
Chapter 1

Introduction to Dynamics

1.1 Introduction and Review

Dynamics is the science of how things move. A complete solution to the motion of a
system means that we know the coordinates of all its constituent particles as functions
of time. For a single point particle moving in three-dimensional space, this means
we want to know its position vector r(t) as a function of time. If there are many
particles, the motion is described by a set of functions ri(t), where i labels which
particle we are talking about. So generally speaking, solving for the motion means
being able to predict where a particle will be at any given instant of time. Of course,
knowing the function ri(t) means we can take its derivative and obtain the velocity
vi(t) = dri/dt at any time as well.

The complete motion for a system is not given to us outright, but rather is encoded
in a set of differential equations, called the equations of motion. An example of an
equation of motion is

m
d2x

dt2
= −mg (1.1)

with the solution
x(t) = x0 + v0t− 1

2
gt2 (1.2)

where x0 and v0 are constants. This describes the vertical motion of a particle of
mass m moving near the earth’s surface.

In this class, we shall discuss a general framework by which the equations of mo-
tion may be obtained, and methods for solving them. That “general framework” is
Lagrangian Dynamics, which itself is really nothing more than an elegant restatement
of Isaac Newton’s Laws of Motion.
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1.1.1 Newton’s Laws

Aristotle held that objects move because they are somehow impelled to seek out their
natural state. Thus, a rock falls because rocks belong on the earth, and flames rise
because fire belongs in the heavens. To paraphrase Wolfgang Pauli, such notions are
so vague as to be “not even wrong.” It was only with the publication of Newton’s
Principia in 1687 that a theory of motion which had detailed predictive power was
developed.

Newton’s three Laws of Motion may be stated as follows:

I. A body remains in uniform motion unless acted on by a force.

II. Force equals rate of change of momentum: F = dp/dt.

III. Any two bodies exert equal and opposite forces on each other.

Newton’s First Law states that a particle will move in a straight line at constant
(possibly zero) velocity if it is subjected to no forces. Now this cannot be true in
general, for suppose we encounter such a “free” particle and that indeed it is in
uniform motion, so that r(t) = r0 + v0t. Now r(t) is measured in some coordinate
system, and if instead we choose to measure r(t) in a different coordinate system
whose origin R moves according to the function R(t), then in this new “frame of
reference” the position of our particle will be

r′(t) = r(t)−R(t)

= r0 + v0t−R(t) . (1.3)

If the acceleration d2R/dt2 is nonzero, then merely by shifting our frame of reference
we have apparently falsified Newton’s First Law – a free particle does not move in
uniform rectilinear motion when viewed from an accelerating frame of reference. Thus,
together with Newton’s Laws comes an assumption about the existence of frames of
reference – called inertial frames – in which Newton’s Laws hold. A transformation
from one frame K to another frame K′ which moves at constant velocity V relative to
F is called a Galilean transformation. The equations of motion of classical mechanics
are invariant (do not change) under Galilean transformations.

At first, the issue of inertial and noninertial frames is confusing. Rather than
grapple with this, we will try to build some intuition by solving mechanics prob-
lems assuming we are in an inertial frame. The earth’s surface, where most physics
experiments are done, is not an inertial frame, due to the centripetal accelerations
associated with the earth’s rotation about its own axis and its orbit around the sun.
In this case, not only is our coordinate system’s origin – somewhere in a laboratory
on the surface of the earth – accelerating, but the coordinate axes themselves are
rotating with respect to an inertial frame. The rotation of the earth leads to ficti-
tious “forces” such as the Coriolis force, which have large-scale consequences. For
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example, hurricanes, when viewed from above, rotate counterclockwise in the north-
ern hemisphere and clockwise in the southern hemisphere. Later on in the course we
will devote ourselves to a detailed study of motion in accelerated coordinate systems.

