +

〈
1
2

∑
σ

qσ
∂U

∂qσ

〉
=
〈

1
2

∑
a

ra ·∇aU
(
r1, . . . , rN

)〉
(2.499)

= 1
2k 〈U〉 , (2.500)

where the last line pertains to homogeneous potentials of degree k. Finally, since T+U = E
is conserved, we have

〈T 〉 =
k E

k + 2
, 〈U〉 =

2E
k + 2

. (2.501)

2.15 Elastic Collisions

A collision or ‘scattering event’ is said to be elastic if it results in no change in the internal
state of any of the particles involved. Thus, no internal energy is liberated or captured in an
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Figure 2.27: The scattering of two hard spheres of radii a and b The scattering angle is χ.

elastic process. Consider the elastic scattering of two particles. Recall the relation between
laboratory coordinates {r1, r2} and the CM and relative coordinates {R, r}:

R =
m1r1 +m2r2

m1 +m2
r1 = R+

m2

m1 +m2
r (2.502)

r = r1 − r2 r2 = R− m1

m1 +m2
r (2.503)

If external forces are negligible, the CM momentum P = MṘ is constant, and therefore the
frame of reference whose origin is tied to the CM position is an inertial frame of reference.
In this frame,

vCM
1 =

m2 v

m1 +m2

, vCM
2 = − m1 v

m1 +m2

, (2.504)

where v = v1 − v2 = vCM
1 − vCM

2 is the relative velocity, which is the same in both L and
CM frames. Note that the CM momenta satisfy

pCM
1 = m1v

CM
1 = µv (2.505)

pCM
2 = m2v

CM
2 = −µv , (2.506)

where µ = m1m2/(m1 + m2) is the reduced mass. Thus, pCM
1 + pCM

2 = 0 and the total
momentum in the CM frame is zero. We may then write

pCM
1 ≡ p0n̂ , pCM

2 ≡ −p0n̂ ⇒ ECM =
p2
0

2m1
+

p2
0

2m2
=
p2
0

2µ
. (2.507)

The energy is evaluated when the particles are asymptotically far from each other, in which
case the potential energy is assumed to be negligible. After the collision, energy and mo-
mentum conservation require

p′1
CM ≡ p0n̂

′ , p′2
CM ≡ −p0n̂

′ ⇒ E′
CM = ECM =

p2
0

2µ
. (2.508)
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Figure 2.28: Scattering of two particles of masses m1 and m2. The scattering angle χ is the
angle between n̂ and n̂′.

The angle between n and n′ is the scattering angle χ:

n · n′ ≡ cosχ . (2.509)

The value of χ depends on the details of the scattering process, i.e. on the interaction
potential U(r). As an example, consider the scattering of two hard spheres, depicted in
Fig. 2.27. The potential is

U(r) =

{
∞ if r ≤ a+ b

0 if r > a+ b .
(2.510)

Clearly the scattering angle is χ = π−2η, where η is the angle between the initial momentum
of either sphere and a line containing their two centers at the moment of contact.

There is a simple geometric interpretation of these results, depicted in Fig. 2.28. We
have

p1 = m1V + p0n̂ p′1 = m1V + p0n̂
′ (2.511)

p2 = m2V − p0n̂ p′2 = m2V − p0n̂
′ . (2.512)

So draw a circle of radius p0 whose center is the origin. The vectors p0n̂ and p0n̂
′ must

both lie along this circle. We define the angle ψ between V and n:

V̂ · n = cosψ . (2.513)

It is now an exercise in geometry, using the law of cosines, to determine everything of
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Figure 2.29: Scattering when particle 2 is initially at rest.

interest in terms of the quantities V , v, ψ, and χ. For example, the momenta are

p1 =
√
m2

1 V
2 + µ2v2 + 2m1µV v cosψ (2.514)

p′1 =
√
m2

1 V
2 + µ2v2 + 2m1µV v cos(χ− ψ) (2.515)

p2 =
√
m2

2 V
2 + µ2v2 − 2m2µV v cosψ (2.516)

p′2 =
√
m2

2 V
2 + µ2v2 − 2m2µV v cos(χ− ψ) , (2.517)

and the scattering angles are

θ1 = tan−1

(
µv sinψ

µv cosψ +m1V

)
+ tan−1

(
µv sin(χ− ψ)

µv cos(χ− ψ) +m1V

)
(2.518)

θ2 = tan−1

(
µv sinψ

µv cosψ −m2V

)
+ tan−1

(
µv sin(χ− ψ)

µv cos(χ− ψ)−m2V

)
. (2.519)

If particle 2, say, is initially at rest, the situation is somewhat simpler. In this case,
V = m1V /(m1 +m2) and m2V = µv, which means the point B lies on the circle in Fig.
2.29 (m1 6= m2) and Fig. 2.30 (m1 = m2). Let ϑ1,2 be the angles between the directions
of motion after the collision and the direction V of impact. The scattering angle χ is the
angle through which particle 1 turns in the CM frame. Clearly

tanϑ1 =
sinχ

m1
m2

+ cosχ
, ϑ2 = 1

2(π − χ) . (2.520)
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We can also find the speeds v′1 and v′2 in terms of v and χ, from

p′1
2 = p2

0 +
(
m1
m2

p0

)2 − 2 m1
m2

p2
0 cos(π − χ) (2.521)

and
p2
2 = 2 p2

0 (1− cosχ) . (2.522)

These equations yield

v′1 =

√
m2

1 +m2
2 + 2m1m2 cosχ
m1 +m2

v , v′2 =
2m1v

m1 +m2
sin(1

2χ) . (2.523)

The angle ϑmax from Fig. 2.29(b) is given by sinϑmax = m2
m1

. Note that when m1 = m2

we have ϑ1 + ϑ2 = π. A sketch of the orbits in the cases of both repulsive and attractive
scattering, in both the laboratory and CM frames, in shown in Fig. 2.31.

2.15.1 Central Force Scattering

Consider a single particle of mass µ movng in a central potential U(r), or a two body central
force problem in which µ is the reduced mass. Recall that

dr

dt
=
dφ

dt
· dr
dφ

=
`

µr2
· dr
dφ

, (2.524)

and therefore

E = 1
2µṙ

2 +
`2

2µr2
+ U(r)

=
`2

2µr4

(
dr

dφ

)2
+

`2

2µr2
+ U(r) . (2.525)

Solving for dr
dφ , we obtain

dr

dφ
= ±

√
2µr4

`2
(
E − U(r)

)
− r2 , (2.526)

Figure 2.30: Scattering of identical mass particles when particle 2 is initially at rest.
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Figure 2.31: Repulsive (A,C) and attractive (B,D) scattering in the lab (A,B) and CM
(C,D) frames, assuming particle 2 starts from rest in the lab frame.

Consulting Fig. 2.32, we have that

φ0 =
`√
2µ

∞∫
rp

dr

r2
√
E − Ueff(r)

, (2.527)

where rp is the radial distance at periapsis, and where

Ueff(r) =
`2

2µr2
+ U(r) (2.528)

is the effective potential, as before. From Fig. 2.32, we conclude that the scattering angle
is

χ =
∣∣π − 2φ0

∣∣ . (2.529)

It is convenient to define the impact parameter b as the distance of the asymptotic
trajectory from a parallel line containing the force center. The geometry is shown again
in Fig. 2.32. Note that the energy and angular momentum, which are conserved, can be
evaluated at infinity using the impact parameter:

E = 1
2µv

2
∞ , ` = µv∞b . (2.530)
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Figure 2.32: Scattering in the CM frame. O is the force center and P is the point of
periapsis. The impact parameter is b, and χ is the scattering angle. φ0 is the angle through
which the relative coordinate moves between periapsis and infinity.

Substituting for `(b), we have

φ0(E, b) =

∞∫
rp

dr

r2
b√

1− b2

r2
− U(r)

E

, (2.531)

In physical applications, we are often interested in the deflection of a beam of incident
particles by a scattering center. We define the differential scattering cross section dσ by

dσ =
# of particles scattered into solid angle dΩ per unit time

incident flux
. (2.532)

Now for particles of a given energy E there is a unique relationship between the scattering
angle χ and the impact parameter b, as we have just derived in eqn. 2.531. The differential
solid angle is given by dΩ = 2π sinχdχ, hence

dσ

dΩ
=

b

sinχ

∣∣∣∣ dbdχ
∣∣∣∣ = ∣∣∣∣d (1

2b
2)

d cosχ

∣∣∣∣ . (2.533)

Note that dσ
dΩ has dimensions of area. The integral of dσ

dΩ over all solid angle is the total
scattering cross section,

σT = 2π

π∫
0

dχ sinχ
dσ

dΩ
. (2.534)

Let’s now work through some examples.
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Figure 2.33: Geometry of hard sphere scattering.

Example #1 : Hard Sphere Scattering – Consider a point particle scattering off a
hard sphere of radius a, or two hard spheres of radii a1 and a2 scattering off each other,
with a ≡ a1 + a2. From the geometry of Fig. 2.33, we have b = a sinφ0 and φ0 = 1

2(π − χ),
so

b2 = a2 sin2
(

1
2π −

1
2χ) = 1

2a
2 (1 + cosχ) . (2.535)

We therefore have
dσ

dΩ
=
d (1

2b
2)

d cosχ
= 1

4 a
2 (2.536)

and σT = πa2. The total scattering cross section is simply the area of a sphere of radius a
projected onto a plane perpendicular to the incident flux.

Example #2 : Rutherford Scattering – Consider scattering by the Kepler potential
U(r) = −k

r . We assume that the orbits are unbound, i.e. they are Keplerian hyperbolae
with E > 0, described by the equation

r(φ) =
a (ε2 − 1)
±1 + ε cosφ

⇒ cosφ0 = ± 1
ε
. (2.537)

Recall that the eccentricity is given by

ε2 = 1 +
2E`2

µk2
= 1 +

(
µbv∞
k

)2
. (2.538)

We then have (
µbv∞
k

)2
= ε2 − 1

= sec2φ0 − 1 = tan2φ0 = ctn2
(

1
2χ
)
. (2.539)

Therefore
b(χ) =

k

µv2
∞

ctn
(

1
2χ
)

(2.540)
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We finally obtain

dσ

dΩ
=
d (1

2b
2)

d cosχ
=

1
2

(
k

µv2
∞

)2 d ctn2
(

1
2χ
)

d cosχ

=
1
2

(
k

µv2
∞

)2 d

d cosχ

(
1 + cosχ
1− cosχ

)

=
(

k

2µv2
∞

)2
csc4

(
1
2χ
)
, (2.541)

which is the same as
dσ

dΩ
=
(
k

4E

)2
csc4

(
1
2χ
)
. (2.542)

Since dσ
dΩ ∝ χ−4 as χ → 0, the total cross section σT diverges! This is a consequence

of the long-ranged nature of the Kepler/Coulomb potential. In electron-atom scattering,
the Coulomb potential of the nucleus is screened by the electrons of the atom, and the 1/r
behavior is cut off at large distances.

