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TENTATIVE COURSE OUTLINE

LECTURE NUMBER TOPIC QUIZ SUBJECT ASSIGNED PROBLEMS
(Start Date) (Date)
1-3 Electric Charge and Field, Chapter 23 Ch. 23:1, 11, 19, 22, 24, 30, 39,
(Jan. 9) Coulomb’s Law, Ch. 23 (Jan. 13) 46, 48, 59, 68, 78
4-6 Gauss’s Law, Ch. 24 Chapter 24 Ch. 24:9, 10, 19, 28, 31, 49, 54, 63
(Jan. 16) (Jan. 20)
7-9 Electric Potential, Ch. 25 Chapter 25 Ch. 25: 8, 11, 28, 35, 39, 50
(Jan. 23) (Jan. 27)
10-12 Capacitance, Ch 26 Chapters 26, 27 Ch. 26: 15, 36, 37, 46, 54
(Jan. 30) Current, Ch. 27 (Feb. 3) Ch. 27: 10, 36, 39, 50, 71
13-15 Curcuits, Ch. 28 Chapter 28 Ch. 28: 22, 25, 26, 29, 31, 43, 55
(Feb. 6) (Feb. 10)
16-18 Magnetic Field, Chapter 29 Ch. 29: 13, 22, 27, 36, 38, 53
(Feb. 13) Ch. 29 (Feb. 17)
19-21 Sources of Magnetic Field, Chapter 30 Ch. 30: 10, 15, 17, 23, 24, 35, 36,
(Feb. 20) Ch. 30 (Feb. 24) 40, 45, 57
22-24 Induction, Ch. 31 Chapters 30, 31 Ch. 31: 13, 14, 17, 21, 25, 27, 29,
(Feb. 27) Inductors, Ch. 32 (Mar. 3) 32, 34, 35
Ch. 32:5,9, 22, 36, 55, 66, 71
25-27 Alternating Currents, Ch. 33 Chapters 32, 33 Ch. 33:5, 11, 18, 23, 30, 39, 45, 60
(Mar. 6) (Mar. 10)
28-30 Maxwell's Equations, Ch. 34 No Quiz Ch.34:1,2,3,4,5

(Mar. 13)




Charge,
Coulomb’s Law,
and Electric Field

Lectures 1,2, 3



The Forces of Nature

The Strong Force: (which your book calls the color force
because there are three charges: red, green, and blue).
This is the force between quarks and gluons that holds atomic
atomic nuclei together.

The Electromagnetic Force: about 100 times weaker than the strong force;
two charges: plus and minus.

The Weak Force: about 20 orders of magnitude weaker than electricity;
responsible for nuclear beta decay, changes neutrons
to protons and vice versa. This is how neutrinos interact.

Gravitation: the weakest force by far! About 39 orders of magnitude weaker
than electricity!



Overview of Electromagnetism

Greeks note that rubbing materials can cause them to attract/repel
and they note that certain stones from “Magnesia’ attract iron.

18th century “parlor tricks”
Franklin figures out that there are two kinds of electric charge.

19th century: Faraday performs revealing experiments

Maxwell discovers equations which unify electricity and
magnetism and lead to the prediction of electromagnetic
waves and the development of Einstein’s relativity.

20th century: Relativity, the photoelectric effect, quantum mechanics,
all lead to the development of quantum electrodynamics.

Unification of the electromagnetic and weak interactions.

21st century: ?

Technological Revolution



9
Coulomb’s Law
Like charges repel, opposite charges attract; net electric charge is conserved.
We will label the two Kinds of charge as either positive or negative.

Then the force between two point charges is:

the force exerted on charge q,

F _ kq 1 qz/l} by the charge q,
12— p)
r

q1 F Q2i;
il

F — uni -
© = © = unit vector = ‘r‘

unit vector points from q,
towards q,

- >



Coulomb’s Constant

. 2
L _90xi0® M
4e, C

k =

Where the unit of charge that we will use is the Coulomb:

1C =~ 6.241x10" elementary charges

C2

c‘permittiVity” constant 80 ~ 8 . 8 5 X 1 0—12

N - m’



The Shocking Truth About Electricity

The electric force is phenomenally strong!

Consider a comparison between the electric and gravitational forces
acting between the electron and the proton in a hydrogen atom.

proton

r~10"" m

electron

M, ~938.26 MeV/c*
m, ~0.511 MeV/c?

Gravitational M m _ _
o Fy = G—5—=~10""Joule m"
r

Electric FE _ 1 QPQe

-8 -1
Force ; ~ 107 Joule m

dme, 1

Q, = +1 elementary charge =~ +1.6022 x 10" Coulomb
g, = -1 elementary charge ~-1.6022 x10™"” Coulomb



The Electric Field

It is convenient to define the ELECTRIC FIELD at a point as the force per unit
(positive) charge, so we can determine the force on any magnitude of charge at
that point as qE:

What are the dimensions of Electric Field?