Newton’s “quantity of motion” is the momentum p, defined as the product p = mv
of a particle’s mass m (how much stuff there is) and its velocity (how fast it is moving).
In order to convert the Second Law into a meaningful equation, we must know how
the force F depends on the coordinates (or possibly velocities) themselves. This is
known as a force law. Examples of force laws include:

Constant force: F = −mg

Hooke’s Law: F = −kx

Gravitation: F = −GMm r̂/r2

Lorentz force: F = q E + q
v

c
×B

Fluid friction (v small): F = −b v .

Note that for an object whose mass does not change we can write the Second Law
in the familiar form F = ma, where a = dv/dt = d2r/dt2 is the acceleration. Most
of our initial efforts will lie in using Newton’s Second Law to solve for the motion of
a variety of systems.

The Third Law is valid only for the extremely important case of central forces
which we will discuss in great detail later on. Newtonian gravity – the force which
makes the planets orbit the sun – is a central force. One consequence of the Third
Law is that in free space two isolated particles will accelerate in such a way that
F1 = −F2 and hence the accelerations are parallel to each other, with

a1

a2

= −m2

m1

, (1.4)

where the minus sign is used here to emphasize that the accelerations are in opposite
directions. We can also conclude that the total momentum P = p1 +p2 is a constant,
a result known as the conservation of momentum.

1.1.2 Aside : Inertial vs. Gravitational Mass

In addition to postulating the Laws of Motion, Newton also deduced the gravitational
force law, which says that the force Fij exerted by a particle i by another particle j
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is

Fij = −Gmimj

ri − rj

|ri − rj|3
, (1.5)

where G, the Cavendish constant (first measured by Henry Cavendish in 1798), takes
the value

G = (6.6726± 0.0008)× 10−11N ·m2/kg2 . (1.6)

Notice Newton’s Third Law in action: Fij + Fji = 0. Now a very important and
special feature of this “inverse square law” force is that a spherically symmetric mass
distribution has the same force on an external body as it would if all its mass were
concentrated at its center. Thus, for a particle of mass m near the surface of the
earth, we can take mi = m and mj = Me, with ri − rj ' Rer̂ and obtain

F = −mgr̂ ≡ −mg (1.7)

where r̂ is a radial unit vector pointing from the earth’s center and g = GMe/R
2
e '

9.8 m/s2 is the acceleration due to gravity at the earth’s surface. Newton’s Second
Law now says that a = −g, i.e. objects accelerate as they fall to earth. However,
it is not a priori clear why the inertial mass which enters into the definition of
momentum should be the same as the gravitational mass which enters into the force
law. Suppose, for instance, that the gravitational mass took a different value, m′. In
this case, Newton’s Second Law would predict

a = −m′

m
g (1.8)

and unless the ratio m′/m were the same number for all objects, then bodies would
fall with different accelerations . The experimental fact that bodies in a vacuum fall
to earth at the same rate demonstrates the equivalence of inertial and gravitational
mass, i.e. m′ = m.

1.2 Examples of Motion in One Dimension

To gain some experience with solving equations of motion in a physical setting, we
consider some physically relevant examples of one-dimensional motion.

1.2.1 Uniform Force

With F = −mg, appropriate for a particle falling under the influence of a uniform
gravitational field, we have m d2x/dt2 = −mg, or ẍ = −g. Notation:

ẋ ≡ dx

dt
, ẍ ≡ d2x

dt2
,

˙̈̈
ẍ =

d7x

dt7
, etc. (1.9)
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With v = ẋ, we solve dv/dt = −g:

v(t)∫
v(0)

dv =

t∫
0

ds (−g) (1.10)

v(t)− v(0) = −gt . (1.11)

Note that there is a constant of integration, v(0), which enters our solution.

We are now in position to solve dx/dt = v:

x(t)∫
x(0)

dx =

t∫
0

ds v(s) (1.12)

x(t) = x(0) +

t∫
0

ds
[
v(0)− gs

]
(1.13)

= x(0) + v(0)t− 1
2
gt2 . (1.14)

Note that a second constant of integration, x(0), has appeared.

