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Chapter 1

Introduction to Dynamics

1.1 Introduction and Review

Dynamics is the science of how things move. A complete solution to the motion of a
system means that we know the coordinates of all its constituent particles as functions
of time. For a single point particle moving in three-dimensional space, this means
we want to know its position vector r(t) as a function of time. If there are many
particles, the motion is described by a set of functions ri(t), where i labels which
particle we are talking about. So generally speaking, solving for the motion means
being able to predict where a particle will be at any given instant of time. Of course,
knowing the function ri(t) means we can take its derivative and obtain the velocity
vi(t) = dri/dt at any time as well.

The complete motion for a system is not given to us outright, but rather is encoded
in a set of differential equations, called the equations of motion. An example of an
equation of motion is

m
d2x

dt2
= −mg (1.1)

with the solution
x(t) = x0 + v0t− 1

2
gt2 (1.2)

where x0 and v0 are constants. This describes the vertical motion of a particle of
mass m moving near the earth’s surface.

In this class, we shall discuss a general framework by which the equations of mo-
tion may be obtained, and methods for solving them. That “general framework” is
Lagrangian Dynamics, which itself is really nothing more than an elegant restatement
of Isaac Newton’s Laws of Motion.
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1.1.1 Newton’s Laws

Aristotle held that objects move because they are somehow impelled to seek out their
natural state. Thus, a rock falls because rocks belong on the earth, and flames rise
because fire belongs in the heavens. To paraphrase Wolfgang Pauli, such notions are
so vague as to be “not even wrong.” It was only with the publication of Newton’s
Principia in 1687 that a theory of motion which had detailed predictive power was
developed.

Newton’s three Laws of Motion may be stated as follows:

I. A body remains in uniform motion unless acted on by a force.

II. Force equals rate of change of momentum: F = dp/dt.

III. Any two bodies exert equal and opposite forces on each other.

Newton’s First Law states that a particle will move in a straight line at constant
(possibly zero) velocity if it is subjected to no forces. Now this cannot be true in
general, for suppose we encounter such a “free” particle and that indeed it is in
uniform motion, so that r(t) = r0 + v0t. Now r(t) is measured in some coordinate
system, and if instead we choose to measure r(t) in a different coordinate system
whose origin R moves according to the function R(t), then in this new “frame of
reference” the position of our particle will be

r′(t) = r(t)−R(t)

= r0 + v0t−R(t) . (1.3)

If the acceleration d2R/dt2 is nonzero, then merely by shifting our frame of reference
we have apparently falsified Newton’s First Law – a free particle does not move in
uniform rectilinear motion when viewed from an accelerating frame of reference. Thus,
together with Newton’s Laws comes an assumption about the existence of frames of
reference – called inertial frames – in which Newton’s Laws hold. A transformation
from one frame K to another frame K′ which moves at constant velocity V relative to
F is called a Galilean transformation. The equations of motion of classical mechanics
are invariant (do not change) under Galilean transformations.

At first, the issue of inertial and noninertial frames is confusing. Rather than
grapple with this, we will try to build some intuition by solving mechanics prob-
lems assuming we are in an inertial frame. The earth’s surface, where most physics
experiments are done, is not an inertial frame, due to the centripetal accelerations
associated with the earth’s rotation about its own axis and its orbit around the sun.
In this case, not only is our coordinate system’s origin – somewhere in a laboratory
on the surface of the earth – accelerating, but the coordinate axes themselves are
rotating with respect to an inertial frame. The rotation of the earth leads to ficti-
tious “forces” such as the Coriolis force, which have large-scale consequences. For
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example, hurricanes, when viewed from above, rotate counterclockwise in the north-
ern hemisphere and clockwise in the southern hemisphere. Later on in the course we
will devote ourselves to a detailed study of motion in accelerated coordinate systems.

Newton’s “quantity of motion” is the momentum p, defined as the product p = mv
of a particle’s massm (how much stuff there is) and its velocity (how fast it is moving).
In order to convert the Second Law into a meaningful equation, we must know how
the force F depends on the coordinates (or possibly velocities) themselves. This is
known as a force law. Examples of force laws include:

Constant force: F = −mg

Hooke’s Law: F = −kx

Gravitation: F = −GMm r̂/r2

Lorentz force: F = qE + q
v

c
×B

Fluid friction (v small): F = −bv .