N J Volts
E—E [‘E‘]_C_mC_ m
q

Volt = Joule =l
Coulomb C




Brief Review: Vectors in 2 Dimensions
r =xi+ yj

2
e r=rr
>

rE‘r‘=\/ﬁ=\/x2+y2
r = A
=r/r= (\/x +y ) +(\/x2+y2)J

I' is a unit vector alongr, sor-r =1

~ X X - axis

unit vectors point along positive x and y axes

A A o\

i-i=j-j=1 and i-j=0

A A




inner (scalar) product of two vectors

oy

A=(A,)i+(A))
X -component A = projection along x - axis =A - i

y -component A = projection along y - axis =A - j

A

B=(Bx)f+(By)j

x -component B, = projection along x - axis =B~ i

y -component B = projection along y - axis =B- 3

inner product
A-B=AB +AB
_|A[Blcos®

where 01s the angle

between the two vectors




Point Charges and the Superposition Principle

Electric forces simply add vectorially.

The TOTAL FORCE on the object is just
the VECTOR SUM of the individual
forces.

Example: What is the force on q

when both ql and g2 are

present??

kQq a 2 y
F = i+

0 az"')’z _\/az+y2 \/az+y2
kQq(2a)
Ftotal force on QO = q>0 + Fq<0 = 2 ) 3/2 1

(a +y )
kQq a y ooa
F, o= 1 - J
q a2+y2_\/a2+y2 \/a2+y2 _

A

J




Example: Problem 11, Chapter 23:

A proton is on the x-axis at x = 1.6 nm. An electron is on the y-axis at y = (0.85 nm.
Find the net force the two exert on a helium(He) nucleus (charge +2¢) at the origin.

Solution: draw a picture; set up the algebra; plug in the numbers with their
units/dimensions; cancel out and re-work units to the final units and make sure
they make sense!

é ‘;;c :f;f:::eoixg:?ucleus: F . = k(—e)(+2e) (_j) _ k(zez) j
-~ , - -
le=1.602 10—19 C e,He e.He
© rf =TTy (9%10° N % /¢/2)2(1.602 x107"° ;Z)z A
\ -0.85x10° m - (0.85 %10 ) J

® .

£ ~(6.38x107°N)j=(0.638 nN)j

Vector force exerted
by proton on He nucleus:

L k(+e)(+2e) (_?) ) k(2¢%) (_¢)z (9x10° N W /¢*)2(1.602x 107 £’ i

= 1 1
He 2 2 _ 2
’ I e T He (1.6x10™

A
[

F,=F. . +F . ~(-0.18 nN)i +(0.638 nN);

~(~0.180 nN)i



Vectors in 3 Dimensions

A simple generalization of what we just did
in the examples in two dimensions!



At a particular point in space x, y, z,
the (vector) force on a point particle
with charge ¢ is

F =qE(x,y,2)

So, you can think of a vector residing at each point in space.

Of course, the vector will have three components:

a scalar function E (x, y, z), the component along the x-direction;
a scalar function E (x, y, z), the component along the y-direction;
a scalar function E (x, y, z), the component along the z-direction.

E(x,y,2) = E . (x,y,2)i + E (x,5,2)] + E.(x,y,2)k



kq X A y
2 2 2 2l+ 2
y +2 \/x +yV +2Z \/x +yV +Z
Z-axis
A

X-axis




The radius vector from the origin to point (x, y, z) is
r=rr=uxi+yj+zk
X 2 2 < 2
2 2 2l+ 2 yz 2J+ 2 2 2k
\/x +y +z2 \/x +y +2 \/x +y +2

r=‘r‘=\/x2+y2+z2

r =

Remember your vector algebra. ..

r'r=rrr=r=x"+y +2
r-r=1

ii=j j=k- k=1
;j=;lA(=le(=0



inner (scalar) product of two vectors

A=(A)i+(A)j+(A )k
X -component A = projection along x - axis =A - i
y -component A = projection along y - axis =A - j

z-component A, = projection along z - axis = A - k

A

B=(B,)i+(B,)j+(B.)k
X -component B, = projection along x - axis =B i
y -component B = projection along y - axis =B- j

z-component B, = projection along z - axis =B- k

inner product
A-B=AB +AB +AB where 0 is the angle
_ ‘ AHB‘ cos O between the two vectors




The Electric Field of a Point Charge ¢g <0

A positive charge
causes E field in

‘ . ) opposite direction,
ie. outward.



The Electric Field from a Distribution of Point Charges

Again, simply use the superposition principle.

To find the Electric Field at a given point in space,
simply add up the contributions from each individual charge.

Calculate the Electric Field contribution from each
one of these charges as if the other ones didn’t exist.

E-E +E,+E .+ - - EE Ekql



Example:  Electric Dipole

Two (point) charges of equal magnitude but opposite sign
at a fixed separation.

