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The gravitational resistive instability analysed by Furth, Killeen, and Rosenbluth and subsequent
authors is examined from a new point of view, which brings out the connection with ordinary Rayleigh—
Taylor instability and thermal convection. In contrast to the modes found by earlier authors, which
are either sharply localized in the vertical direction or require a boundary layer, it is shown that
coherent motions of arbitrary vertical extent can occur. These alternative modes are derived by
first considering a simpler but related model in which resistivity is concentrated at the ends of a
system of finite length. This analysis shows that such systems may be unstable even if they satisfy
the Newcomb criterion. The new resistive modes do not have the usual periodic dependence along
the horizontal direction of the main field, but have finite length and represent convective rolls which
are twisted to conform to the field lines. The relation of these new modes to the original periodic

localized modes is examined.

I. INTRODUCTION

HE analysis of resistive instabilities in a fluid

supported by a sheared magnetic field, initiated
by Furth, Killeen, and Rosenbluth," leads to a type
of normal mode in which the influence of resistivity
is concentrated in a thin region about the singular
magnetic surface = at which k-B, = 0, (where k is
the component of the wave vector normal to the
direction of shear). This thin region plays a role
similar to that of a boundary layer in hydrodynamics.
In this paper we show that by adopting a different
viewpoint one is led to consider an alternative class
of unstable modes in which the influence of resis-
tivity is not localized, and which do not have this
“boundary-layer” characteristic.

The model investigated by Furth, Killeen, and
Rosenbluth was a plane slab of incompressible fluid,
in which the destabilizing effect of field curvature
was represented by a fictitious gravity; this leads to
three types of instability, called the rippling, tearing
and gravitational modes. The gravitational or G-
mode, which is the only one studied in this paper,
was examined in more detail by Johnson, Greene,
and Coppi,” and again by Coppi,®> who showed that
in a limit which corresponds to 8 — 0 a set of G-
modes exists for which the perturbations effectively
vanish outside the resistive layer. (In the limit of zero
resistivity, instabilities concentrated near the singu-

t H. P. Furth, J. Killeen, and M. N. Rosenbluth, Phys.
Fluids 6, 459 (1963).

2 J. L. Johnson, J, M. Greene, and B. Coppi, Phys. Fluids
6, 1169 (1963).

3 B. Coppi, Phys. Rev. Letters 12, 417 (1964); and Phys.
Fluids 7, 1501 (1963).

lar surface Z had been found previously by Suydam*
and Rosenbluth.®)

Following Ref. 1 we consider an equilibrium situa-
tion in which the magnetic field lies in the (y, 2)
plane, ie., B = (0, szB,, B,), and there is a gravita-
tional field in the negative z direction. Rippling and
tearing modes are excluded from our analysis and
the discussion is confined to gravitationally driven
modes in a system with weak shear, such as the
Stellarator. The low-8 approximation is also fre-
quently used.

Because the equilibrium is independent of y and z,
it has been customary in stability theory to look for
normal modes of the form f(z) exp i(k,y + k.2). In
this paper we discard this assumption and adopt a
more general form f(z, 2) exp (¢k,y); that is we do not
Fourier analyze in z, the direction of the main field.
With this changed viewpoint, modes are found which
are neither localized near a particular horizontal
surface =, nor dependent on a boundary layer.
Looked at in this way the localization of the insta-
bilities found by Suydam* and others,' ~*'® appears as
a property, not so much of the physical disturbances
themselves, as of their Fourier transforms. An
important advantage of our approach is that it im-
mediately brings out the connection between resis-
tive instabilities and the convective cells of hydro-
dynamics. ‘

To illustrate this more general type of mode we
approach the full problem of resistive instability in a

¢ B. R. Suydam, Progr. Nucl. Energy 1, 463 (1959).