Note that for an object whose mass does not change we can write the Second Law
in the familiar form F = ma, where a = dv/dt = d2r/dt2 is the acceleration. Most
of our initial efforts will lie in using Newton’s Second Law to solve for the motion of
a variety of systems.

The Third Law is valid only for the extremely important case of central forces
which we will discuss in great detail later on. Newtonian gravity – the force which
makes the planets orbit the sun – is a central force. One consequence of the Third
Law is that in free space two isolated particles will accelerate in such a way that
F1 = −F2 and hence the accelerations are parallel to each other, with

a1

a2

= −m2

m1

, (1.4)

where the minus sign is used here to emphasize that the accelerations are in opposite
directions. We can also conclude that the total momentum P = p1 +p2 is a constant,
a result known as the conservation of momentum.

1.1.2 Aside : Inertial vs. Gravitational Mass

In addition to postulating the Laws of Motion, Newton also deduced the gravitational
force law, which says that the force Fij exerted by a particle i by another particle j
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is

Fij = −Gmimj

ri − rj

|ri − rj|3
, (1.5)

where G, the Cavendish constant (first measured by Henry Cavendish in 1798), takes
the value

G = (6.6726± 0.0008)× 10−11N ·m2/kg2 . (1.6)

Notice Newton’s Third Law in action: Fij + Fji = 0. Now a very important and
special feature of this “inverse square law” force is that a spherically symmetric mass
distribution has the same force on an external body as it would if all its mass were
concentrated at its center. Thus, for a particle of mass m near the surface of the
earth, we can take mi = m and mj = Me, with ri − rj ' Rer̂ and obtain

F = −mgr̂ ≡ −mg (1.7)

where r̂ is a radial unit vector pointing from the earth’s center and g = GMe/R
2
e '

9.8 m/s2 is the acceleration due to gravity at the earth’s surface. Newton’s Second
Law now says that a = −g, i.e. objects accelerate as they fall to earth. However,
it is not a priori clear why the inertial mass which enters into the definition of
momentum should be the same as the gravitational mass which enters into the force
law. Suppose, for instance, that the gravitational mass took a different value, m′. In
this case, Newton’s Second Law would predict

a = −m
′

m
g (1.8)

and unless the ratio m′/m were the same number for all objects, then bodies would
fall with different accelerations . The experimental fact that bodies in a vacuum fall
to earth at the same rate demonstrates the equivalence of inertial and gravitational
mass, i.e. m′ = m.

1.2 Examples of Motion in One Dimension

To gain some experience with solving equations of motion in a physical setting, we
consider some physically relevant examples of one-dimensional motion.

1.2.1 Uniform Force

With F = −mg, appropriate for a particle falling under the influence of a uniform
gravitational field, we have md2x/dt2 = −mg, or ẍ = −g. Notation:

ẋ ≡ dx

dt
, ẍ ≡ d2x

dt2
,

˙̈̈
ẍ =

d7x

dt7
, etc. (1.9)
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With v = ẋ, we solve dv/dt = −g:

v(t)∫
v(0)

dv =

t∫
0

ds (−g) (1.10)

v(t)− v(0) = −gt . (1.11)

Note that there is a constant of integration, v(0), which enters our solution.

We are now in position to solve dx/dt = v:

x(t)∫
x(0)

dx =

t∫
0

ds v(s) (1.12)

x(t) = x(0) +

t∫
0

ds
[
v(0)− gs

]
(1.13)

= x(0) + v(0)t− 1
2
gt2 . (1.14)

Note that a second constant of integration, x(0), has appeared.

1.2.2 Uniform force with linear frictional damping

In this case,

m
dv

dt
= −mg − γv (1.15)

which may be rewritten

dv

v +mg/γ
= − γ

m
dt (1.16)

d ln(v +mg/γ) = −(γ/m)dt . (1.17)

Integrating then gives

ln

(
v(t) +mg/γ

v(0) +mg/γ

)
= −γt/m (1.18)

v(t) = −mg
γ

+

(
v(0) +

mg

γ

)
e−γt/m . (1.19)

Note that the solution to the first order ODE mv̇ = −mg − γv entails one constant
of integration, v(0).
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One can further integrate to obtain the motion

x(t) = x(0) +
m

γ

(
v(0) +

mg

γ

)
(1− e−γt/m)− mg

γ
t . (1.20)

The solution to the second order ODE mẍ = −mg− γẋ thus entails two constants of
integration: v(0) and x(0). Notice that as t goes to infinity the velocity tends towards
the asymptotic value v = −v∞, where v∞ = mg/γ. This is known as the terminal
velocity. Indeed, solving the equation v̇ = 0 gives v = −v∞. The initial velocity is
effectively “forgotten” on a time scale τ ≡ m/γ.