2.15.2 Transformation to Laboratory Coordinates

We previously derived the relation

tanϑ =
sinχ

γ + cosχ
, (2.543)

where ϑ ≡ ϑ1 is the scattering angle for particle 1 in the laboratory frame, and γ = m1
m2

is the ratio of the masses. We now derive the differential scattering cross section in the
laboratory frame. To do so, we note that particle conservation requires(

dσ

dΩ

)
L

· 2π sinϑ dϑ =
(
dσ

dΩ

)
CM

· 2π sinχdχ , (2.544)

which says (
dσ

dΩ

)
L

=
(
dσ

dΩ

)
CM

· d cosχ
d cosϑ

. (2.545)

From

cosϑ =
1√

1 + tan2ϑ

=
γ + cosχ√

1 + γ2 + 2γ cosχ
, (2.546)

we derive
d cosϑ
d cosχ

=
1 + γ cosχ(

1 + γ2 + 2γ cosχ
)3/2 (2.547)

and, accordingly, (
dσ

dΩ

)
L

=

(
1 + γ2 + 2γ cosχ

)3/2
1 + γ cosχ

·
(
dσ

dΩ

)
CM

. (2.548)

85



2.15.3 Small Angle Scattering

If the potential U(r) is weak, the angle of deflection is small. Working in the laboratory
frame, we then have

ϑ1 ≈
∆py
m1v∞

(2.549)

with

∆py =

∞∫
−∞

dt Fy ≈ −
∞∫

−∞

dx

v∞

b

r

dU

dr
, (2.550)

valid to lowest order in U . Thus,

ϑ1 =
−2b
m1v2

∞

∞∫
b

dr
U ′(r)√
r2 − b2

, (2.551)

which may be inverted to yield ϑ1(b), thus giving(
dσ

dΩ

)
L

=

∣∣∣∣∣b(ϑ1)
ϑ1

· db
dϑ1

∣∣∣∣∣ . (2.552)

2.16 Accelerated Coordinate Systems

A reference frame which is fixed with respect to a rotating rigid body is not inertial. The
parade example of this is an observer fixed on the surface of the earth. Due to the rotation of
the earth, such an observer is in a noninertial frame, and there are corresponding corrections
to Newton’s laws of motion which must be accounted for in order to correctly describe
mechanical motion in the observer’s frame. As is well known, these corrections involve
fictitious centrifugal and Coriolis forces.

Consider an inertial frame with a fixed set of coordinate axes êµ, where µ runs from 1
to d, the dimension of space. Any vector A may be written in either basis:

A =
∑
µ

Aµ êµ =
∑
µ

A′µ ê′µ , (2.553)

where Aµ = A · êµ and A′µ = A · ê′µ are projections onto the different coordinate axes. We
may now write (

dA

dt

)
inertial

=
∑
µ

dAµ
dt

êµ

=
∑
i

dA′µ
dt

ê′µ +
∑
i

A′µ
dê′µ
dt

. (2.554)
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Figure 2.34: Reference frames related by both translation and rotation.

The first term on the RHS is (dA/dt)body, the time derivative of A along body-fixed axes,
i.e. as seen by an observer rotating with the body. But what is dê′i/dt? Well, we can always
expand it in the {ê′i} basis:

dê′µ =
∑
j

dΩµν ê′ν ⇐⇒ dΩµν ≡ dê′i · ê′ν . (2.555)

Note that dΩµν = −dΩνµ is antisymmetric, because

0 = d
(
ê′µ · ê′ν

)
= dΩνµ + dΩµν , (2.556)

because ê′µ · ê′ν = δµν is a constant. Now we may define dΩ12 ≡ dΩ3, et cyc., so that

dΩµν = εµνσ dΩσ , ωσ ≡
dΩσ

dt
, (2.557)

which yields
dê′µ
dt

= ω × ê′µ . (2.558)

Finally, we obtain the important result

(
dA

dt

)
inertial

=
(
dA

dt

)
body

+ ω ×A (2.559)

which is valid for any vector A.

Applying this result to the position vector r, we have(
dr

dt

)
inertial

=
(
dr

dt

)
body

+ ω × r . (2.560)
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Applying it twice,(
d2r

dt2

)
inertial

=

(
d

dt

∣∣∣∣
body

+ ω ×

)(
d

dt

∣∣∣∣
body

+ ω ×

)
r (2.561)

=
(
d2r

dt2

)
body

+
dω

dt
× r + 2ω ×

(
dr

dt

)
body

+ ω × (ω × r) .

Note that dω/dt appears with no “inertial” or “body” label. This is because, upon invoking
eq. 2.559, (

dω

dt

)
inertial

=
(
dω

dt

)
body

+ ω × ω , (2.562)

and since ω×ω = 0, inertial and body-fixed observers will agree on the value of ω̇inertial =
ω̇body ≡ ω̇.

2.16.1 Translations

Suppose that frame K moves with respect to an inertial frame K0, such that the origin of
K lies at R(t). Suppose further that frame K ′ rotates with respect to K, but shares the
same origin (see Fig. 2.34). Consider the motion of an object lying at position ρ relative
to the origin of K0, and r relative to the origin of K/K ′. Thus,

ρ = R+ r , (2.563)

and (
dρ

dt

)
inertial

=
(
dR

dt

)
inertial

+
(
dr

dt

)
body

+ ω × r (2.564)

(
d2ρ

dt2

)
inertial

=
(
d2R

dt2

)
inertial

+
(
d2r

dt2

)
body

+
dω

dt
× r (2.565)

+ 2ω ×
(
dr

dt

)
body

+ ω × (ω × r) .

Here, ω is the angular velocity in the frame K or K ′.

2.16.2 Motion on the Surface of the earth

The earth both rotates about its axis and orbits the Sun. If we add the infinitesimal effects
of the two rotations,

dr1 = ω1 × r dt

dr2 = ω2 × (r + dr1) dt

dr = dr1 + dr2

= (ω1 + ω2) dt× r +O
(
(dt)2

)
. (2.566)
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Thus, infinitesimal rotations add. Dividing by dt, this means that

ω =
∑
i

ωi , (2.567)

where the sum is over all the rotations. For the earth, ω = ωrot + ωorb.

• The rotation about earth’s axis, ωrot has magnitude ωrot = 2π/(1 day) = 7.29 ×
10−5 s−1. The radius of the earth is Re = 6.37× 103 km.

• The orbital rotation about the Sun, ωorb has magnitude ωrot = 2π/(1 yr) = 1.99 ×
10−7 s−1. The radius of the earth is ae = 1.50× 108 km.

Thus, ωorb/ωrot = 1/365.25 = 2.74×10−3. There is also a very slow precession of the earth’s
axis of rotation, the period of which is about 25,000 years, which we will ignore. Note ω̇ = 0
for the earth. Thus, applying Newton’s second law and then invoking eq. 2.566, we arrive
at

m

(
d2r

dt2

)
earth

= F (tot) −m

(
d2R

dt2

)
Sun

− 2mω ×
(
dr

dt

)
earth

− mω × (ω × r) , (2.568)

where ω = ωrot +ωorb, and where R̈Sun is the acceleration of the center of the earth around
the Sun, assuming the Sun-fixed frame to be inertial. The force F (tot) is the total force on
the object, and arises from three parts: (i) gravitational pull of the Sun, (ii) gravitational
pull of the earth, and (iii) other earthly forces, such as springs, rods, surfaces, electric fields,
etc.

On the earth’s surface, the ratio of the Sun’s gravity to the earth’s is

F�
Fe

=
GM�m

a2
e

/
GMem

R2
e

=
M�
Me

(
Re

ae

)2

≈ 6.02× 10−4 . (2.569)

In fact, it is clear that the Sun’s field precisely cancels with the term m R̈Sun at the earth’s
center, leaving only gradient contributions of even lower order, i.e. multiplied by Re/ae ≈
4.25 × 10−5. Thus, to an excellent approximation, we may neglect the Sun entirely and
write

d2r

dt2
=
F ′

m
+ g − 2ω × dr

dt
− ω × (ω × r) (2.570)

Note that we’ve dropped the ‘earth’ label here and henceforth. We define g = −GMe r̂/r
2,

the acceleration due to gravity; F ′ is the sum of all earthly forces other than the earth’s
gravity. The last two terms on the RHS are corrections to mr̈ = F due to the noninertial
frame of the earth, and are recognized as the Coriolis and centrifugal acceleration terms,
respectively.
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Figure 2.35: The locally orthonormal triad {r̂, θ̂, φ̂}.