1.2.2 Uniform force with linear frictional damping

In this case,

m
dv

dt
= −mg − γv (1.15)

which may be rewritten

dv

v + mg/γ
= − γ

m
dt (1.16)

d ln(v + mg/γ) = −(γ/m)dt . (1.17)

Integrating then gives

ln

(
v(t) + mg/γ

v(0) + mg/γ

)
= −γt/m (1.18)

v(t) = −mg

γ
+

(
v(0) +

mg

γ

)
e−γt/m . (1.19)

Note that the solution to the first order ODE mv̇ = −mg − γv entails one constant
of integration, v(0).
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One can further integrate to obtain the motion

x(t) = x(0) +
m

γ

(
v(0) +

mg

γ

)
(1− e−γt/m)− mg

γ
t . (1.20)

The solution to the second order ODE mẍ = −mg− γẋ thus entails two constants of
integration: v(0) and x(0). Notice that as t goes to infinity the velocity tends towards
the asymptotic value v = −v∞, where v∞ = mg/γ. This is known as the terminal
velocity. Indeed, solving the equation v̇ = 0 gives v = −v∞. The initial velocity is
effectively “forgotten” on a time scale τ ≡ m/γ.

Electrons moving in solids under the influence of an electric field also achieve a
terminal velocity. In this case the force is not F = −mg but rather F = −eE, where
−e is the electron charge (e > 0) and E is the electric field. The terminal velocity is
then obtained from

v∞ = eE/γ = eτE/m . (1.21)

The current density is a product:

current density = (number density)× (charge)× (velocity)

j = n · (−e) · (−v∞)

=
ne2τ

m
E . (1.22)

The ratio j/E is called the conductivity of the metal, σ. According to our the-
ory, σ = ne2τ/m. This is one of the most famous equations of solid state physics!
The dissipation is caused by electrons scattering off impurities and lattice vibrations
(“phonons”). In high purity copper at low temperatures (T <∼ 4 K), the scattering
time τ is about a nanosecond (τ ≈ 10−9 s).

1.2.3 Uniform force with quadratic frictional damping

At higher velocities, the frictional damping is proportional to the square of the ve-
locity. The frictional force is then Ff = −cv2 sgn (v), where sgn (v) is the sign of
v: sgn (v) = +1 if v > 0 and sgn (v) = −1 if v < 0. (Note one can also write
sgn (v) = v/|v| where |v| is the absolute value.) Why all this trouble with sgn (v)?
Because it is important that the frictional force dissipate energy, and therefore that
Ff be oppositely directed with respect to the velocity v. We will assume that v < 0
always, hence Ff = +cv2.

Notice that there is a terminal velocity, since setting v̇ = −g + (c/m)v2 = 0 gives
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v = ±v∞, where v∞ =
√

mg/c. One can write the equation of motion as

dv

dt
=

g

v2
∞

(v2 − v2
∞) (1.23)

and using
1

v2 − v2
∞

=
1

2v∞

[
1

v − v∞
− 1

v + v∞

]
(1.24)

we obtain

dv

v2 − v2
∞

=
1

2v∞

dv

v − v∞
− 1

2v∞

dv

v + v∞

=
1

2v∞
d ln

(
v∞ − v

v∞ + v

)
=

g

v2
∞

dt . (1.25)

Assuming v(0) = 0, we integrate to obtain

1

2v∞
ln

(
v∞ − v(t)

v∞ + v(t)

)
=

gt

v2
∞

(1.26)

which may be massaged to give the final result

v(t) = −v∞ tanh(gt/v∞) . (1.27)

Recall that the hyperbolic tangent function tanh(x) is given by

tanh(x) =
sinh(x)

cosh(x)
=

ex − e−x

ex + e−x
. (1.28)

Again, as t →∞ one has v(t) → −v∞, i.e. v(∞) = −v∞.