Y
E, Bo=d | & §. Y
T d Y ey iy
kq(2a) 2
Etotal = Eq>0 q<0 = 2 3 3/2 1
E (a%+?)
y 7 qu%a)ifory >>
y
r
Bo=td | & § 2 ;
g Y g Ty i ey iy
- L\ & X
X =-qa X=da



The Dipole Moment is defined to be the
vector with magnitude p=¢q d
that points from the negative toward the positive charge.

A

T+C]@
d p=qgdk

p
_v__q@

Z-aXis




Example:
Molecules can be overall charge neutral
but may nevertheless possess an electric
dipole moment.

The classic example is the water molecule.

dipole moment p



Continuous Distributions of Charge

Of course, real materials are composed of point-like electrons, protons, and neutrons.
The protons and electrons can be regarded, for our purposes, as positive
and negative point charges, respectively.

Any macroscopic object will contain ~ 10?4 particles, however. In this case

we can approximate the distribution of charge as continuous across the volume of the
object, given locally by a volume charge density r

(with dimensions Coulombs per unit volume, or C/m? ).

Likewise, for charge spread out over a surface, we can define a

surface charge density s (with dimensions Coulombs per unit area, or C/m? ).
For charge spread out along a line (e.g., an extremely thin wire)

we can define a line charge density | (with dimensions Coulombs per

unit length, or C/m).

Then the increment in charge associated with an increment in volume, area, or length is:

dg=pdV, dg=0dA, dqg=Adx



With the charge in an object broken down into particles or small increments
dg, we can employ the superposition principle to find the Electric Field
at any position.

kdqg .
rzqr
E=de=fkdqf~

2
r

JdE =




Example: a uniformly charged rod of length ! and charge Q.
Find the electric field on the rod axis at distance b.

dg=Adx= % dx
L
| O
Q Q
kdqg ; E(x=0)?
dE = 2q 1 —(PX—)b X-axis
X A
. hkdg ! Check if
L= f 2 makes sense:
op X
~b
A A 1 1 If b>>1
E=i fk—dex=ik—Q—— )
gy 2 [ b (b+]) Ezk—ZQ;
_;_ko ’
b+ 1) Point charge




Example: a uniformly charged ring of radius a and charge Q.
Find the electric field on the axis through the ring.

Assume that the ring is very thin so that we can regard the charge distribution
on it as being a “line charge.” Then the “charge density” (charge per unit length)

is| =0/2pa).
dE ak = rzqr
YO « dE .
e aE. =kr62lqcose
X L dE _ kdq X
rai e
Q kx d kx
dq=)hds=%ds E=|E|=frin dEx=f ) 33/2= . »\3/2 qu
g ring(-x + a ) (x + d ) ring
kx 2ma Q kXQ
_ 2 ds =
(x2+a2)3/2 fo 210 > (x2+a2)3/2



Example: continued . . .

Suppose the ring of radius 1 m carries a uniformly distributed charge of 0.01 C.
What is the electric field a distance 8 m from the center of the ring and along
the center line?

Well this meets the conditions of what we had just derived. We saw that the
electric field points along the center line and has magnitude:

kx dg kx
E=E|=| dE = - ‘
| | fring X r;{;(xg . a2)3/2 (X2 n a2)3/2 r;{; q

kX2)3/2f2na ) Js— kx O

3/2
0 2J[a (XZ + a2)

(x2+a
L _[0x10° N /)8 m)001C) N (/) N o
. e

(8 m)" +(1m)']

065

N _ Joule ~ Volt

~1.37x1 = —
C mC m

note :



Kinematics and Dynamics of Matter in Electric Fields

For point particles of mass m and charge ¢ in an Electric Field E we have

force F=qE
and Newton's law relating force and acceleration F = ma ,

implying that a = %E

For example, a uniform(constant in magnitude and direction
in some region of space) electric field produces a constant acceleration
of a particle.



The Interaction of a Dipole with a uniform Electric Field

E e
yd

d/@/gg 7, =5d q Esin0
/ , +

T_=2d g Esin6 - e P

T=pxK

The torque acts to try to line up the dipole along the field.



Calculate the work required to rotate a dipole from a
position orthogonal to the Electric Field direction
to a new angle g with respect to the field orientation.

0 0 ,
W = f%rd0= f%pE sinf d6 = — pE cosH

Associate this work with a change in a potential energy
which we can define as

U=-p-E=-pE cosl



Conductors, Insulators, and Dielectrics

Materials in which (some) electrons are free to move in response to an
applied electric field we term conductors.

Insulators are materials where charges are not free to flow as large scale
electric currents.

However, the molecules in insulators may be able

to respond to an applied electric field, for example,

lining up the intrinsic dipole moments of these molecules. Molecules
without intrinsic dipole moments may acquire induced dipole moments
in response to the electric field. In either case, we call these

Substances dielectrics.