2.16.3 Spherical Polar Coordinates

The locally orthonormal triad {r̂, θ̂, φ̂} varies with position. In terms of the body-fixed
triad {x̂, ŷ, ẑ}, we have

r̂ = sin θ cosφ x̂+ sin θ sinφ ŷ + cos θ ẑ (2.571)

θ̂ = cos θ cosφ x̂+ cos θ sinφ ŷ − sin θ ẑ (2.572)

φ̂ = − sinφ x̂+ cosφ ŷ . (2.573)

Inverting the relation between the triads {r̂, θ̂, φ̂} and {x̂, ŷ, ẑ}, we obtain

x̂ = sin θ cosφ r̂ + cos θ cosφ θ̂ − sinφ φ̂ (2.574)

ŷ = sin θ sinφ x̂+ cos θ sinφ ŷ + cosφ φ̂ (2.575)

ẑ = cos θ r̂ − sin θ θ̂ . (2.576)

The differentials of these unit vectors are

dr̂ = θ̂ dθ + sin θ φ̂ dφ (2.577)

dθ̂ = −r̂ dθ + cos θ φ̂ dφ (2.578)

dφ̂ = − sin θ r̂ dφ− cos θ θ̂ dφ . (2.579)

Thus,

ṙ =
d

dt

(
r r̂
)

= ṙ r̂ + r ˙̂r

= ṙ r̂ + rθ̇ θ̂ + r sin θ φ̇ φ̂ . (2.580)

If we differentiate a second time, we find, after some tedious accounting,

r̈ =
(
r̈ − r θ̇2 − r sin2θ φ̇2

)
r̂ +

(
2 ṙ θ̇ + r θ̈ − r sin θ cos θ φ̇2

)
θ̂

+
(
2 ṙ φ̇ sin θ + 2 r θ̇ φ̇ cos θ + r sin θ φ̈

)
φ̂ . (2.581)
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2.16.4 Centrifugal Force

One major distinction between the Coriolis and centrifugal forces is that the Coriolis force
acts only on moving particles, whereas the centrifugal force is present even when ṙ = 0.
Thus, the equation for stationary equilibrium on the earth’s surface is

mg + F ′ −mω × (ω × r) = 0 , (2.582)

involves the centrifugal term. We can write this as F ′ +mg̃ = 0, where

g̃ = −GMe r̂

r2
− ω × (ω × r) (2.583)

= −
(
g0 − ω2Re sin2 θ

)
r̂ + ω2 Re sin θ cos θ θ̂ , (2.584)

where g0 = GMe/R
2
e = 980 cm2/s. Thus, on the equator, g = −

(
g0 − ω2Re

)
r̂, with

ω2Re ≈ 3.39 cm2/s, a small but significant correction. Thus, you weigh less on the equator.
Note also the term in g̃ along θ̂. This means that a plumb bob suspended from a general
point above the earth’s surface won’t point exactly toward the earth’s center. Moreover, if
the earth were replaced by an equivalent mass of fluid, the fluid would rearrange itself so
as to make its surface locally perpendicular to g̃. Indeed, the earth (and Sun) do exhibit
quadrupolar distortions in their mass distributions – both are oblate spheroids. In fact, the
observed difference g̃(θ = π

2 )− g̃(θ = 0) ≈ 5.2 cm/s, which is 53% greater than the näıvely
expected value of 3.39 cm/s. The earth’s oblateness enhances the effect.

2.16.5 The Coriolis Force

The Coriolis force is given by FCor = −2mω × ṙ. According to (2.570), the acceleration
of a free particle (F ′ = 0) is not along g̃ – an orthogonal component is generated by the
Coriolis force. To actually solve the coupled equations of motion is difficult because the
unit vectors {r̂, θ̂, φ̂} change with position, and hence with time. The following standard
problem highlights some of the effects of the Coriolis and centrifugal forces.

PROBLEM: A cannonball is dropped from the top of a tower of height h located at a northerly
latitude of λ. Assuming the cannonball is initially at rest with respect to the tower, and
neglecting air resistance, calculate its deflection (magnitude and direction) due to (a) cen-
trifugal and (b) Coriolis forces by the time it hits the ground. Evaluate for the case h = 100
m, λ = 45◦. The radius of the earth is Re = 6.4× 106 m.

SOLUTION: The equation of motion for a particle near the earth’s surface is

r̈ = −2ω × ṙ − g0 r̂ − ω × (ω × r) , (2.585)

where ω = ω ẑ, with ω = 2π/(24 hrs) = 7.3× 10−5 rad/s. Here, g0 = GMe/R
2
e = 980 cm/s2.

We use a locally orthonormal coordinate system {r̂, θ̂, φ̂} and write

r = x θ̂ + y φ̂+ (Re + z) r̂ , (2.586)
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where Re = 6.4 × 106 m is the radius of the earth. Expressing ẑ in terms of our chosen
orthonormal triad,

ẑ = cos θ r̂ − sin θ θ̂ , (2.587)

where θ = π
2 − λ is the polar angle, or ‘colatitude’. Since the height of the tower and

the deflections are all very small on the scale of Re, we may regard the orthonormal triad
as fixed and time-independent. (In general, these unit vectors change as a function of r.)
Thus, we have ṙ ' ẋ θ̂ + ẏ φ̂+ ż r̂, and we find

ẑ × ṙ = −ẏ cos θ θ̂ + (ẋ cos θ + ż sin θ) φ̂− ẏ sin θ r̂ (2.588)

ω × (ω × r) = −ω2Re sin θ cos θ θ̂ − ω2Re sin2θ r̂ , (2.589)

where we neglect the O(z) term in the second equation, since z � Re.

The equation of motion, written in components, is then

ẍ = 2ω cos θ ẏ + ω2Re sin θ cos θ (2.590)
ÿ = −2ω cos θ ẋ− 2ω sin θ ż (2.591)

z̈ = −g0 + 2ω sin θ ẏ + ω2Re sin2 θ . (2.592)

While these (inhomogeneous) equations are linear, they also are coupled, so an exact an-
alytical solution is not trivial to obtain (but see below). Fortunately, the deflections are
small, so we can solve this perturbatively. We write x = x(0) + δx, etc., and solve to lowest
order by including only the g0 term on the RHS. This gives z(0)(t) = z0 − 1

2g0 t
2, along

with x(0)(t) = y(0)(t) = 0. We then substitute this solution on the RHS and solve for the
deflections, obtaining

δx(t) = 1
2ω

2Re sin θ cos θ t2 (2.593)

δy(t) = 1
3ωg0 sin θ t3 (2.594)

δz(t) = 1
2ω

2Re sin2θ t2 . (2.595)

The deflection along θ̂ and r̂ is due to the centrifugal term, while that along φ̂ is due to
the Coriolis term. (At higher order, the two terms interact and the deflection in any given
direction can’t uniquely be associated to a single fictitious force.) To find the deflection of
an object dropped from a height h, solve z(0)(t∗) = 0 to obtain t∗ =

√
2h/g0 for the drop

time, and substitute. For h = 100 m and λ = π
2 , find δx(t∗) = 17 cm south (centrifugal)

and δy(t∗) = 1.6 cm east (Coriolis).

In fact, an exact solution to (2.592) is readily obtained, via the following analysis. The
equations of motion may be written v̇ = 2iωJ v + b, or

v̇xv̇y
v̇x

 = 2i ω

J︷ ︸︸ ︷ 0 −i cos θ 0
i cos θ 0 i sin θ

0 −i sin θ 0


vxvy
vx

+

b︷ ︸︸ ︷ g1 sin θ cos θ
0

−g0 + g1 sin2θ

 (2.596)
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with g1 ≡ ω2Re. Note that J † = J , i.e. J is a Hermitian matrix. The formal solution is

v(t) = e2iωJ t v(0) +
(
e2iωJ t − 1

2iω

)
J −1 b . (2.597)

When working with matrices, it is convenient to work in an eigenbasis. The characteristic
polynomial for J is P (λ) = det (λ · 1− J ) = λ (λ2 − 1), hence the eigenvalues are λ1 = 0,
λ2 = +1, and λ3 = −1. The corresponding eigenvectors are easily found to be

ψ1 =

 sin θ
0

− cos θ

 , ψ2 =
1√
2

cos θ
i

sin θ

 , ψ3 =
1√
2

cos θ
−i

sin θ

 . (2.598)

Note that ψ†a ·ψa′ = δaa′ .

Expanding v and b in this eigenbasis, we have v̇a = 2iωλava + ba, where va = ψ∗ia vi
and ba = ψ∗ia bi. The solution is

va(t) = va(0) e2iλaωt +
(
e2iλaωt − 1

2iλaω

)
ba , (2.599)

which entails

vi(t) =

(∑
a

ψia

(
e2iλaωt − 1

2iλaω

)
ψ∗ja

)
bj , (2.600)

where we have taken v(0) = 0, i.e. the object is released from rest. Doing the requisite
matrix multiplications,vx(t)vy(t)
vz(t)

 =

 t sin2θ + sin 2ωt
2ω cos2θ sin2ωt

ω cos θ −1
2 t sin 2θ + sin 2ωt

4ω sin 2θ
− sin2ωt

ω cos θ sin 2ωt
2ω − sin2ωt

ω sin θ
−1

2 t sin 2θ + sin 2ωt
4ω sin 2θ sin2ωt

ω sin θ t cos2θ + sin 2ωt
2ω sin2θ


 g1 sin θ cos θ

0
−g0 + g1 sin2θ

 ,

(2.601)
which says

vx(t) =
(

1
2 sin 2θ + sin 2ωt

4ωt sin 2θ
)
· g0t+ sin 2ωt

4ωt sin 2θ · g1t

vy(t) = sin2ωt
ωt · g0t− sin2ωt

ωt sin θ · g1t (2.602)

vz(t) = −
(

cos2θ + sin2ωt
2ωt sin2θ

)
· g0t+ sin2ωt

2ωt · g1t .

Why is the deflection always to the east? The earth rotates eastward, and an object
starting from rest in the earth’s frame has initial angular velocity equal to that of the earth.
To conserve angular momentum, the object must speed up as it falls.
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Figure 2.36: Foucault’s pendulum.

2.16.6 Foucault’s Pendulum

A pendulum swinging over one of the poles moves in a fixed inertial plane while the earth
rotates underneath. Relative to the earth, the plane of motion of the pendulum makes
one revolution every day. What happens at a general latitude? Assume the pendulum is
located at colatitude θ and longitude φ. Assuming the length scale of the pendulum is small
compared to Re, we can regard the local triad {θ̂, φ̂, r̂} as fixed. The situation is depicted
in Fig. 2.36. We write

r = x θ̂ + y φ̂+ z r̂ , (2.603)

with
x = ` sinψ cosα , y = ` sinψ sinα , z = ` (1− cosψ) . (2.604)

In our analysis we will ignore centrifugal effects, which are of higher order in ω, and we
take g = −g r̂. We also idealize the pendulum, and consider the suspension rod to be of
negligible mass.