Advanced Digression: To gain an understanding of the constant c, consider a flat
surface of area S moving through a fluid at velocity v (v > 0). During a time ∆t,
all the fluid molecules inside the volume ∆V = S · v∆t will have executed an elastic
collision with the moving surface. Since the surface is assumed to be much more
massive than each fluid molecule, the center of mass frame for the surface-molecule
collision is essentially the frame of the surface itself. If a molecule moves with velocity
u is the laboratory frame, it moves with velocity u − v in the center of mass (CM)
frame, and since the collision is elastic, its final CM frame velocity is reversed, to
v − u. Thus, in the laboratory frame the molecule’s velocity has become 2v − u and
it has suffered a change in velocity of ∆u = 2(v − u). The total momentum change
is obtained by multiplying ∆u by the total mass M = %∆V , where % is the mass
density of the fluid. But then the total momentum imparted to the fluid is

∆P = 2(v − u) · % S v∆t (1.29)
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and the force on the fluid is

F =
∆P

∆t
= 2S % v(v − u) . (1.30)

Now it is appropriate to average this expression over the microscopic distribution of
molecular velocities u, and since on average 〈u〉 = 0, we obtain the result 〈F 〉 = 2S%v2,
where 〈· · · 〉 denotes a microscopic average over the molecular velocities in the fluid.
(There is a subtlety here concerning the effect of fluid molecules striking the surface
from either side – you should satisfy yourself that this derivation is sensible!) Newton’s
Third Law then states that the frictional force imparted to the moving surface by the
fluid is Ff = −〈F 〉 = −cv2, where c = 2S%. In fact, our derivation is too crude to
properly obtain the numerical prefactors, and it is better to write c = µ%S, where µ
is a dimensionless constant which depends on the shape of the moving object.

1.2.4 Crossed Electric and Magnetic Fields

Consider now a three-dimensional example of a particle of charge q moving in mutually
perpendicular E and B fields. We’ll throw in gravity for good measure. We take
E = Ex̂, B = Bẑ, and g = −gẑ. The equation of motion is Newton’s 2nd Law
again:

m r̈ = mg + qE + q
c
ṙ ×B . (1.31)

The RHS (right hand side) of this equation is a vector sum of the forces due to gravity
plus the Lorentz force of a moving particle in an electromagnetic field. In component
notation, we have

mẍ = qE +
qB

c
ẏ (1.32)

mÿ = −qB

c
ẋ (1.33)

mz̈ = −mg . (1.34)

The equations for coordinates x and y are coupled, while that for z is independent
and may be immediately solved to yield

z(t) = z(t) + ż(0) t− 1
2
gt2 . (1.35)

The remaining equations may be written in terms of the velocities vx = ẋ and vy = ẏ:

v̇x = ωc(vy + uD) (1.36)

v̇y = −ωc vx , (1.37)
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where ωc = qB/mc is the cyclotron frequency and uD = cE/B is the drift speed for
the particle. As we shall see, these are the equations for a harmonic oscillator. The
solution is

vx(t) = vx(0) cos(ωct) +
(
vy(0) + uD

)
sin(ωct) (1.38)

vy(t) = −uD +
(
vy(0) + uD

)
cos(ωct)− vx(0) sin(ωct) . (1.39)

Integrating again, the full motion is given by:

x(t) = x(0) + A sin δ + A sin(ωct− δ) (1.40)

y(r) = y(0)− uD t− A cos δ + A cos(ωct− δ) , (1.41)

where

A =
1

ωc

√
ẋ2(0) +

(
ẏ(0) + uD

)2
, δ = tan−1

(
ẏ(0) + uD

ẋ(0)

)
. (1.42)

Thus, in the full solution of the motion there are six constants of integration:

x(0) , y(0) , z(0) , A , δ , ż(0) . (1.43)

Of course instead of A and δ one may choose as constants of integration ẋ(0) and
ẏ(0).

1.3 Pause for Reflection

In mechanical systems, for each coordinate, or “degree of freedom,” there exists a
corresponding second order ODE. The full solution of the motion of the system entails
two constants of integration for each degree of freedom.