Electrons moving in solids under the influence of an electric field also achieve a
terminal velocity. In this case the force is not F = −mg but rather F = −eE, where
−e is the electron charge (e > 0) and E is the electric field. The terminal velocity is
then obtained from

v∞ = eE/γ = eτE/m . (1.21)

The current density is a product:

current density = (number density)× (charge)× (velocity)

j = n · (−e) · (−v∞)

=
ne2τ

m
E . (1.22)

The ratio j/E is called the conductivity of the metal, σ. According to our the-
ory, σ = ne2τ/m. This is one of the most famous equations of solid state physics!
The dissipation is caused by electrons scattering off impurities and lattice vibrations
(“phonons”). In high purity copper at low temperatures (T <∼ 4 K), the scattering
time τ is about a nanosecond (τ ≈ 10−9 s).

1.2.3 Uniform force with quadratic frictional damping

At higher velocities, the frictional damping is proportional to the square of the ve-
locity. The frictional force is then Ff = −cv2 sgn (v), where sgn (v) is the sign of
v: sgn (v) = +1 if v > 0 and sgn (v) = −1 if v < 0. (Note one can also write
sgn (v) = v/|v| where |v| is the absolute value.) Why all this trouble with sgn (v)?
Because it is important that the frictional force dissipate energy, and therefore that
Ff be oppositely directed with respect to the velocity v. We will assume that v < 0
always, hence Ff = +cv2.

Notice that there is a terminal velocity, since setting v̇ = −g + (c/m)v2 = 0 gives
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v = ±v∞, where v∞ =
√
mg/c. One can write the equation of motion as

dv

dt
=

g

v2
∞

(v2 − v2
∞) (1.23)

and using
1

v2 − v2
∞

=
1

2v∞

[
1

v − v∞
− 1

v + v∞

]
(1.24)

we obtain

dv

v2 − v2
∞

=
1

2v∞

dv

v − v∞
− 1

2v∞

dv

v + v∞

=
1

2v∞
d ln

(
v∞ − v

v∞ + v

)
=

g

v2
∞
dt . (1.25)

Assuming v(0) = 0, we integrate to obtain

1

2v∞
ln

(
v∞ − v(t)

v∞ + v(t)

)
=

gt

v2
∞

(1.26)

which may be massaged to give the final result

v(t) = −v∞ tanh(gt/v∞) . (1.27)

Recall that the hyperbolic tangent function tanh(x) is given by

tanh(x) =
sinh(x)

cosh(x)
=
ex − e−x

ex + e−x
. (1.28)

Again, as t→∞ one has v(t) → −v∞, i.e. v(∞) = −v∞.

Advanced Digression: To gain an understanding of the constant c, consider a flat
surface of area S moving through a fluid at velocity v (v > 0). During a time ∆t,
all the fluid molecules inside the volume ∆V = S · v∆t will have executed an elastic
collision with the moving surface. Since the surface is assumed to be much more
massive than each fluid molecule, the center of mass frame for the surface-molecule
collision is essentially the frame of the surface itself. If a molecule moves with velocity
u is the laboratory frame, it moves with velocity u − v in the center of mass (CM)
frame, and since the collision is elastic, its final CM frame velocity is reversed, to
v − u. Thus, in the laboratory frame the molecule’s velocity has become 2v − u and
it has suffered a change in velocity of ∆u = 2(v − u). The total momentum change
is obtained by multiplying ∆u by the total mass M = %∆V , where % is the mass
density of the fluid. But then the total momentum imparted to the fluid is

∆P = 2(v − u) · % S v∆t (1.29)
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and the force on the fluid is

F =
∆P

∆t
= 2S % v(v − u) . (1.30)

Now it is appropriate to average this expression over the microscopic distribution of
molecular velocities u, and since on average 〈u〉 = 0, we obtain the result 〈F 〉 = 2S%v2,
where 〈· · · 〉 denotes a microscopic average over the molecular velocities in the fluid.
(There is a subtlety here concerning the effect of fluid molecules striking the surface
from either side – you should satisfy yourself that this derivation is sensible!) Newton’s
Third Law then states that the frictional force imparted to the moving surface by the
fluid is Ff = −〈F 〉 = −cv2, where c = 2S%. In fact, our derivation is too crude to
properly obtain the numerical prefactors, and it is better to write c = µ%S, where µ
is a dimensionless constant which depends on the shape of the moving object.