The total force on the mass m is due to gravity and tension:

F = mg + T
=
(
− T sinψ cosα, −T sinψ sinα, T cosψ −mg

)
=
(
− Tx/`, −Ty/`, T −Mg − Tz/`

)
. (2.605)

The Coriolis term is

FCor = −2mω × ṙ (2.606)

= −2mω
(
cos θ r̂ − sin θ θ̂

)
×
(
ẋ θ̂ + ẏ φ̂+ ż r̂

)
= 2mω

(
ẏ cos θ, −ẋ cos θ − ż sin θ, ẏ sin θ

)
. (2.607)

94



The equations of motion are m r̈ = F + FCor:

mẍ = −Tx/`+ 2mω cos θ ẏ (2.608)

mÿ = −Ty/`− 2mω cos θ ẋ− 2mω sin θ ż (2.609)

mz̈ = T −mg − Tz/`+ 2mω sin θ ẏ . (2.610)

These three equations are to be solved for the three unknowns x, y, and T . Note that

x2 + y2 + (`− z)2 = `2 , (2.611)

so z = z(x, y) is not an independent degree of freedom. This equation may be recast in the
form z = (x2 + y2 + z2)/2` which shows that if x and y are both small, then z is at least
of second order in smallness. Therefore, we will approximate z ' 0, in which case ż may
be neglected from the second equation of motion. Adding the first plus i times the second
then gives the complexified equation

ξ̈ = −ω2
0 ξ − 2iω cos θ ξ̇ , (2.612)

where ξ ≡ x+ iy, and where ω0 =
√
g/`. The third equation is used to solve for T :

T ' mg − 2mω sin θ ẏ . (2.613)

It is now a trivial matter to solve the homogeneous linear ODE of eq. 2.612. Writing

ξ = ξ0 e
−iΩt (2.614)

and plugginh in to find Ω, we obtain

Ω2 − 2ω⊥Ω − ω2
0 = 0 , (2.615)

with ω⊥ ≡ ω cos θ. The roots are

Ω± = ω⊥ ±
√
ω2

0 + ω2
⊥ , (2.616)

hence the most general solution is

ξ(t) = A+ e
−iΩ+t+ = A− e

−iΩ−t . (2.617)

Finally, if we take as initial conditions x(0) = a, y(0) = 0, ẋ(0) = 0, and ẏ(0) = 0, we
obtain

x(t) =
(a
ν

)
·
{
ω⊥ sin(ω⊥t) sin(νt) + ν cos(ω⊥t) cos(νt)

}
(2.618)

y(t) =
(a
ν

)
·
{
ω⊥ cos(ω⊥t) sin(νt)− ν sin(ω⊥t) cos(νt)

}
, (2.619)
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with ν =
√
ω2

0 + ω2
⊥. Typically ω0 � ω⊥, since ω = 7.3× 10−5 s−1. In the limit ω⊥ � ω0,

then, we have ν ≈ ω0 and

x(t) ' a cos(ω⊥t) cos(ω0t) , y(t) ' −a sin(ω⊥t) cos(ω0t) , (2.620)

and the plane of motion rotates with angular frequency −ω⊥, i.e. the period is | sec θ | days.
Viewed from above, the rotation is clockwise in the northern hemisphere, where cos θ > 0
and counterclockwise in the southern hemisphere, where cos θ < 0.

2.17 Rigid Body Motion

A rigid body consists of a group of particles whose separations are all fixed in magnitude. Six
independent coordinates are required to completely specify the position and orientation of a
rigid body. For example, the location of the first particle is specified by three coordinates. A
second particle requires only two coordinates since the distance to the first is fixed. Finally,
a third particle requires only one coordinate, since its distance to the first two particles
is fixed (think about the intersection of two spheres). The positions of all the remaining
particles are then determined by their distances from the first three. Usually, one takes
these six coordinates to be the center-of-mass position R = (X,Y, Z) and three angles
specifying the orientation of the body (e.g. the Euler angles).

As derived in eqs. (2.467,2.471), the equations of motion are

P =
∑
i

mi ṙi , Ṗ = F (ext) (2.621)

L =
∑
i

mi ri × ṙi , L̇ = N (ext) . (2.622)

These equations determine the motion of a rigid body.

Examples of Rigid Bodies: Our first example of a rigid body is of a wheel rolling with
constant angular velocity φ̇ = ω, and without slipping, This is shown in Fig. 2.37. The
no-slip condition is dx = Rdφ, so ẋ = VCM = Rω. The velocity of a point within the wheel
is

v = VCM + ω × r , (2.623)

where r is measured from the center of the disk. The velocity of a point on the surface is
then given by v = ωR

(
x̂+ ω̂ × r̂).

As a second example, consider a bicycle wheel of mass M and radius R affixed to a
light, firm rod of length d, as shown in Fig. 2.38. Assuming L lies in the (x, y) plane,
one computes the gravitational torque N = r × (Mg) = Mgd φ̂. The angular momentum
vector then rotates with angular frequency φ̇. Thus,

dφ =
dL

L
=⇒ φ̇ =

Mgd

L
. (2.624)
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But L = MR2ω, so the precession frequency is

ωp = φ̇ =
gd

ωR2
. (2.625)

For R = d = 30 cm and ω/2π = 200 rpm, find ωp/2π ≈ 15 rpm. Note that we have here
ignored the contribution to L from the precession itself, which lies along ẑ, resulting in the
nutation of the wheel. This is justified if Lp/L = (d2/R2) · (ωp/ω) � 1.

2.17.1 The Inertia Tensor

Suppose first that a point within the body itself is fixed. This eliminates the translational
degrees of freedom from consideration. We now have(

dr

dt

)
inertial

= ω × r , (2.626)

since ṙbody = 0. The kinetic energy is then

T = 1
2

∑
i

mi

(
dri
dt

)2

inertial

= 1
2

∑
i

mi (ω × ri) · (ω × ri)

= 1
2

∑
i

mi

[
ω2 r2

i − (ω · ri)
2
]
≡ 1

2Iαβ ωα ωβ , (2.627)

where ωα is the component of ω along the body-fixed axis e′α. The quantity Iαβ is the
inertia tensor,

Iαβ =
∑
i

mi

(
r2
i δαβ − ri,α ri,β

)
(2.628)

=
∫
ddr %(r)

(
r2 δαβ − rα rβ

)
(continuous media) . (2.629)

Figure 2.37: A wheel rolling to the right without slipping.

97



Figure 2.38: Precession of a spinning bicycle wheel.

The angular momentum is

L =
∑
i

mi ri ×
(
dri
dt

)
inertial

=
∑
i

mi ri × (ω × ri) = Iαβ ωβ . (2.630)

The diagonal elements of Iαβ are called the moments of inertia, while the off-diagonal
elements are called the products of inertia.

2.17.2 Coordinate Transformations

Consider the basis transformation

ê′α = Rαβ êβ . (2.631)

We demand ê′α · ê′β = δαβ , which means R ∈ O(d) is an orthogonal matrix, i.e. Rt = R−1.
Thus the inverse transformation is eα = Rt

αβe
′
β. Consider next a general vector A = Aβ êβ.

Expressed in terms of the new basis {ê′α}, we have

A = Aβ

êβ︷ ︸︸ ︷
Rt
βα ê′α =

A′
α︷ ︸︸ ︷

RαβAβ ê′α (2.632)

Thus, the components of A transform as A′α = Rαβ Aβ. This is true for any vector.

Under a rotation, the density ρ(r) must satisfy ρ′(r′) = ρ(r). This is the transformation
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rule for scalars. The inertia tensor therefore obeys

I ′αβ =
∫
d3r′ ρ′(r′)

[
r′

2
δαβ − r′α r

′
β

]
=
∫
d3r ρ(r)

[
r2 δαβ −

(
Rαµrµ

)(
Rβνrν

)]
= Rαµ Iµν Rt

νβ . (2.633)

I.e. I ′ = RIRt, the transformation rule for tensors. The angular frequency ω is a vector, so
ω′α = Rαµ ωµ. The angular momentum L also transforms as a vector. The kinetic energy
is T = 1

2 ω
t · I · ω, which transforms as a scalar.

2.17.3 The Case of No Fixed Point

If there is no fixed point, we can let r′ denote the distance from the center-of-mass (CM),
which will serve as the instantaneous origin in the body-fixed frame. We then adopt the
definitions from Fig. 2.34, where R is the CM position of the rotating body, as observed in
an inertial frame, and is computed from by the expression

R =
1
M

∑
i

mi ρi =
1
M

∫
d3r ρ(r) , (2.634)

where the total mass is of course

M =
∑
i

mi =
∫
d3r ρ(r) . (2.635)

The kinetic energy and angular momentum are then

T = 1
2MṘ

2 + 1
2Iαβ ωα ωβ (2.636)

Lα = εαβγMRβṘγ + Iαβ ωβ , (2.637)

where Iαβ is given in eqs. 2.628 and 2.629, where the origin is the CM.

2.17.4 Parallel Axis Theorem

Suppose Iαβ is given in a body-fixed frame. If we displace the origin in the body-fixed frame

by b, then let Iαβ(b) be the inertial tensor with respect to the new origin. We have

Iαβ(b) =
∑
i

mi

{
(r2
i + 2b · ri + b

2) δαβ − (ri,α + bα)(ri,β + bβ)
}
. (2.638)

If ri is measured with respect to the CM, then∑
i

mi ri = 0 (2.639)
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Figure 2.39: Application of the parallel axis theorem to a cylindrically symmetric mass
distribution.

and
Iαβ(b) = Iαβ(0) +M

(
b2 δαβ − bαbβ

)
, (2.640)

a result known as the parallel axis theorem.

As an example of the theorem, consider the situation depicted in Fig. 2.39, where a
cylindrically symmetric mass distribution is rotated about is symmetry axis, and about an
axis tangent to its side. The component IRzz of the inertia tensor is easily computed when
the origin lies along the symmetry axis:

Izz =
∫
d3r ρ(r) (r2 − z2) = ρL · 2π

a∫
0

dr⊥ r
3
⊥

= π
2ρLa

4 = 1
2Ma2 , (2.641)

where M = πa2Lρ is the total mass. If we compute Izz about a vertical axis which is
tangent to the cylinder, the parallel axis theorem tells us that

I ′zz = Izz +Ma2 = 3
2Ma2 . (2.642)

Doing this calculation by explicit integration of
∫
dmr2⊥ would be tedious!

Example: Compute the CM and the inertia tensor for the planar right triangle of Fig.
2.40, assuming it to be of uniform two-dimensional mass density ρ.
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Figure 2.40: A planar mass distribution in the shape of a triangle.

Solution: The total mass is M = 1
2ρ ab. The x-coordinate of the CM is then

X =
1
M

a∫
0

dx

ymax(x)∫
0

dy ρ x =
ρ

M

a∫
0

dx b
(
1− x

a

)
x

=
ρ a2b

M

1∫
0

du u(1− u) =
ρ a2b

6M
= 1

3 a . (2.643)

Clearly we must then have Y = 1
3 b, which may be verified by explicit integration.