8§ M. N. Rosenbluth, in Proceedings of the Second United
Nations Conference on the Peaceful Uses of Atomic Energy
(United Nations, Geneva, 1958), Vol. 31, p. 85.
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Fig. 1. Twisted slicing mode.

sheared magnetic field through a series of simpler
but related problems. In Sec. III we first consider the
gravitational instability of a perfectly-conducting
incompressible fluid in a sheared magnetic field,
contained between conducting endplates which, how-
ever, are coated with a thin insulating layer so that
the field lines are not tied. In the limit B, — « exact
solutions are found which are not of the form
exp (tk,z) and which therefore do not fit within
the framework of the stability analysis of Suydam*
and Newcomb.® These modes may be unstable even
if the system satisfies the Newcomb stability criterion
which strictly applies only to an infinite system. They
represent twisted interchange motions in which fluid
filaments or “flux tubes” move as rigid bodies. As
each filament rises or falls it rotates about a vertical
axis to keep aligned with the local magnetic field at
each height z and so avoid distortion of the field
(Fig. 1). These modes, which exist in finite systems
but have no analogue in infinite systems, may be
important in experiments but it is difficult to decide
this as the real boundary conditions are much more
complex than in our model. Their importance in the
present context is that they are due to resistive layers
at the ends, and so provide a prototype for the true
resistive instabilities which are examined in Secs.
IV-VL

We begin the discussion of resistive instabilities
proper with the gravitational instability of a resistive
fluid in a magnetic field without shear but with the
field lines tied to conducting end plates (Sec. IV),
and later examine what happens to these motions
when a weak shear is imposed (Sec. V). When the
shear is zero, but the field lines are tied at the ends,
resistive gravitational modes occur which take the
form of a “slicing” motion, in which alternate verti-
cal sheets of fluid move up and down. The sheets are
parallel to the unperturbed magnetic field and the
most dangerous modes have small longitudinal wave-
number %, (so that the field is only slightly distorted),

¢ W. A. Newcomb, Ann, Phys. (N. Y.) 10, 232 (1960).
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small vertical wavenumber k., and large transverse
wavenumber %,. This corresponds to long thin con-
vective cells (‘slices’) which extend the full height of
the fluid. Such modes might occur in the unstable
sectors of “[ dI/B stable’” devices.” They form a
special case of convective rolls,’ modes which have
been identified by Danielson with the penumbral
filaments observed in sunspots.’

If now a weak shear is imposed on the magnetic
field in this system, very similar motions are still
possible, but with the convective cells twisted so that
their surfaces remain everywhere approximately
parallel to the field lines. This “twisted slicing”” mo-
tion is illustrated in Fig. 1. As a fluid filament rises
or falls it must now rotate about a vertical axis (just
as in the model problem with resistance confined to
layers at each end), in such a way that it always lies
along the local direction of B, since this minimizes
the field distortion.

Tinally we consider what happens as the length
of the system is increased indefinitely. In the non-
sheared case, tying at the ends becomes ineffective
and the most dangerous modes have k, — 0, ie.,
they represent interchange motion of infinitely long
filaments, and the growth rate is independent of B
and 5. When shear is present the moving filaments
cannot become infinitely long, since they are con-
strained by the field to rotate as they rise or fall and
the rotational kinetic energy would increase without
limit if the mode length adjusted itself to the length
of the system, In fact the mode length [ automatically
adjusts itself to give a balance between the rotational
kinetic energy and the dissipative loss due to motion
across the field, The growth rate is then approxi-
mately that for a system with no shear and finite
length A = [. It turns out that ! ~ n¥ so that the
growth rate p ~ »* in agreement with Ref. 1.

The chain of argument thus leads to unstable
modes of quite a different character to the localized
modes found hitherto. It is natural to ask how these
‘twisted slicing’ modes, with finite length ! and
arbitrary height, are related to the G-modes of
Ref. 1 and others, which have finite height A and
unlimited length, and this question is examined in
Sec. VI. The two types of mode have the same growth
rate and there is a relation connecting the height &
of the G-mode with the length [ of our mode. Each
of our twisted slicing modes is in fact a linear super-
position of the localized G-modes introduced by

7 I{. P. Furth and M. N. Rosenbluth, Phys. Fluids 7, 764
(19?%,.. Chandrasekhar, Hydrodynamic and Hydromagnetic

Stability (Oxford University Press, London, 1961).
® R. E. Danielson, Astrophys. J. 134, 275 (1961).
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Coppi,® one for every value of z. This superposition
is possible because a system with weak shear is
almost degenerate and localized G-modes centered
at different heights have almost identical growth
rates. If the degeneracy of the G-modes were exact
there would be no unique normal mode and any
combination of degenerate modes would be a mode
with identical growth rate. In an actual case the
growth rate of the G-modes centered at different
points varies only by a small fraction; e.g., ~107°
for a typical Stellarator field. The individual com-
ponents in any combination of these modes will
therefore not increase at precisely the same rate—
and for this reason we shall call the combination a
“quasi-mode”’—but it will take many e-folding
periods for a significant discrepancy to occur and by
this time the instability should be out of the linear
phase.