1.2.4 Crossed Electric and Magnetic Fields

Consider now a three-dimensional example of a particle of charge q moving in mutually
perpendicular E and B fields. We’ll throw in gravity for good measure. We take
E = Ex̂, B = Bẑ, and g = −gẑ. The equation of motion is Newton’s 2nd Law
again:

m r̈ = mg + qE + q
c
ṙ ×B . (1.31)

The RHS (right hand side) of this equation is a vector sum of the forces due to gravity
plus the Lorentz force of a moving particle in an electromagnetic field. In component
notation, we have

mẍ = qE +
qB

c
ẏ (1.32)

mÿ = −qB
c
ẋ (1.33)

mz̈ = −mg . (1.34)

The equations for coordinates x and y are coupled, while that for z is independent
and may be immediately solved to yield

z(t) = z(t) + ż(0) t− 1
2
gt2 . (1.35)

The remaining equations may be written in terms of the velocities vx = ẋ and vy = ẏ:

v̇x = ωc(vy + uD) (1.36)

v̇y = −ωc vx , (1.37)
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where ωc = qB/mc is the cyclotron frequency and uD = cE/B is the drift speed for
the particle. As we shall see, these are the equations for a harmonic oscillator. The
solution is

vx(t) = vx(0) cos(ωct) +
(
vy(0) + uD

)
sin(ωct) (1.38)

vy(t) = −uD +
(
vy(0) + uD

)
cos(ωct)− vx(0) sin(ωct) . (1.39)

Integrating again, the full motion is given by:

x(t) = x(0) + A sin δ + A sin(ωct− δ) (1.40)

y(r) = y(0)− uD t− A cos δ + A cos(ωct− δ) , (1.41)

where

A =
1

ωc

√
ẋ2(0) +

(
ẏ(0) + uD

)2
, δ = tan−1

(
ẏ(0) + uD

ẋ(0)

)
. (1.42)

Thus, in the full solution of the motion there are six constants of integration:

x(0) , y(0) , z(0) , A , δ , ż(0) . (1.43)

Of course instead of A and δ one may choose as constants of integration ẋ(0) and
ẏ(0).

1.3 Pause for Reflection

In mechanical systems, for each coordinate, or “degree of freedom,” there exists a
corresponding second order ODE. The full solution of the motion of the system entails
two constants of integration for each degree of freedom.

1.4 Phase Space Dynamics

Dynamics is the study of motion through phase space. For our purposes, we will take
ϕ = (ϕ1, . . . , ϕN) to be an N -tuple, i.e. a point in RN . The equation of motion is
then

d

dt
ϕ(t) = V

(
ϕ, t
)
. (1.44)

Note that any N th order ODE, of the general form

dNx

dtN
= H

(
x,
dx

dt
, . . . ,

dN−1x

dtN−1

)
, (1.45)
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may be represented by the first order system ϕ̇ = V (ϕ). To see this, define ϕk =

dk−1x/dtk−1, with k = 1, . . . , N . Thus, for j < N we have ϕ̇j = ϕj+1, and ϕ̇N = f . In
other words,

ϕ̇︷ ︸︸ ︷
d

dt


ϕ1
...

ϕN−1

ϕN

=

V (ϕ)︷ ︸︸ ︷
ϕ2
...

ϕN

F
(
ϕ1, . . . , ϕN

)
 . (1.46)

Mechanical systems are dynamical systems. We have for each ‘generalized coordi-
nate’ qi an equation of motion of the form

q̈σ = Qσ(q1, . . . , qK ; q̇1, . . . , q̇K) , (1.47)

where K is the number of degrees of freedom the system possesses. If there are no
constraints, K = N · d, where N is the number of particles and d is the dimension of
space. If we then identify

ϕσ = qσ , ϕσ+K = q̇σ , (1.48)

and
Vσ = q̇σ , Vσ+K = Qσ

(
{qν}; {q̇ν}

)
, (1.49)

for σ = 1, . . . , K, then we arrive at the general form of eqn. 1.44 for a dynamical
system, with N = 2K.