Since the figure is planar, z = 0 everywhere, hence Ixz = Izx = 0, Iyz = Izy = 0, and
also Izz = Ixx + Iyy. We now compute the remaining independent elements:

Ixx = ρ

a∫
0

dx

ymax∫
0

dy y2 = ρ

a∫
0

dx 1
3 y

3
max(x)

= 1
3ρ ab

3

1∫
0

du (1− u)3 = 1
12ρ ab

3 = 1
6Mb2 (2.644)

Ixy = −ρ
a∫

0

dx

ymax∫
0

dy xy = −ρ
a∫

0

dx 1
2x y

2
max(x)

= −1
2ρ a

2b2
1∫

0

duu (1− u)2 = − 1
24ρ a

2b2 = − 1
12Mab . (2.645)

Thus,

I = 1
6M

 b2 −1
2ab 0

−1
2ab a2 0
0 0 a2 + b2

 . (2.646)
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2.17.5 Principal Axes of Inertia

We found that an orthogonal transformation to a new set of axes ê′α = Rαβ êβ entails
I ′ = RIRt for the inertia tensor. Since I = It is manifestly a symmetric matrix, it can
be brought to diagonal form by such an orthogonal transformation. To find R, follow this
recipe:

1. Find the diagonal elements of I ′ by setting P (λ) = 0, where

P (λ) = det
(
λ · 1− I

)
, (2.647)

is the characteristic polynomial for I, and 1 is the unit matrix.

2. For each eigenvalue λb, solve the d equations

Iµν ψ
b
ν = λb ψ

b
µ . (2.648)

Here, ψbν is the νth component of the bth eigenvector. Since (λ · 1 − I) is degenerate,
these equations are linearly dependent, which means that the first d− 1 components
may be determined in terms of the dth component.

3. Because I = It, eigenvectors corresponding to different eigenvalues are orthogonal.
In cases of degeneracy, the eigenvectors may be chosen to be orthogonal, e.g. via the
Gram-Schmidt procedure.

4. Due to the underdetermined aspect to step 2, we may choose an arbitrary normaliza-
tion for each eigenvector. It is conventional to choose the eigenvectors to be orthonor-
mal: ψaµ ψ

b
µ = δab.

5. The matrix R is explicitly given by Raµ = ψaµ, the matrix whose row vectors are the
eigenvectors ψa. Of course Rt is then the corresponding matrix of column vectors.

6. The eigenvectors form a complete basis. The resolution of unity may be expressed as

δµν = ψaµ ψ
a
ν (sum on a) . (2.649)

As an example, consider the inertia tensor for a general planar mass distribution, which
is of the form

I =

Ixx Ixy 0
Iyx Iyy 0
0 0 Izz

 , (2.650)

where Iyx = Ixy and Izz = Ixx + Iyy. Define

A = 1
2

(
Ixx + Iyy

)
(2.651)

B =
√

1
4

(
Ixx − Iyy

)2 + I2
xy (2.652)

ϑ = tan−1

(
2Ixy

Ixx − Iyy

)
, (2.653)
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so that

I =

A+B cosϑ −B sinϑ 0
−B sinϑ A−B cosϑ 0

0 0 2A

 , (2.654)

The characteristic polynomial is found to be

P (λ) = (λ− 2A)
[
(λ−A)2 −B2

]
, (2.655)

which gives λ1 = A, λ2,3 = A±B. The corresponding normalized eigenvectors are

ψ1 =

0
0
1

 , ψ2 =

 cos 1
2ϑ

− sin 1
2ϑ

0

 , ψ3 =

 sin 1
2ϑ

− cos 1
2ϑ

0

 (2.656)

and therefore

Rt =

0 cos 1
2ϑ sin 1

2ϑ
0 − sin 1

2ϑ cos 1
2ϑ

1 0 0

 . (2.657)

2.17.6 Euler’s Equations

Let us now choose our coordinate axes to be the principal axes of inertia, with the CM at
the origin. We may then write

ω =

ω1

ω2

ω3

 , I =

I1 0 0
0 I2 0
0 0 I3

 =⇒ L =

I1 ω1

I2 ω2

I3 ω3

 . (2.658)

The equations of motion are

N ext =
(
dL

dt

)
inertial

=
(
dL

dt

)
body

+ ω ×L

= I ω̇ + ω × (I ω) .

Thus, we arrive at Euler’s equations:

I1 ω̇1 = (I2 − I3)ω2 ω3 +N ext
1 (2.659)

I2 ω̇2 = (I3 − I1)ω3 ω1 +N ext
2 (2.660)

I3 ω̇3 = (I1 − I2)ω1 ω2 +N ext
3 . (2.661)

These are coupled and nonlinear. Also note the fact that the external torque must be
evaluated along body-fixed principal axes. We can however make progress in the case
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Figure 2.41: Wobbling of a torque-free symmetric top.

where N ext = 0, i.e. when there are no external torques. This is true for a body in free
space, or in a uniform gravitational field. In the latter case,

N ext =
∑
i

ri × (mi g) =
(∑

i

miri

)
× g , (2.662)

where g is the uniform gravitational acceleration. In a body-fixed frame whose origin is the
CM, we have

∑
imiri = 0, and the external torque vanishes!

Precession of torque-free symmetric tops: Consider a body which has a symme-
try axis ê3. This guarantees I1 = I2, but in general we still have I1 6= I3. In the absence
of external torques, the last of Euler’s equations says ω̇3 = 0, so ω3 is a constant. The
remaining two equations are then

ω̇1 =
(
I1 − I3
I1

)
ω3 ω2 , ω̇2 =

(
I3 − I1
I1

)
ω3 ω1 . (2.663)

I.e.ω̇1 = −Ω ω2 and ω̇2 = +Ω ω1, with

Ω =
(
I3 − I1
I1

)
ω3 , (2.664)

which are the equations of a harmonic oscillator. The solution is easily obtained:

ω1(t) = ω⊥ cos
(
Ωt+ δ

)
, ω2(t) = ω⊥ sin

(
Ωt+ δ

)
, ω3(t) = ω3 , (2.665)

where ω⊥ and δ are constants of integration, and where |ω| = (ω2
⊥ +ω2

3)
1/2. This motion is

sketched in Fig. 2.41. Note that the perpendicular components of ω oscillate harmonically,
and that the angle ω makes with respect to ê3 is λ = tan−1(ω⊥/ω3).

For the earth, (I3−I1)/I1 ≈ 1
305 , so ω3 ≈ ω, andΩ ≈ ω/305, yielding a precession period

of 305 days, or roughly 10 months. Astronomical observations reveal such a precession,
known as the Chandler wobble. For the earth, the precession angle is λChandler ' 6 × 10−7
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rad, which means that the North Pole moves by about 4 meters during the wobble. The
Chandler wobble has a period of about 14 months, so the näıve prediction of 305 days is
off by a substantial amount. This discrepancy is attributed to the mechanical properties of
the earth: elasticity and fluidity. The earth is not solid!8

Asymmetric tops: Next, consider the torque-free motion of an asymmetric top, where
I1 6= I2 6= I3 6= I1. Unlike the symmetric case, there is no conserved component of ω. True,
we can invoke conservation of energy and angular momentum,

E = 1
2I1 ω

2
1 + 1

2I2 ω
2
2 + 1

2I3 ω
2
3 (2.666)

L2 = I2
1 ω

2
1 + I2

2 ω
2
2 + I2

3 ω
2
3 , (2.667)

and, in principle, solve for ω1 and ω2 in terms of ω3, and then invoke Euler’s equations
(which must honor these conservation laws). However, the nonlinearity greatly complicates
matters and in general this approach is a dead end.

We can, however, find a particular solution quite easily – one in which the rotation
is about a single axis. Thus, ω1 = ω2 = 0 and ω3 = ω0 is indeed a solution for all time,
according to Euler’s equations. Let us now perturb about this solution, to explore its
stability. We write

ω = ω0 ê3 + δω , (2.668)

and we invoke Euler’s equations, linearizing by dropping terms quadratic in δω. This yield

I1 δω̇1 = (I2 − I3)ω0 δω2 +O(δω2 δω3) (2.669)
I2 δω̇2 = (I3 − I1)ω0 δω1 +O(δω3 δω1) (2.670)
I3 δω̇3 = 0 +O(δω1 δω2) . (2.671)

Taking the time derivative of the first equation and invoking the second, and vice versa,
yields

δω̈1 = −Ω2 δω1 , δω̈2 = −Ω2 δω2 , (2.672)

with
Ω2 =

(I3 − I2)(I3 − I1)
I1 I2

· ω2
0 . (2.673)

The solution is then δω1(t) = C cos(Ωt+ δ).

If Ω2 > 0, then Ω is real, and the deviation results in a harmonic precession. This
occurs if I3 is either the largest or the smallest of the moments of inertia. If, however, I3
is the middle moment, then Ω2 < 0, and Ω is purely imaginary. The perturbation will in
general increase exponentially with time, which means that the initial solution to Euler’s
equations is unstable with respect to small perturbations. This result can be vividly realized
using a tennis racket, and sometimes goes by the name of the “tennis racket theorem.”

8The earth is a layered like a Mozartkugel, with a solid outer shell, an inner fluid shell, and a solid (iron)
core.
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Figure 2.42: A general rotation, defined in terms of the Euler angles {φ, θ, ψ}. Three
successive steps of the transformation are shown.

2.17.7 Euler’s Angles

In d dimensions, an orthogonal matrix R ∈ O(d) has 1
2d(d − 1) independent parameters.

To see this, consider the constraint RtR = 1. The matrix RtR is manifestly symmetric,
so it has 1

2d(d + 1) independent entries (e.g. on the diagonal and above the diagonal).
This amounts to 1

2d(d + 1) constraints on the d2 components of R, resulting in 1
2d(d − 1)

freedoms. Thus, in d = 3 rotations are specified by three parameters. The Euler angles
{φ, θ, ψ} provide one such convenient parameterization.