II. THE GRAVITATIONAL MODEL

The plane incompressible fluid model used in this
paper is intended to describe pure gravitational or
G-modes; we eliminate rippling and tearing modes’
by assuming the resistivity 5 and the shear s to be
uniform. A uniform gravitational field ¢ is directed
downwards, and the unperturbed density distribution
is Rayleigh-Taylor unstable, increasing linearly with
height z according to

2.1

There is a uniform horizontal magnetic field
(0, 0, B,), together with a transverse field B, = szB,
(where s = const), so that the field direction changes
with height. (We take s = 0 in Sec. IV.) The fluid
is contained between perfectly conducting rigid
walls at £ = =+ H, where the boundary conditions
for perturbed variables arev, = B, = E, = E, = 0,
and is unbounded in the y direction. The shear is
assumed to be weak, so that sH <« 1. In Secs. IIT
and IV we impose boundary conditions at z = = L,
which will be discussed later; elsewhere the system
is assumed to be infinitely long.
The linearized equations are

9po/dx = apo.

b T = ~VP + - (V xB) xB,
+ - (VxB)xB+pg, (2
gTB = Vx(vxB) + f_’—r V°’B
= (B, V)V — (v-V)B, + ;- VB,  (2.3)
dp/ot = —(v-V)po = —v,apy, 24)
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VB =0, Vv =0, (2.5)

where B, = (0, szB,, By). In equilibrium the weight
of the fluid and the force (4x) '(V xB,) xB, are
balanced by the fluid pressure P,. We shall treat p,
as uniform in the inertial term of (2.2) (Boussinesq
approximation) and also in (2.4).

In Secs. ITI and IV we deal with the full set of
equations (2.2)-(2.5) while the principal approxima-
tion which we shall make in Secs. V and VI is to
neglect the term dB/dt in (2.3), which can be shown
to be of order 8 = 8rP,/B? (for the modes discussed
in this paper), compared to the term nV°B/4r.
Equations (2.2)—(2.5) can then be combined to give
an equation for the vertical velocity v,;

2
oV, + p33<§—z + sz %) v,

2

d 9”
— agpoﬂ((;? + a‘;)% =0, (26

where we have assumed a time dependence ~ exp (pf).

As previously remarked, we shall solve (2.6) with-
out making a Fourier analysis in the z direction.
Suppose however that one does assume a dependence

v, ~ f(x) exp (pt + tky + tk.2),

and sets
B =K+ k. + sxk, = sXk,,
then (2.6) becomes
8 Bkl oo (ag )}
_——t X ]EQ g r = 07 27
{0X2 Pnpo + pz i @7

which is Weber’s equation in the vertical coordinate
X. As shown in Seec. VI; it leads to a set of G-modes
localized near the point X = 0, in terms of which
the quasi-modes of Sec. V may be expanded. These
localized G-modes are related to the G-modes ori-
ginally found by Furth, Killeen, and Rosenbluth—
for example the growth rates and characteristic
widths are the same—but they are not identical;
in fact they are the modes investigated by Coppi.}
The distinction may be explained as follows. Consider
the full set of equations (2.2)-(2.5), without the
approximation B/dt << 7V °B and assume a depen-
dence ~ exp (ik.2), then the equations are of fourth
order in 4/8x and symmetric about x = 0. Each
eigenvalue is doubly degenerate® in the limit 5 — 0
and so to each eigenvalue p, of the growth rate p
there is an eigenfunction S, in which v is symmetrie,
and another 4, in which » is antisymmetric.

As B — 0, the even eigenfunctions I become
localized® within the resistive layer near X = 0,
and the external part of the solution vanishes; these
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are the eigenfunctions for which the approximation
dB/dt =~ 0 is valid and which are derived from (2.7).
On the other hand, in Ref. 1 the assumption is
made that B, &~ const within the resistive layer
(¢ &2 const in their notation); this rules out all
S-modes (for which B, is antisymmetrie).