In autonomous cases, where V (ϕ, t) = V (ϕ) alone, V (ϕ) is called a vector field
over the phase space. A solution ϕ(t) to the dynamical system of eqn. 1.44 is called
an integral curve. It entails N constants of integration, i.e. ϕ(0). The set of all
integral curves is called the phase flow of the dynamical system.

1.4.1 Existence/Uniqueness/Extension Theorems

Theorem : Given ϕ̇ = V (ϕ) and ϕ(0), if each V (ϕ) is a smooth vector field over
some open set D ∈ RN , then for ϕ(0) ∈ D the initial value problem has a solution
on some finite time interval (−τ,+τ) and the solution is unique. Furthermore, the
solution has a unique extension forward or backward in time, either indefinitely or
until ϕ(t) reaches the boundary of D.

Corollary : Different trajectories never intersect!
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1.4.2 Linear Differential Equations

A homogeneous linear N th order ODE,

dNx

dtN
+ cN−1

dN−1x

dtN−1
+ . . .+ c1

dx

dt
+ c0 x = 0 (1.50)

may be written in matrix form, as

d

dt


ϕ1

ϕ2
...

ϕN

 =

M︷ ︸︸ ︷
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...

−c0 −c1 −c2 · · · −cN−1



ϕ1

ϕ2
...

ϕN

 . (1.51)

Thus,
ϕ̇ = Mϕ , (1.52)

and if the coefficients ck are time-independent, i.e. the ODE is autonomous , the
solution is obtained by exponentiating the constant matrix Q:

ϕ(t) = exp(Mt)ϕ(0) ; (1.53)

the exponential of a matrix may be given meaning by its Taylor series expansion. If
the ODE is not autonomous, then M = M(t) is time-dependent, and the solution is
given by the ‘path-ordered exponential’,

ϕ(t) = P exp

{ t∫
0

dt′M(t′)

}
ϕ(0) , (1.54)

As defined, the equation ϕ̇ = V (ϕ) is autonomous, since gt depends only on t and on
no other time variable. However, by extending the phase space from M to R ×M,
which is of dimension (N + 1), one can describe arbitrary time-dependent ODEs.
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Chapter 2

Systems of Particles

2.1 Work-Energy Theorem

Consider a system of many particles, with positions ri and velocities ṙi. The kinetic
energy of this system is

T =
∑

i

Ti =
∑

i

1
2
miṙ

2
i . (2.1)

Now let’s consider how the kinetic energy of the system changes in time. Assuming
each mi is time-independent, we have

dTi

dt
= mi ṙi · r̈i . (2.2)

Here, we’ve used the relation

d

dt

(
A2
)

= 2A · dA
dt

. (2.3)

We now invoke Newton’s 2nd Law, mir̈i = Fi, to write eqn. 2.2 as Ṫi = Fi · ṙi. We
integrate this equation from time tA to tB:

T (B)

i − T (A)

i =

tB∫
tA

dt
dTi

dt

=

tB∫
tA

dtFi · ṙi ≡
∑

i

W (A→B)

i , (2.4)

where W (A→B)

i is the total work done on particle i during its motion from state A to
state B, Clearly the total kinetic energy is T =

∑
i Ti and the total work done on all
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particles is W (A→B) =
∑

iW
(A→B)

i . Eqn. 2.4 is known as the work-energy theorem. It
says that

In the evolution of a mechanical system, the change in total kinetic energy is
equal to the total work done: T (B) − T (A) = W (A→B).