1.4 Phase Space Dynamics

Dynamics is the study of motion through phase space. For our purposes, we will take
ϕ = (ϕ1, . . . , ϕN) to be an N -tuple, i.e. a point in RN . The equation of motion is
then

d

dt
ϕ(t) = V

(
ϕ, t

)
. (1.44)

Note that any N th order ODE, of the general form

dNx

dtN
= H

(
x,

dx

dt
, . . . ,

dN−1x

dtN−1

)
, (1.45)
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may be represented by the first order system ϕ̇ = V (ϕ). To see this, define ϕk =

dk−1x/dtk−1, with k = 1, . . . , N . Thus, for j < N we have ϕ̇j = ϕj+1, and ϕ̇N = f . In
other words,

ϕ̇︷ ︸︸ ︷
d

dt


ϕ1
...

ϕN−1

ϕN

=

V (ϕ)︷ ︸︸ ︷
ϕ2
...

ϕN

F
(
ϕ1, . . . , ϕN

)
 . (1.46)

Mechanical systems are dynamical systems. We have for each ‘generalized coordi-
nate’ qi an equation of motion of the form

q̈σ = Qσ(q1, . . . , qK ; q̇1, . . . , q̇K) , (1.47)

where K is the number of degrees of freedom the system possesses. If there are no
constraints, K = N · d, where N is the number of particles and d is the dimension of
space. If we then identify

ϕσ = qσ , ϕσ+K = q̇σ , (1.48)

and
Vσ = q̇σ , Vσ+K = Qσ

(
{qν}; {q̇ν}

)
, (1.49)

for σ = 1, . . . , K, then we arrive at the general form of eqn. 1.44 for a dynamical
system, with N = 2K.

In autonomous cases, where V (ϕ, t) = V (ϕ) alone, V (ϕ) is called a vector field
over the phase space. A solution ϕ(t) to the dynamical system of eqn. 1.44 is called
an integral curve. It entails N constants of integration, i.e. ϕ(0). The set of all
integral curves is called the phase flow of the dynamical system.

1.4.1 Existence/Uniqueness/Extension Theorems

Theorem : Given ϕ̇ = V (ϕ) and ϕ(0), if each V (ϕ) is a smooth vector field over
some open set D ∈ RN , then for ϕ(0) ∈ D the initial value problem has a solution
on some finite time interval (−τ, +τ) and the solution is unique. Furthermore, the
solution has a unique extension forward or backward in time, either indefinitely or
until ϕ(t) reaches the boundary of D.

Corollary : Different trajectories never intersect!
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1.4.2 Linear Differential Equations

A homogeneous linear N th order ODE,

dNx

dtN
+ cN−1

dN−1x

dtN−1
+ . . . + c1

dx

dt
+ c0 x = 0 (1.50)

may be written in matrix form, as

d

dt


ϕ1

ϕ2
...

ϕN

 =

M︷ ︸︸ ︷
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...

−c0 −c1 −c2 · · · −cN−1




ϕ1

ϕ2
...

ϕN

 . (1.51)

Thus,
ϕ̇ = Mϕ , (1.52)

and if the coefficients ck are time-independent, i.e. the ODE is autonomous , the
solution is obtained by exponentiating the constant matrix Q:

ϕ(t) = exp(Mt) ϕ(0) ; (1.53)

the exponential of a matrix may be given meaning by its Taylor series expansion. If
the ODE is not autonomous, then M = M(t) is time-dependent, and the solution is
given by the ‘path-ordered exponential’,

ϕ(t) = P exp

{ t∫
0

dt′ M(t′)

}
ϕ(0) , (1.54)

As defined, the equation ϕ̇ = V (ϕ) is autonomous, since gt depends only on t and on
no other time variable. However, by extending the phase space from M to R ×M,
which is of dimension (N + 1), one can describe arbitrary time-dependent ODEs.
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