III. RAYLEIGH-TAYLOR INSTABILITY OF AN IDEAL
FLUID IN A SHEARED FIELD

In this section we demonstrate, by means of a
simple example, that interchange modes exist in
sheared system of finite length which are not of the
form exp (ik.z). Although the fluid conduectivity is
assumed here to be perfect, this type of interchange
may be regarded as a prototype of the twisted slicing
mode in a resistive fluid (to be discussed in See. V),
and it shows some analogies with more general types
of instability in sheared systems with both finite
and zero 7.

As a preliminary, consider a system without shear,
that is to say one with uniform field, zero resistivity,
and perfectly conducting rigid endplates at z = £ L.
However the endplates are imagined to be coated
with a thin perfectly insulating layer, so that the
lines of force are not tied and interchanges can occur.
These motions are, in fact, resistive instabilities but
the resistivity is here concentrated at the endplates
instead of being uniformly distributed. The boundary
conditions to be applied at z = 4L are

B, =0, = (VxB), =0. (3.1)

We consider normal modes with &k, = 0, for which
Egs. (2.2)-(2.5) show that all components of B,
together with »,, are everywhere zero and (3.1) is
satisfied identically. The magnetic field has no effect
on these motions, and arbitrary two-dimensional
interchanges can oceur with

v(2, 9,2 = 0:(2,4,0), v,(2,9,2) =0, 9,0, 3.2
ov,/ox + av,/oy = 0.
The growth rate of a normal mode is

p = (ag)* [k,|/(2 + k)P

It may now be conjectured that the imposition of
shear on this system, by introducing an extra trans-
verse component B,(z), could not prevent insta-
bility, since the volume of each flux tube [ di/B =
[ dz/B, remains unaltered. Interchange motions
should still occur freely, but the flux tubes must
twist during the interchange to follow the local field
whose direction changes with height. In the limit
By, — « the motion again becomes two-dimensional,
and may be defined by the values of v,, v, on the

v, =0,
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midplane. The gravitational energy released by any
interchange depends only on », and is unaffected by
the shear, but the kinetic energy increases with the
length of the system L because of the transverse
veloeity due to twisting. Therefore we may expect p
to be decreased by increased length, or increased
shear, but we certainly should not expect shear to
stabilize the system. In the remainder of this section
we show that these conjectures are correct.

As in Sec. II we assume B,, = szB,. The unper-
turbed current j, is in the z direction and is uniform,
the force j, x B, being balanced by pressure. Some
further justification of the boundary conditions is
now needed, since j, has to pass to the conducting
endplates across a layer which we have assumed to be
an insulator. However it is consistent to assume a
very large voltage drop across this layer in the un-
perturbed state, i.e., its conductivity may be made
so small that it can be treated as an insulator so far
as the perturbed variables are concerned, while still
permitting the equilibrium j,.

The component u = v, satisfies a fourth-order
equation derived from (2.2)—(2.5) namely:

2
PV = ii; (%_ + sz :—y)Vz(g; + sz gay-)u
2 2

a i)
+ agp(’(a—yi + 5?)“ 3.3)
This equation can be solved in the limit By — « by
expanding u in powers of 1/BZ. That is we write

% = U, + u + -+ . Then

Dgu, = 0, Doy, = Do, -+,

etc, where

_ ple _a_) z(a_ _a,)
D, = B"(az + sz 3y AV % + sz 3y) " 3.4)

and

¥ 9
D, = po{p?vz — ag(gy—g + 52’5)} , (3.5)
are self-adjoint operators. We also introduce a
twisted coordinate system adapted to the unper-
turbed magnetic field, ¢ = , x = y — sz2,{ = 2, then

(3.6)

and ¢, x are constant along the lines of force. Any
function f(¢, x) which is independent of { is then a
solution of Dyu, = 0.

Now the next equation in the sequence, Dyu, =
Dyu,, can possess a solution u, only if D,u, is orthog-
onal to all solutions of Dyu, = 0. This imposes a
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further constraint on 4, which must now satisfy the
equations
L
Datio = 0, flmmpw. 3.7)
-L
Solutions of the pair of equations (3.7) exist of
the form u, = uo(§) exp (tkx), if

dPuy/dE® + (A€ + By, = 0, (3.8)

where
A = Es’(ag/p" — 1),
B = K(ag/p’ — 1 — I5°L7).