2.2 Conservative and Nonconservative Forces

For the sake of simplicity, consider a single particle with kinetic energy T =
1
2
mṙ2. The work done on the particle during its mechanical evolution is

W (A→B) =

tB∫
tA

dtF · v , (2.5)

where v = ṙ. This is the most general expression for the work done. If the force
F depends only on the particle’s position r, we may write dr = v dt, and then

W (A→B) =

rB∫
rA

dr · F (r) . (2.6)

Consider now the force

F (r) = K1 y x̂+K2 x ŷ , (2.7)

where K1,2 are constants. Let’s evaluate the work done along each of the two
paths in fig. 2.1:

W (I) = K1

xB∫
xA

dx yA +K2

yB∫
yA

dy xB = K1 yA (xB − xA) +K2 xB (yB − yA) (2.8)

W (II) = K1

yB∫
yA

dy xA +K1

xB∫
xA

dx yB = K1 yB (xB − xA) +K2 xA (yB − yA) . (2.9)

Note that in general W (I) 6= W (II). Thus, if we start at point A, the kinetic
energy at point B will depend on the path taken, since the work done is path-
dependent.

The difference between the work done along the two paths is

W (I) −W (II) = (K2 −K1) (xB − xA) (yB − yA) . (2.10)
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Figure 2.1: Two paths joining points A and B.

Thus, we see that if K1 = K2, the work is the same for the two paths. In fact,
if K1 = K2, the work would be path-independent, and would depend only on
the endpoints. This is true for any path, and not just piecewise linear paths of
the type depicted in fig. 2.1. The reason for this is Stokes’ theorem:∮

∂C

d` · F =

∫
C

dS n̂ ·∇× F . (2.11)

Here, C is a connected region in three-dimensional space, ∂C is mathematical
notation for the boundary of C, which is a closed path1, dS is the scalar differ-
ential area element, n̂ is the unit normal to that differential area element, and
∇× F is the curl of F :

∇× F = det

 x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz


=

(
∂Fy

∂z
− ∂Fz

∂y

)
x̂+

(
∂Fz

∂x
− ∂Fx

∂z

)
ŷ +

(
∂Fx

∂y
− ∂Fy

∂x

)
ẑ . (2.12)

For the force under consideration, F (r) = K1 y x̂+K2 x ŷ, the curl is

∇× F = (K2 −K1) ẑ , (2.13)

1If C is multiply connected, then ∂C is a set of closed paths. For example, if C is an annulus, ∂C
is two circles, corresponding to the inner and outer boundaries of the annulus.
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which is a constant. The RHS of eqn. 2.11 is then simply proportional to
the area enclosed by C. When we compute the work difference in eqn. 2.10,
we evaluate the integral

∮
C
d` · F along the path γ−1

II ◦ γI, which is to say path

I followed by the inverse of path II. In this case, n̂ = ẑ and the integral of
n̂ ·∇× F over the rectangle C is given by the RHS of eqn. 2.10.

When ∇ × F = 0 everywhere in space, we can always write F = −∇U ,
where U(r) is the potential energy . Such forces are called conservative forces
because the total energy of the system, E = T +U , is then conserved during its
motion. We can see this by evaluating the work done,

W (A→B) =

rB∫
rA

dr · F (r)

= −
rB∫
rA

dr ·∇U

= U(rA)− U(rB) . (2.14)

The work-energy theorem then gives

T (B) − T (A) = U(rA)− U(rB) , (2.15)

which says
E(B) = T (B) + U(rB) = T (A) + U(rA) = E(A) . (2.16)

Thus, the total energy E = T + U is conserved.

2.2.1 Example : Integrating F = −∇U

If ∇× F = 0, we can compute U(r) by integrating, viz.

U(r) = U(0)−
r∫

0

dr′ · F (r′) . (2.17)

The integral does not depend on the path chosen connecting 0 and r. For
example, we can take

U(x, y, z) = U(0, 0, 0) −
(x,0,0)∫

(0,0,0)

dx′ Fx(x
′, 0, 0) −

(x,y,0)∫
(x,0,0)

dy′ Fy(x, y
′, 0) −

(x,y,z)∫
(z,y,0)

dz′ Fz(x, y, z
′) .

(2.18)
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The constant U(0, 0, 0) is arbitrary and impossible to determine from F alone.