A general rotation R(φ, θ, ψ) is built up in three steps. We start with an orthonormal
triad ê0

µ of body-fixed axes. The first step is a rotation by an angle φ about ê0
3:

ê′µ = Rµν

(
ê0

3, φ
)
ê0
ν , R

(
ê0

3, φ
)

=

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 (2.674)

This step is shown in panel (a) of Fig. 2.42. The second step is a rotation by θ about the
new axis ê′1:

ê′′µ = Rµν

(
ê′1, θ

)
ê′ν , R

(
ê′1, θ

)
=

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 (2.675)

This step is shown in panel (b) of Fig. 2.42. The third and final step is a rotation by ψ
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about the new axis ê′′3:

ê′′′µ = Rµν

(
ê′′3, ψ

)
ê′′ν , R

(
ê′′3, ψ

)
=

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 (2.676)

This step is shown in panel (c) of Fig. 2.42. Putting this all together,

R(φ, θ, ψ) = R
(
ê′′3, φ

)
R
(
ê′1, θ

)
R
(
ê0

3, ψ
)

(2.677)

=

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1



=

 cosψ cosφ− sinψ cos θ sinφ cosψ sinφ+ sinψ cos θ cosφ sinψ sin θ
− sinψ cosφ− cosψ cos θ sinφ − sinψ sinφ+ cosψ cos θ cosφ cosψ sin θ

sin θ sinφ − sin θ cosφ cos θ

 .

Next, we’d like to relate the components ωµ = ω · êµ (with êµ ≡ ê′′′µ ) of the rotation in
the body-fixed frame to the derivatives φ̇, θ̇, and ψ̇. To do this, we write

ω = φ̇ êφ + θ̇ êθ + ψ̇ êψ , (2.678)

where

ê0
3 = êφ = sin θ sinψ ê1 + sin θ cosψ ê2 + cos θ ê3 (2.679)

êθ = cosψ ê1 − sinψ ê2 (“line of nodes”) (2.680)
êψ = ê3 . (2.681)

This gives

ω1 = ω · ê1 = φ̇ sin θ sinψ + θ̇ cosψ (2.682)

ω2 = ω · ê2 = φ̇ sin θ cosψ − θ̇ sinψ (2.683)

ω3 = ω · ê3 = φ̇ cos θ + ψ̇ . (2.684)

Note that
φ̇↔ precession , θ̇ ↔ nutation , ψ̇ ↔ axial rotation . (2.685)

The general form of the kinetic energy is then

T = 1
2I1
(
φ̇ sin θ sinψ + θ̇ cosψ

)2
+ 1

2I2
(
φ̇ sin θ cosψ − θ̇ sinψ

)2 + 1
2I3
(
φ̇ cos θ + ψ̇

)2
. (2.686)

Note that
L = pφ êφ + pθ êθ + pψ êψ , (2.687)
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which may be verified by explicit computation.

Torque-free symmetric top: A body falling in a gravitational field experiences no net torque
about its CM:

N ext =
∑
i

ri × (−mi g) = g ×
∑
i

mi ri = 0 . (2.688)

For a symmetric top with I1 = I2, we have

T = 1
2I1
(
θ̇2 + φ̇2 sin2θ

)
+ 1

2I3
(
φ̇ cos θ + ψ̇

)2
. (2.689)

The potential is cyclic in the Euler angles, hence the equations of motion are

d

dt

∂T

∂(φ̇, θ̇, ψ̇)
=

∂T

∂(φ, θ, ψ)
. (2.690)

Since φ and ψ are cyclic in T , their conjugate momenta are conserved:

pφ =
∂L

∂φ̇
= I1 φ̇ sin2θ + I3 (φ̇ cos θ + ψ̇) cos θ (2.691)

pψ =
∂L

∂ψ̇
= I3 (φ̇ cos θ + ψ̇) . (2.692)

Note that pψ = I3 ω3, hence ω3 is constant, as we have already seen.

To solve for the motion, it is convenient to choose L̂ = ê0
3 = êφ. Thus, pφ = L. Since

êφ · êψ = cos θ, we have that pψ = L cos θ. On the other hand, êφ · êθ = 0, which means
pθ = 0. From the equations of motion,

ṗθ = I1 θ̈ =
(
I1 φ̇ cos θ − pψ

)
φ̇ sin θ , (2.693)

hence we must have
θ̇ = 0 , φ̇ =

pψ
I1 cos θ

. (2.694)

Finally, from the equation for pψ, we conclude

ψ̇ =
pψ
I1
−
pψ
I3

=
(
I1 − I3
I3

)
ω3 , (2.695)

which recapitulates (2.664), with ψ̇ = −Ω.

2.17.8 Symmetric Top with One Point Fixed

Consider the case of a symmetric top with one point fixed, as depicted in Fig. 2.43. The
Lagrangian is

L = 1
2I1
(
θ̇2 + φ̇2 sin2θ

)
+ 1

2I3
(
φ̇ cos θ + ψ̇

)2 −Mg` cos θ . (2.696)
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Figure 2.43: A dreidl is a symmetric top. The four-fold symmetry axis guarantees I1 = I2.
The blue diamond represents the center-of-mass.

Here, ` is the distance from the fixed point to the CM, and the inertia tensor is defined along
principal axes whose origin lies at the fixed point (not the CM!). Gravity now supplies a
torque, but as in the torque-free case, the Lagrangian is still cyclic in φ and ψ, so

pφ = (I1 sin2θ + I3 cos2θ) φ̇+ I3 cos θ ψ̇ (2.697)

pψ = I3 cos θ φ̇+ I3 ψ̇ (2.698)

are each conserved. We can invert these relations to obtain φ̇ and ψ̇ in terms of {pφ, pψ, θ}:

φ̇ =
pφ − pψ cos θ
I1 sin2θ

, ψ̇ =
pψ
I3
−

(pφ − pψ cos θ) cos θ
I1 sin2θ

. (2.699)

In addition, since ∂L/∂t = 0, the total energy is conserved:

E = T + U = 1
2I1 θ̇

2+

Ueff(θ)︷ ︸︸ ︷
(pφ − pψ cos θ)2

2I1 sin2θ
+
p2
ψ

2I3
+Mg` cos θ , (2.700)

where the term under the brace is the effective potential Ueff(θ).

The problem thus reduces to the one-dimensional dynamics of θ(t), i.e.

I1 θ̈ = −∂Ueff

∂θ
, (2.701)

with

Ueff(θ) =
(pφ − pψ cos θ)2

2I1 sin2θ
+
p2
ψ

2I3
+Mg` cos θ . (2.702)
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Figure 2.44: The effective potential of eq. 2.705.

Using energy conservation, we may write

dt = ±
√
I1
2

dθ√
E − Ueff(θ)

. (2.703)

and thus the problem is reduced to quadratures:

t(θ) = t(θ0)±
√
I1
2

θ∫
θ0

dϑ
1√

E − Ueff(ϑ)
. (2.704)

We can gain physical insight into the motion by examining the shape of the effective
potential,

Ueff(θ) =
(pφ − pψ cos θ)2

2I1 sin2θ
+Mg` cos θ +

p2
ψ

2I3
, (2.705)

over the interval θ ∈ [0, π]. Clearly Ueff(0) = Ueff(π) = ∞, so the motion must be bounded.
What is not yet clear, but what is nonetheless revealed by some additional analysis, is that
Ueff(θ) has a single minimum on this interval, at θ = θ0. The turning points for the θ motion
are at θ = θa and θ = θb, where Ueff(θa) = Ueff(θb) = E. Clearly if we expand about θ0 and
write θ = θ0 + η, the η motion will be harmonic, with

η(t) = η0 cos(Ωt+ δ) , Ω =

√
U ′′eff(θ0)
I1

. (2.706)

EXERCISE: Prove that the effective potential exhibits the generic features depicted in Fig.
2.44.

110



Figure 2.45: Precession and nutation of the symmetry axis of a symmetric top.

To apprehend the full motion of the top in an inertial frame, let us follow the symmetry
axis ê3:

ê3 = sin θ sinφ ê0
1 − sin θ cosφ ê0

2 + cos θ ê0
3 . (2.707)

Once we know θ(t) and φ(t) we’re done. The motion θ(t) is described above: θ oscillates
between turning points at θa and θb. As for φ(t), we have already derived the result

φ̇ =
pφ − pψ cos θ
I1 sin2θ

. (2.708)

Thus, if pφ > pψ cos θa, then φ̇ will remain positive throughout the motion. If, on the other
hand, we have

pψ cos θb < pφ < pψ cos θa , (2.709)

then φ̇ changes sign at an angle θ∗ = cos−1
(
pφ/pψ

)
. The motion is depicted in Fig. 2.45.

An extensive discussion of this problem is given in H. Goldstein, Classical Mechanics.

2.17.9 Rolling and Skidding Motion of Real Tops

The material in this section is based on the corresponding sections from V. Barger and
M. Olsson, Classical Mechanics: A Modern Perspective. This is an excellent book which
contains many interesting applications and examples.

Rolling tops – In most tops, the point of contact rolls or skids along the surface. Consider
the peg end top of Fig. 2.46, executing a circular rolling motion, as sketched in Fig. 2.47.
There are three components to the force acting on the top: gravity, the normal force from
the surface, and friction. The frictional force is perpendicular to the CM velocity, and
results in centripetal acceleration of the top:

f = MΩ2ρ ≤ µMg , (2.710)

where Ω is the frequency of the CM motion and µ is the coefficient of friction. If the above
inequality is violated, the top starts to slip.
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Figure 2.46: A top with a peg end. The frictional forces f and fskid are shown. When the
top rolls without skidding, fskid = 0.

The frictional and normal forces combine to produce a torque N = Mg` sin θ− f` cos θ
about the CM9. This torque is tangent to the circular path of the CM, and causes L to
precess. We assume that the top is spinning rapidly, so that L very nearly points along
the symmetry axis of the top itself. (As we’ll see, this is true for slow precession but not
for fast precession, where the precession frequency is proportional to ω3.) The precession is
then governed by the equation

N = Mg` sin θ − f` cos θ

=
∣∣L̇∣∣ = ∣∣Ω ×L

∣∣ ≈ Ω I3 ω3 sin θ , (2.711)

where ê3 is the instantaneous symmetry axis of the top. Substituting f = MΩ2ρ,

Mg`

I3 ω3

(
1− Ω2ρ

g
ctn θ

)
= Ω , (2.712)

which is a quadratic equation for Ω. We supplement this with the ‘no slip’ condition,

ω3 δ = Ω
(
ρ+ ` sin θ

)
, (2.713)

resulting in two equations for the two unknowns Ω and ρ.