In order to fit the boundary conditions u, = 0 at
z = +H, the quantity u;' 8°u,/dt* must be negative
in some range, which means that

(ag/p’ — 1) > 3°L/(1 + $HY),  (3.10)

therefore A > 0 and by a real transformation (3.8)
can be reduced to a form of Weber’s equation,

dup/dw’ + Gw® — a)u, = 0. (3.11)

The solutions of this equation are tabulated'® but
it 1s unnecessary to solve it in detail; we simply
remark that for any finite values of s, k, H, L it is
possible to find a real positive value of p°/ag such
that the solution of (3.11) satisfies the boundary
conditions. In other words the system is always
unstable for ag > 0, as was physically obvious from
the argument with which we introduced this section.
In the limit B, — o, the function u, represents the
complete solution (since u, — 0), and the growth rate
is independent of the magnitude of the field, depend-
ing only on its form. For finite B, there would be a
complicated correction due to bending of the field
lines by the moving fluid.

We observe, then, that in a system of finite length
with perfect conductivity but in which lines of force
are not tied at the ends, there are instabilities even
when the shear is sufficient to stabilize the cor-
responding infinitely long system, i.e., even when the
Newcomb criterion® is satisfied. The effect of field
shear on these modes is to introduce a constraint
which determines the shape of the fluid motion. The
growth rate is lowered because this constraint induces
rotational kinetic energy, but the stability criterion
is unaltered.

3.9

Iv. RESISTIVE INSTABILITY IN UNIFORM FIELD
In the perfect conductivity example discussed in
the preceding section the introduction of shear did

wjJ, C. Miller, T'ables of Weber Parabolic Cylinder
Functions (Her Ma]esty s Stationery Office, London, 1955).
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not alter the fundamental character of the Rayleigh—
Taylor interchange modes; it simply twisted them to
conform to the field lines and slowed down their
growth rate. We expect shear to have a similar effect
when the resistivity is distributed uniformly through-
out the system instead of being concentrated into
thin layers at the ends. Accordingly it is useful to
first consider interchange-like motions in a resistive
system with zero shear, but with perfectly conducting
endplates at z = 4=L. Some care must be taken with
the boundary conditions, since the equations are of
fourth order in d/dz and will therefore not in general
have sinusoidal solutions in a bounded region. We
choose B, = v, = v, = 0 at z = &L but place no
restriction on »,. These conditions are equivalent to
tying the tubes of force at the ends and preventing
any transverse fluid displacement there. It can be
shown that v, is any case very small at z = +L, so
that the precise choice of boundary conditions
should have little effect.
Solutions then have the form

T Z-m {cos kyy}
vy ~ cos I

S 9H \sin k,y (.1)

and correspondingly for other components, but we
shall assume a dependence exp (pt+ik.c+ik,y+ik.2)
and represent the influence of the ends by the require-
ment k, > 7/2L. In particular the case k, = 0 is now
forbidden. The finite height is represented by k, >
n/2H, and we set k* = k2 + k2 + k3, E° = k% + K.
Equations (2.2)-(2.5) then yield

k (ng‘i _ /5_) _agnk®
p’ + — + . agZp — Ty = 0. 4.2

It can be proved that no overstable modes exist,
so we need only consider instabilities with real p.
Also since the fluid is to be stable for 4 = 0 we must
assume B3k?/4xp, > ag, which for a real plasma is a
condition on the ratio 8 of particle to magnetic
pressure. We shall suppose 8 << 1 and therefore drop
the second term in the bracket. Finally, the first
term of (4.2) must be negligible if p < c,k;, where
s = Bo/ (4mp,)? is the Alfvén speed, i.e., if the growth
rate is less than the frequency of an Alfvén wave of
wavelength &~ L. Then the approximate dispersion
relation is

p* + Bikip/nk’py — agk®/k* = 0.  (4.3)
When p is small one root of this equation is
p ~ (agpo/Bik)nk’ ~ (agpl’/Bo)nk®, (4.4

and to apply this to a real plasma we identify g in
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terms of pressure P, and radius of curvature R, by
g ~ 2P,/p.R. so that

p ~ N(Bnk*/4r), (4.5)

where A = 8aL’/7’R, is a purely geometric factor of
order unity. We can assume k., k. < k,, then the
growth rate is almost independent of &, and is propor-
tional to k2. The pattern of this instability is that of a
“glicing” motion in which alternate thin vertical
layers, parallel to the magnetic field, are moving up
and down. The growth rate p increases as the trans-
verse thickness of the slices becomes smaller, but
eventually it is necessary to include the first term of
(4.3), and p — (ag)?* as k, — .