As an example, consider the force

F (r) = −ky x̂− kx ŷ − 4bz3 ẑ , (2.19)

where k and b are constants. We have(
∇× F

)
x

=

(
∂Fz

∂y
− ∂Fy

∂z

)
= 0 (2.20)

(
∇× F

)
y

=

(
∂Fx

∂z
− ∂Fz

∂x

)
= 0 (2.21)

(
∇× F

)
z

=

(
∂Fy

∂x
− ∂Fx

∂y

)
= 0 , (2.22)

so ∇×F = 0 and F must be expressible as F = −∇U . Integrating using eqn.
2.18, we have

U(x, y, z) = U(0, 0, 0) +

(x,0,0)∫
(0,0,0)

dx′ k · 0 +

(x,y,0)∫
(x,0,0)

dy′ kxy′ +

(x,y,z)∫
(z,y,0)

dz′ 4bz′
3

(2.23)

= U(0, 0, 0) + kxy + bz4 . (2.24)

Another approach is to integrate the partial differential equation ∇U = −F .
This is in fact three equations, and we shall need all of them to obtain the
correct answer. We start with the x̂-component,

∂U

∂x
= ky . (2.25)

Integrating, we obtain

U(x, y, z) = kxy + f(y, z) , (2.26)

where f(y, z) is at this point an arbitrary function of y and z. The important
thing is that it has no x-dependence, so ∂f/∂x = 0. Next, we have

∂U

∂y
= kx =⇒ U(x, y, z) = kxy + g(x, z) . (2.27)

Finally, the z-component integrates to yield

∂U

∂z
= 4bz3 =⇒ U(x, y, z) = bz4 + h(x, y) . (2.28)
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We now equate the first two expressions:

kxy + f(y, z) = kxy + g(x, z) . (2.29)

Subtracting kxy from each side, we obtain the equation f(y, z) = g(x, z). Since
the LHS is independent of x and the RHS is independent of y, we must have

f(y, z) = g(x, z) = q(z) , (2.30)

where q(z) is some unknown function of z. But now we invoke the final equation,
to obtain

bz4 + h(x, y) = kxy + q(z) . (2.31)

The only possible solution is h(x, y) = C + kxy and q(z) = C + bz4, where C is
a constant. Therefore,

U(x, y, z) = C + kxy + bz4 . (2.32)

Note that it would be very wrong to integrate ∂U/∂x = ky and obtain
U(x, y, z) = kxy + C ′, where C ′ is a constant. As we’ve seen, the ‘constant
of integration’ we obtain upon integrating this first order PDE is in fact a func-
tion of y and z. The fact that f(y, z) carries no explicit x dependence means
that ∂f/∂x = 0, so by construction U = kxy + f(y, z) is a solution to the PDE
∂U/∂x = ky, for any arbitrary function f(y, z).

2.3 Conservative Forces in Many Particle Sys-

tems

T =
∑

i

1
2
miṙ

2
i (2.33)

U =
∑

i

V (ri) +
∑
i<j

v
(
|ri − rj|

)
. (2.34)

Here, V (r) is the external (or one-body) potential, and v(r−r′) is the interpar-
ticle potential, which we assume to be central, depending only on the distance
between any pair of particles. The equations of motion are

mi r̈i = F (ext)

i + F (int)

i , (2.35)

with

F (ext)

i = −∂V (ri)

∂ri

(2.36)

F (int)

i = −
∑

j

∂v
(
|ri − rj|

)
ri

≡
∑

j

F (int)

ij . (2.37)
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Here, F (int)

ij is the force exerted on particle i by particle j:

F (int)

ij =
∂v
(
|ri − rj|

)
∂ri

= − ri − rj

|ri − rj|
v′
(
|ri − rj|

)
. (2.38)

Note that F (int)

ij = −F (int)

ji , otherwise known as Newton’s Third Law. It is con-
venient to abbreviate rij ≡ ri−rj, in which case we may write the interparticle

force as F (int)

ij = −r̂ij v
′(rij

)
.

2.4 Linear and Angular Momentum

Consider now the total momentum of the system, P =
∑

i pi. Its rate of change
is

dP

dt
=
∑

i

ṗi =
∑

i

F (ext)

i +

F (int)
ij +F (int)

ji =0︷ ︸︸ ︷∑
i6=j

F (int)

ij = F (ext)

tot , (2.39)

since the sum over all internal forces cancels as a result of Newton’s Third Law.
We write

P =
∑

i

miṙi = MṘ (2.40)

M =
∑

i

mi (total mass) (2.41)

R =

∑
imi ri∑

imi

(center-of-mass) . (2.42)

Next, consider the total angular momentum,

L =
∑

i

ri × pi =
∑

i

miri × ṙi . (2.43)