Substituting for ρ(Ω) and solving for Ω, we obtain

Ω =
I3 ω3

2M`2 cos θ

{
1 +

Mg`δ

I3
ctn θ ±

√(
1 +

Mg`δ

I3
ctn θ

)2
− 4M`2

I3
· Mg`

I3 ω
2
3

. (2.714)

This in order to have a real solution we must have

ω3 ≥
2M`2 sin θ

I3 sin θ +Mg`δ cos θ

√
g

`
. (2.715)

9Gravity of course produces no net torque about the CM.
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Figure 2.47: Circular rolling motion of the peg top.

If the inequality is satisfied, there are two possible solutions for Ω, corresponding to fast
and slow precession. Usually one observes slow precession. Note that it is possible that
ρ < 0, in which case the CM and the peg end lie on opposite sides of a circle from each
other.

Skidding Tops – A skidding top experiences a frictional force which opposes the skidding
velocity, until vskid = 0 and a pure rolling motion sets in. This force provides a torque which
makes the top rise:

θ̇ = −Nskid

L
= −µMg`

I3 ω3
. (2.716)

Suppose δ ≈ 0. in which case ρ + ` sin θ = 0 and the point of contact remains fixed. Now
recall the effective potential for a symmetric top with one point fixed:

Ueff(θ) =
(pφ − pψ cos θ)2

2I1 sin2θ
+
p2
ψ

2I3
+Mg` cos θ . (2.717)

We demand U ′eff(θ0) = 0, which yields

cos θ0 · β
2 − pψ sin2θ0 · β +Mg`I1 sin4θ0 = 0 , (2.718)

where
β ≡ pφ − pψ cos θ0 = I1 sin2θ0 φ̇ . (2.719)

Solving the quadratic equation for β, we find

φ̇ =
I3 ω3

2I1 cos θ0

(
1±

√
1− 4Mg`I1 cos θ0

I2
3 ω

2
3

)
. (2.720)

This is simply a recapitulation of eqn. 2.714, with δ = 0 and with M`2 replaced by I1. Note
I1 = M`2 by the parallel axis theorem if ICM

1 = 0. But to the extent that ICM
1 6= 0, our
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treatment of the peg top was incorrect. It turns out to be OK, however, if the precession is
slow, i.e. if Ω/ω3 � 1.

On a level surface, cos θ0 > 0, and therefore we must have

ω3 ≥
2
I3

√
Mg`I1 cos θ0 . (2.721)

Thus, if the top spins too slowly, it cannot maintain precession. Eqn. 2.720 says that there
are two possible precession frequencies. When ω3 is large, we have

φ̇slow =
Mg`

I3 ω3
+O(ω−1

3 ) , φ̇fast =
I3 ω3

I1 cos θ0
+O(ω−3

3 ) . (2.722)

Again, one usually observes slow precession.

A top with ω3 >
2
I3

√
Mg`I1 may ‘sleep’ in the vertical position with θ0 = 0. Due to the

constant action of frictional forces, ω3 will eventually drop below this value, at which time
the vertical position is no longer stable. The top continues to slow down and eventually
falls.

2.17.10 Tippie-Top

A particularly nice example from the Barger and Olsson book is that of the tippie-top,
a truncated sphere with a peg end, sketched in Fig. 2.48 The CM is close to the center
of curvature, which means that there is almost no gravitational torque acting on the top.

Figure 2.48: The tippie-top behaves in a counterintuitive way. Once started spinning with
the peg end up, the peg axis rotates downward. Eventually the peg scrapes the surface and
the top rises to the vertical in an inverted orientation.

114



The frictional force f opposes slipping, but as the top spins f rotates with it, and hence
the time-averaged frictional force 〈f〉 ≈ 0 has almost no effect on the motion of the CM.
A similar argument shows that the frictional torque, which is nearly horizontal, also time
averages to zero: 〈

dL

dt

〉
inertial

≈ 0 . (2.723)

In the body-fixed frame, however, N is roughly constant, with magnitude N ≈ µMgR,
where R is the radius of curvature and µ the coefficient of sliding friction. Now we invoke

N =
dL

dt

∣∣∣∣
body

+ ω ×L . (2.724)

The second term on the RHS is very small, because the tippie-top is almost spherical, hence
inertia tensor is very nearly diagonal, and this means

ω ×L ≈ ω × Iω = 0 . (2.725)

Thus, L̇body ≈ N , and taking the dot product of this equation with the unit vector k̂, we
obtain

−N sin θ = k̂ ·N =
d

dt

(
k̂ ·Lbody

)
= −L sin θ θ̇ . (2.726)

Thus,

θ̇ =
N

L
≈ µMgR

Iω
. (2.727)

Once the stem scrapes the table, the tippie-top rises to the vertical just like any other rising
top.

2.18 Coupled Oscillations

2.18.1 General Nonlinear Problem

For a set of n generalized coordinates {q1, . . . , qn} the kinetic energy is a quadratic function
of the velocities,

T = 1
2 Tij(q1, . . . , qn) q̇i q̇j , (2.728)

where the sum on i and j from 1 to n is implied. For example, expressed in terms of polar
coordinates (r, θ, φ), the matrix Tij is

Tij = m

1 0 0
0 r2 0
0 0 r2 sin2θ

 =⇒ T = 1
2 m
(
ṙ2 + r2θ̇2 + r2 sin2θ φ̇2

)
. (2.729)
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The potential U(q1, . . . , qn) is some function of the generalized coordinates. The Euler-
Lagrange equations then give the equations of motion

Tij(q) q̈j +

(
∂Tij

∂qk
−
∂Tkj

∂qi

)
q̇j q̇k = −∂U

∂qi
, (2.730)

which is a set of coupled nonlinear second order ODEs.

2.18.2 Expansion about Static Equilibrium

Small oscillation theory begins with the identification of a static equilibrium {q1, . . . , qn},
which satisfies the n nonlinear equations

∂U

∂qi

∣∣∣∣
q=q

= 0 . (2.731)

Once an equilibrium is found (note that there may be more than one static equilibrium),
we expand about this equilibrium, writing

qi ≡ qi + ηi . (2.732)

The coordinates {η1, . . . , ηn} represent the displacements relative to equilibrium.

We next expand the Lagrangian to quadratic order in the generalized displacements,
yielding

L = 1
2 Tij η̇i η̇j −

1
2Vij ηiηj , (2.733)

where

Tij =
∂2T

∂q̇i ∂q̇j

∣∣∣∣∣
q=q

, Vij =
∂2U

∂qi ∂qj

∣∣∣∣∣
q=q

. (2.734)

Writing ηt for the row-vector (η1, . . . , ηn), we may suppress indices and write

L = 1
2 η̇

t T η̇ − 1
2 η

t V η , (2.735)

where T and V are the constant matrices of eqn. 2.734.

2.18.3 Method of Small Oscillations

The idea behind the method of small oscillations is to effect a coordinate transformation
from the generalized displacements η to a new set of coordinates ξ, which render the
Lagrangian particularly simple. All that is required is a linear transformation,

ηi = Aia ξa , (2.736)
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where both i and a run from 1 to n. The n× n matrix Aia is known as the modal matrix.
With the substitution η = A ξ (hence ηt = ξt At, where At

ai = Aia is the matrix transpose),
we have

L = 1
2 ξ̇

t At T A ξ̇ − ξt At V A ξ . (2.737)

We now choose the matrix A such that

At T A = 1 (2.738)

At V A = diag (ω2
1, . . . , ω

2
n) . (2.739)

With this choice of A, the Lagrangian decouples:

L = 1
2

n∑
a=1

(
ξ̇2a − ω2

a ξ
2
a

)
, (2.740)

with the solution
ξa(t) = Ca cos(ωat) +Da sin(ωat) , (2.741)

where {C1, . . . , Cn} and {D1, . . . , Dn} are 2n constants of integration. Note that

ξ = A−1η = AtTη . (2.742)

In terms of the original generalized displacements, the solution is

ηi(t) =
n∑
a=1

Aia

{
Ca cos(ωat) +Da sin(ωat)

}
, (2.743)

and the constants of integration are linearly related to the initial generalized displacements
and generalized velocities:

Ca = Aia Tij ηj(0) (2.744)

Da = ω−1
a Aia Tij η̇j(0) , (2.745)

where we have used A−1 = At T, from eqn. 2.738.

Note that the normal coordinates have unusual dimensions: [ξ] = L
√
M where L is

length and M is mass.

2.18.4 Can you really just choose an A so that both these wonderful
things happen in 2.738 and 2.739?

Yes.
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2.18.5 Er...care to elaborate?

Both T and V are symmetric matrices. Aside from that, there is no special relation between
them. In particular, they need not commute, hence they do not necessarily share any
eigenvectors. Nevertheless, they may be simultaneously diagonalized as per 2.738 and 2.739.
Here’s why:

• Since T is symmetric, it can be diagonalized by an orthogonal transformation. That
is, there exists a matrix O1 ∈ O(n) such that

Ot
1 TO1 = Td , (2.746)

where Td is diagonal.

• We may safely assume that T is positive definite. Otherwise the kinetic energy can
become arbitrarily negative, which is unphysical. Therefore, one may form the matrix
T−1/2

d which is the diagonal matrix whose entries are the inverse square roots of the
corresponding entries of Td. Consider the linear transformation O1 T−1/2

d . Its effect
on T is

T−1/2
d Ot

1 TO1 T−1/2
d = 1 . (2.747)

• Since O1 and Td are wholly derived from T, the only thing we know about

Ṽ ≡ T−1/2
d Ot

1 VO1 T−1/2
d (2.748)

is that it is explicitly a symmetric matrix. Therefore, it may be diagonalized by some
orthogonal matrix O2 ∈ O(n). As T has already been transformed to the identity, the
additional orthogonal transformation has no effect there. Thus, we have shown that
there exist orthogonal matrices O1 and O2 such that

Ot
2 T−1/2

d Ot
1 TO1 T−1/2

d O2 = 1 (2.749)

Ot
2 T−1/2

d Ot
1 VO1 T−1/2

d O2 = diag (ω2
1, . . . , ω

2
n) . (2.750)

All that remains is to identify the modal matrix A = O1 T−1/2
d O2.

2.18.6 Finding the Modal Matrix

While the above proof allows one to construct A by finding the two orthogonal matrices O1

and O2, such a procedure is extremely cumbersome. It would be much more convenient if
A could be determined in one fell swoop. Fortunately, this is possible.