The physical reason why fluid can move across the
field in this way is the following. Imagine two verti-
cal layers ~F "' apart, with the fluid moving up in
one and down in the other, and suppose that the
density perturbation has reached an amplitude
Acos (rz/2L), so that the vertical fluid displacement
e~ A/a. At each stage equilibrium would be main-
tained if the field lines were displaced by a distance

se >~ Agp,/Bik?,

so that the weight of the fluid would be balanced by
tension in the field. This generates a transverse field
B, ~ sin (wz/2L) with opposite sign in the two
layers. Within a time ~(nk?)~" this B, field dis-
appears by transverse resistive diffusion so that the
motion can proceed; the growth rate is therefore

1de QP ;2
¢ B M
in agreement with (4.4).

It is worth noting that while the fluid motion is
vertical, the field diffusion is horizontal and can be
made arbitrarily fast by choosing a large &, (ie.,
thin “slices”). There is no relation between the large
scale length (k') of the fluid motion and the small
scale length (k;') over which the field diffusion
occurs and one can thus retain large-scale eddies in
the z direction while allowing k, ~— o ; in this limit
the field has no influence on the motion at all. (In
practice the rapid short-wavelength slicing motion
would be limited by viscosity or some nonfluid effect
such as finite Larmor radius.)

In this simple model no instabilities have been found
in which p depends on fractional powers of 7, as in the
modes obtained in Refs. 1-3. Nevertheless we assert
that G-modes with p ~ n* are generically the same as
the slicing mode discussed in this section, which has
p ~ 1. The reason for this, as will be shown in Sec. V,
is that in a sheared field the slicing mode becomes

K. V. ROBERTS AND J. B. TAYLOR

twisted and as a result it automatically takes up a
length which is proportional to »n~%. It can be seen
from (4.4) that if we put L ~ ™! then we do indeed
get a growth rate p ~ 7' as found in Ref. 1 and
others.

V. TWISTED SLICING MODES

In this section we examine the final model, that is
a plasma slab of infinite extent in the z direction,
with finite resistivity and finite shear. Guided by the
simpler situations discussed in the previous sections
we look for modes which are similar to those of
Sec. IV, but are twisted to follow field lines like those
of Sec. III.

Since the presence of shear will not increase the
growth rate, p << 7k° as in Sec. IV, and the dB/a¢
term can be omitted. We can therefore start from
Eq. (2.6) and introduce the twisted coordinate
system used in Sec. III, £ =z, x =y — 827, { = 2.

We transform Eq. (2.6) into these new coordinates
and look for solutions of the form

v, = v() exp (thE + tk.x),
then Eq. (2.6) gives

(5.1)

2 _1__(9_21’__ 2z _La_l)_ 2[ 2,3
(1+69)k§a§2 2€qw£k,,6§‘ el q(l 4 s°¢)
2 2 2
R i (A lf_)] _
+ags§ g (ki 2s§‘ky v = 0, 5.2
where
€ = agpon/pBs, ¢ =p’fag—1. (5.3

The results of the earlier sections, particularly
Sec. IV, Eq. (4.4), lead us to expect a ““ twisted slicing”’
mode for which

p =~ (agpon/Bo)kiL’, (5.4)

where L is the length of the mode in the z, or {, direc-
tion. For such a mode ¢ = (k,L)™" and in the limit
k,L>1and k./k, < 1, Eq. (5.2) reduces to

@_ Ppon 2,2 pPoﬂk?z (‘E_g_ ) = 5
@~ g s+ P (G = 1p = 0, G

which can again be transformed into Weber’s equa-

tion

dZ
(W — lw® + a)v =0, (5.6)

(but note that this is now an equation for the depen-
dence glong the field), with

2 1
e _ &7 _ B_o)’
W= op AS (sk,,

Mafd

(ﬁ)%, (5.7)
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and

(ppom)* (gg _ )
2a = sB, k, p 1

In a long system the solutions of (5.5) are therefore
v =0§) = exp (—§*/28H,(sV2/8),  (5.9)

where H, are the Hermite polynomials

(5.8)

Hy(u) = (~1)" exp () s oxp (— 1), (5.10
and the growth rate of this mode is (for ag > p° as

in Sec. III)

- ’7_705)§ %(47”’0)* -1
n (4‘”_ (ag) B(Z)SZ (2n + 1) ’

which is the same as that found in Ref. 1 for G-
modes. [As k, — « we also find that p — (ag)! as
before.] The half-width of the disturbance in ¢ or z,
i.e., the length of the mode along the field, is

4r 1 (Bﬁ )* 1 3
Ao = (nk> (ag)* \arpy) 50T

The vertical wavenumber k. has no effect on the
growth rate or the length A of the mode, provided
only that k, << k,. Hence we can replace the = de-
pendence of our modes by any arbitrary dependence
g(z) so long as this is slowly varying compared to
the width of the slices (k). We thus obtain modes of
the form

(5.11)

(5.12)

vx(x, Y, Z) = g(.’E)U,,(Z) exp [Zky(y - S.’EZ)], (513)

where v,(z) is the appropriate Hermite function (5.9)
with growth rate given by (5.11).

These modes represent a motion (Fig. 1) of the
expected type. It is specified at one plane z = const
by the function g(x) (which is arbitrary provided it
is slowly varying and vanishes at x = £H), and in
this plane takes the form of ‘“convective rolls” as in
ordinary hydrodynamics; its form at any other
value of z is determined by the fact that the flow
pattern is almost constant along any field line
(y — srz = constant). The rolls thus get twisted as
one moves along z but at the same time the flow
velocity also decays slowly away in z because of the
term v,(2). For the fastest growing mode, v,(z) is a
simple gaussian curve with characteristic width A.
Higher modes have an oscillatory z dependence.
Since A ~ 7% the length (in 2) of the twisted slices
increases indefinitely as 7 — 0.

The relation of this twisted slicing mode to those
found in Sec. IV is now apparent. In Sec. IV the
length L of the slices was set by the position of the
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endplates; in an infinitely long resistive plasma such
as we consider in this section the length is set by the
resistivity according to (5.7). If we identify the
length L of See. IV with this “natural” length A
then the growth rate of the two types of slicing
modes are in agreement.

Physically the natural length A is set by a compro-
mise between (a) rate of release of gravitational
potential energy, (b) rate of resistive dissipation,
and (c¢) rate of increase of kinetic energy. A feature
of the twisted slicing motion is that in order to
reduce (b) the fluid motion must follow the field
lines which means that the fluid elements must ro-
tate about a vertical axis as they rise or fall; most of
the kinetic energy (¢) is in this rotation and it is in
order to keep this energy finite that the modes must
have finite length in z. They achieve this finite
length at the expense of some increase in (b), hence
the length increases as # — 0.

VI. DECOMPOSITION INTO SPATIALLY PERIODIC
NORMAL MODES

We have established in the previous sections the
existence of twisted slicing modes in a resistive fluid
supported by a sheared magnetic field. These modes
are of quite a different character to the G-modes
found in Refs. 1 and 3 for the same problem, and one
naturally asks how the two types are related.

To determine this we first re-examine the G-modes.
These are spatially periodic in z (unlike our modes
which have a definite length A) and are of the form

v, = v,(x) exp (pt + tky + ik.2),
where v, (z) satisfies Eq. (2.7), i.e.,

62 B 2k2 )
- B2 1 £ - i =0

with & = k? + k2, sXk, = sxk, + k..
If we put

2 - (P‘ﬂpn)*
(Bosk,)? '

this can be again reduced to Weber’s equation and
leads to eigenfunctions

2,(X) = u(X) = exp (—X*/268)H.(XV'2/8), (6.3)

and eigenvalues p, satisfying
nS]\/,,

EZ(%% B 1) (Pamp0)*

These are G-modes which are highly localized around
X =0, ie., around z = —k,/sk,; they have a half-
width in the « direction of order §, and 6§ — 0 as

6.2

= on 1), (6.4)
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7 — 0. Thus they shrink in 2 as the twisted slices
grow in z. They form a subset of the complete set of
G-modes for the problem and are related to, but not
identical with, the original modes of Ref. 1.