The eigenfrequencies ωa are obtained from the equations of motion,

At T A ξ̈ + At V A ξ = 0 . (2.751)
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If ξ oscillates at frequency ω, then ξ̈ = −ω2ξ, and a nontrivial solution exists only if the
matrix ω2T−V is defective, i.e. if

det
(
ω2 T−V

)
= 0 . (2.752)

Since T and V are of rank n, the above determinant yields an nth order polynomial whose
n roots are the desired squared eigenfrequencies {ω2

1, . . . , ω
2
n}.

Once the n eigenfrequencies are obtained, the modal matrix is constructed as follows.
Solve the equations (

ω2
a Tij −Vij

)
ψaj = 0 (2.753)

which are a set of (n − 1) linearly independent equations among the n components of the
eigenvector ψa. The eigenvectors may be chosen to satisfy a generalized orthogonality
relationship, ψai Tij ψ

b
j = δij . To see this, let us duplicate eqn. 2.753, replacing a with b,

and multiply both equations as follows:

ψbi ×
(
ω2
a Tij −Vij

)
ψaj = 0 (2.754)

ψai ×
(
ω2
b Tij −Vij

)
ψbj = 0 . (2.755)

Using the symmetry of T and V, upon subtracting these equations we obtain

(ω2
a − ω2

b )
n∑

i,j=1

ψai Tij ψ
b
j = 0 , (2.756)

where the sums on i and j have been made explicit. This establishes that eigenvectors
ψa and ψb corresponding to distinct eigenvalues ω2

a 6= ω2
b are orthogonal: (ψa)t Tψb = 0.

For degenerate eigenvalues, the eigenvectors are not a priori orthogonal, but they may be
orthogonalized via application of the Gram-Schmidt procedure. The remaining degrees of
freedom - one for each eigenvector - are fixed by imposing the condition of normalization:

ψai → ψai

/√
ψak Tkl ψ

a
l =⇒ ψai Tij ψ

b
j = δab . (2.757)

The modal matrix is just the matrix of eigenvectors: Aia = ψai .

2.18.7 Example: Double Pendulum

As an example, consider the double pendulum, with m1 = m2 = m and `1 = `2 = `. The
kinetic and potential energies are

T = m`2θ̇2
1 +m`2 cos(θ1 − θ1) θ̇1θ̇2 + 1

2m`
2θ̇2

2 (2.758)

V = −2mg` cos θ1 −mg` cos θ2 , (2.759)

leading to

T =
(

2m`2 m`2

m`2 m`2

)
, V =

(
2mg` 0

0 mg`

)
. (2.760)
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Figure 2.49: The double pendulum.

Then

ω2T−V = m`2
(

2ω2 − 2ω2
0 ω2

ω2 ω2 − ω2
0

)
, (2.761)

with ω0 =
√
g/`. Setting the determinant to zero gives

2(ω2 − ω2
0)

2 − ω4 = 0 ⇒ ω2 = (2±
√

2)ω2
0 . (2.762)

We find the unnormalized eigenvectors by setting (ω2
aT− V )ψa = 0. This gives

ψ+ = C+

(
1

−
√

2

)
, ψ− = C−

(
1

+
√

2

)
, (2.763)

where C± are constants. One can check Tij ψ
a
i ψ

b
j vanishes for a 6= b. We then normalize by

demanding Tij ψ
a
i ψ

a
j = 1, which determines the coefficients C± = 1

2

√
(2±

√
2)/m`2. Thus,

the modal matrix is

A =

ψ+
1 ψ−1

ψ+
2 ψ−2

 =
1

2
√
m`2


√

2 +
√

2
√

2−
√

2

−
√

4 + 2
√

2 +
√

4− 2
√

2

 . (2.764)

2.18.8 Chain of Mass Points

Next consider an infinite chain of identical masses, connected by identical springs of spring
constant k and equilibrium length a. The Lagrangian is

L = 1
2m
∑
n

ẋ2
n − 1

2k
∑
n

(xn+1 − xn − a)2

= 1
2m
∑
n

u̇2
n − 1

2k
∑
n

(un+1 − un)
2 , (2.765)
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where un ≡ xn−na− b is the displacement from equilibrium of the nth mass. The constant
b is arbitrary. The Euler-Lagrange equations are

d

dt

(
∂L

∂u̇n

)
= mün =

∂L

∂un

= k(un+1 − un)− k(un − un−1)

= k(un+1 + un−1 − 2un) . (2.766)

Now let us assume that the system is placed on a large ring of circumference Na, where
N � 1. Then un+N = un and we may shift to Fourier coefficients,

un =
1√
N

∑
q

eiqan ûq (2.767)

ûq =
1√
N

∑
n

e−iqan un , (2.768)

where qj = 2πj/Na, and both sums are over the set j, n ∈ {1, . . . , N}. Expressed in terms

of the {ûq}, the equations of motion become

¨̂uq =
1√
N

∑
n

e−iqna ün

=
k

m

1√
N

∑
n

e−iqan (un+1 + un−1 − 2un)

=
k

m

1√
N

∑
n

e−iqan (e−iqa + e+iqa − 2)un

= −2k
m

sin2
(

1
2qa
)
ûq (2.769)

Thus, the {ûq} are the normal modes of the system (up to a normalization constant), and
the eigenfrequencies are

ωq =
2k
m

∣∣ sin (1
2qa
)∣∣ . (2.770)

This means that the modal matrix is

Anq =
1√
Nm

eiqan , (2.771)

where we’ve included the 1√
m

factor for a proper normalization. (The normal modes them-

selves are then ξq = A†
qnTnn′un′ =

√
mûq. For complex A, the normalizations are A†TA = 1

and A†VA = diag(ω2
1, . . . , ω

2
N ).

Note that

Tnn′ = mδn,n′ (2.772)

Vnn′ = 2k δn,n′ − k δn,n′+1 − k δn,n′−1 (2.773)
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and that

(A†TA)qq′ =
N∑
n=1

N∑
n′=1

A∗
nqTnn′An′q′

=
1
Nm

N∑
n=1

N∑
n′=1

e−iqanmδnn′ e
iq′an′

=
1
N

N∑
n=1

ei(q
′−q)an = δqq′ , (2.774)

and

(A†VA)qq′ =
N∑
n=1

N∑
n′=1

A∗
nqTnn′An′q′

=
1
Nm

N∑
n=1

N∑
n′=1

e−iqan
(
2k δn,n′ − k δn,n′+1 − k δn,n′−1

)
eiq

′an′

=
k

m

1
N

N∑
n=1

ei(q
′−q)an (2− e−iq

′a − eiq
′a
)

=
4k
m

sin2
(

1
2qa
)
δqq′ = ω2

q δqq′ (2.775)

Since x̂q+G = x̂q, where G = 2π
a , we may choose any set of q values such that no two

are separated by an integer multiple of G. The set of points {jG} with j ∈ Z is called the
reciprocal lattice. For a linear chain, the reciprocal lattice is itself a linear chain10. One
natural set to choose is q ∈

[
− π

a ,
π
a

]
. This is known as the first Brillouin zone of the

reciprocal lattice.

Finally, we can write the Lagrangian itself in terms of the {uq}. One easily finds

L = 1
2 m

∑
q

˙̂u
∗
q

˙̂uq − k
∑
q

(1− cos qa) û∗q ûq , (2.776)

where the sum is over q in the first Brillouin zone. Note that

û−q = û−q+G = û∗q . (2.777)

This means that we can restrict the sum to half the Brillouin zone:

L = 1
2m

∑
q∈[0,π

a
]

{
˙̂u
∗
q

˙̂uq −
4k
m

sin2
(

1
2qa
)
û∗q ûq

}
. (2.778)

10For higher dimensional Bravais lattices, the reciprocal lattice is often different than the real space
(“direct”) lattice. For example, the reciprocal lattice of a face-centered cubic structure is a body-centered
cubic lattice.
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Now ûq and û∗q may be regarded as linearly independent, as one regards complex variables
z and z∗. The Euler-Lagrange equation for û∗q gives

d

dt

(
∂L

∂ ˙̂u
∗
q

)
=

∂L

∂û∗q
⇒ ¨̂uq = −ω2

q ûq . (2.779)

Extremizing with respect to ûq gives the complex conjugate equation.

2.18.9 Continuum Limit

Let us take N →∞, a→ 0, with L0 = Na fixed. We’ll write

un(t) −→ u(x = na, t) (2.780)

in which case

T = 1
2m
∑
n

u̇2
n −→ 1

2m

∫
dx

a

(
∂u

∂t

)2

(2.781)

V = 1
2k
∑
n

(un+1 − un)
2 −→ 1

2k

∫
dx

a

(
u(x+ a)− u(x)

a

)2

a2 (2.782)

Recognizing the spatial derivative above, we finally obtain

L =
∫
dxL(u, ∂tu, ∂xu)

L = 1
2 µ

(
∂u

∂t

)2

− 1
2 τ

(
∂u

∂x

)2

, (2.783)

where µ = m/a is the linear mass density and τ = ka is the tension11. The quantity L is
the Lagrangian density ; it depends on the field u(x, t) as well as its partial derivatives ∂tu
and ∂xu12. The action is

S
[
u(x, t)

]
=

tb∫
ta

dt

xb∫
xa

dxL(u, ∂tu, ∂xu) , (2.784)

where {xa, xb} are the limits on the x coordinate. Setting δS = 0 gives the Euler-Lagrange
equations

∂L
∂u

− ∂

∂t

(
∂L

∂ (∂tu)

)
− ∂

∂x

(
∂L

∂ (∂xu)

)
= 0 . (2.785)

For our system, this yields the Helmholtz equation,

1
c2
∂2u

∂t2
=
∂2u

∂x2
, (2.786)

11For a proper limit, we demand µ and τ be neither infinite nor infinitesimal.
12L may also depend explicitly on x and t.
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where c =
√
τ/µ is the velocity of wave propagation. This is a linear equation, solutions of

which are of the form
u(x, t) = C eiqx e−iωt , (2.787)

where
ω = cq . (2.788)

Note that in the continuum limit a → 0, the dispersion relation derived for the chain
becomes

ω2
q =

4k
m

sin2
(

1
2qa
)
−→ ka2

m
q2 = c2 q2 , (2.789)

and so the results agree.
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