Although these G-modes are different in character
from the twisted slicing modes, their growth rates p
are almost exactly the same; the only difference is
that in (6.4) the term &* = k2 + k? replaces the term
k2 in (5.11). This means that G~modes which have
the same k,, but are localized at different heights z
by reason of having different %,, will also have
slightly different growth rates. However if the shear
is small this difference in growth rate is also small;
in fact two G-modes of the same k,, but with their k,
chosen so that they are localized at heights z, apart,
have growth rates which differ only by

op/p = 3ki/k, = 3(sxo)’. (6.5)

For a Stellarator (sz,)® is to be identified with
(ro/27R,)?, where ¢ is the rotational transform and
ro and R, are the minor and major radii; this is
typically of order 107°, This means that all G-modes
with the same k, but varying z, have almost identical
growth rates. It also follows from (6.4) that

2
B _ 802 (on + 1) v Bl2n + 1),

1 oS
which justifies our neglect of the term 6B/dt within
the localized region near X = 0. For n even the
field is confined to this region, but for n odd it
extends beyond the neighborhood of X = 0 and
invalidates the approximation.

Now consider a combination of periodic (-modes,
all having the same value of k, and n = 0, but
centered at different heights x,. This can be achieved
by taking a spread of values of k, and leads to

(6.6)

u(w, v, 7, ) = exp Gha) [ k) dk,

-exp [th.e — (x — x)%/285] exp (pb), (6.7

where f(k,) is the weight function which we take to
be slowly varying. The center of each constituent
mode z, is related to k, by z, = —k,/sk,, and p
also depends on k, but is again slowly varying. To
evaluate (6.7) we note that the integrand is of the
form of a highly localized function exp [(z—w,)*/262]
multiplied by slowly varying functions which can
therefore be replaced by their values at z = z,. Then
if f(k.)dz = —g(zo)dux,,

uz, y,2, 1) = 8V2 mg(x) exp [ik,(y — sx2)

— (sk,280°/2 + p(O(1 + 3(62))],  (6.8)
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which has the form of the twisted slicing mode
studied in Sec. V, except for the weak dependence
of growth rate on z. The arbitrary function g(x)
may be chosen to fit the boundary conditions.

The expression (6.8) does not therefore represent
an exact normal mode, because it has no precise
time dependence. Nevertheless, because sz is small
it will behave like a normal mode for all practical
purposes and may call it a quasi-mode. With Ap/p ~

'107% the different components would keep in step

for 1000 e-folding times, an enormously long period.
Probably even Ap/p ~ 107" would allow components
to hold together until the disturbance was out of the
linear regime. The essential point of our argument
is that because the localized G-modes are almost
degenerate any combination of them is itself ‘“almost’
a true mode, and for weakly sheared systems such as
the Stellarator the distinction between a true mode
and a quasi-mode is imperceptible for many hundreds
of e-folding periods.

The relation between the ““twisted slicing” quasi-
modes and the periodic modes is analogous to the
relation between compound nucleus states and scat-
tering states, or between a wavepacket in a slightly
dispersive medium and infinite periodic waves.
Although the scattering states or the periodic waves
may be mathematically a more exact description
than the compound nucleus or the wavepacket,
the latter may be more useful in practice. In the case
of instabilities such as we are discussing it is es-
pecially unrealistic to ask for precise normal modes;
any mode which preserves its form for many growth
periods is permissible since after many periods the
system is in any case out of the linear phase. In this
respect the fact that the concept of convective cells
retains its usefulness in the nonlinear phase of
ordinary convective instability may suggest a similar
utility of the twisted convective cells in the present
problem.

The importance of “ quasi-modes” for plasma loss
is the following. The growth rate of conventional
G-modes suggests that they would have a significant
effect on plasma containment, however, the localized
nature of these modes makes it difficult to under-
stand exactly how they contribute to plasma loss.
For low $ the growth rate p ~ gn/h°, where & is a
measure of the mode height, and if we assume that
each G-mode corresponds to an eddy of height » and
velocity hp, the eddy diffusion coefficient is ~g8n
which is of the same order as the classical diffusion.
However the present results show that the G-modes
may be combined coherently into extended quasi-
modes which can greatly enhance the plasma loss.
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