The rate of change of L is then

dL

dt
=
∑

i

{
miṙi × ṙi +miri × r̈i

}
=
∑

i

ri × F
(ext)

i +
∑
i6=j

ri × F
(int)

ij

=
∑

i

ri × F
(ext)

i +

rij×F
(int)
ij =0︷ ︸︸ ︷

1
2

∑
i6=j

(ri − rj)× F
(int)

ij

= N (ext)

tot . (2.44)
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Finally, it is useful to establish the result

T = 1
2

∑
i

mi ṙ
2
i = 1

2
MṘ2 + 1

2

∑
i

mi

(
ṙi − Ṙ

)2
, (2.45)

which says that the kinetic energy may be written as a sum of two terms, those
being the kinetic energy of the center-of-mass motion, and the kinetic energy of
the particles relative to the center-of-mass.

Recall the “work-energy theorem” for conservative systems,

0 =

final∫
initial

dE =

final∫
initial

dT +

final∫
initial

dU

= T (B) − T (A) −
∑

i

∫
dri · Fi (2.46)

∆T = T (B) − T (A) =
∑

i

∫
dri · Fi . (2.47)

Note that for continuous systems, we replace∑
i

mi φ
(
ri

)
−→

∫
d3r ρ(r)φ(r) , (2.48)

where ρ(r) is the mass density, and φ(r) is any function.

2.5 Scaling of Solutions for Homogeneous Po-

tentials

2.5.1 Euler’s Theorem for Homogeneous Functions

In certain cases of interest, the potential is a homogeneous function of the co-
ordinates. This means

U
(
λ r1, . . . , λ rN

)
= λk U

(
r1, . . . , rN

)
. (2.49)

Here, k is the degree of homogeneity of U . Familiar examples include gravity,

U
(
r1, . . . , rN

)
= −G

∑
i<j

mimj

|ri − rj|
; k = −1 , (2.50)
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and the harmonic oscillator,

U
(
q1, . . . , qn

)
= 1

2

∑
σ,σ′

Vσσ′ qσ qσ′ ; k = +2 . (2.51)

The sum of two homogeneous functions is itself homogeneous only if the compo-
nent functions themselves are of the same degree of homogeneity. Homogeneous
functions obey a special result known as Euler’s Theorem, which we now prove.
Suppose a multivariable function H(x1, . . . , xn) is homogeneous:

H(λx1, . . . , λ xn) = λk H(x1, . . . , xn) . (2.52)

Then

d

dλ

∣∣∣∣∣
λ=1

H
(
λx1, . . . , λ xn

)
=

n∑
i=1

xi

∂H

∂xi

= k H (2.53)

2.5.2 Scaled Equations of Motion

Now suppose the we rescale distances and times, defining

ri = α r̃i , t = β t̃ . (2.54)

Then
dri

dt
=
α

β

dr̃i

dt̃
,

d2ri

dt2
=

α

β2

d2r̃i

dt̃2
. (2.55)

The force Fi is given by

Fi = − ∂

∂ri

U
(
r1, . . . , rN

)
= − ∂

∂(αr̃i)
αk U

(
r̃1, . . . , r̃N

)
= αk−1 F̃i . (2.56)

Thus, Newton’s 2nd Law says

α

β2
mi

d2r̃i

dt̃2
= αk−1 F̃i . (2.57)

If we choose β such that

We now demand
α

β2
= αk−1 ⇒ β = α1−1

2
k , (2.58)
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then the equation of motion is invariant under the rescaling transformation!
This means that if r(t) is a solution to the equations of motion, then so is

α r
(
α

1
2
k−1 t

)
. This gives us an entire one-parameter family of solutions, for all

real positive α.

If r(t) is periodic with period T , the ri(t;α) is periodic with period T ′ =

α1−1
2

k T . Thus, (
T ′

T

)
=

(
L′

L

)1−1
2

k

. (2.59)

Here, α = L′/L is the ratio of length scales. Velocities, energies and angular
momenta scale accordingly:[

v
]

=
L

T
⇒ v′

v
=
L′

L

/
T ′

T
= α

1
2

k (2.60)

[
E
]

=
ML2

T 2
⇒ E ′

E
=

(
L′

L

)2/(
T ′

T

)2

= αk (2.61)

[
L
]

=
ML2

T
⇒ |L′|

|L|
=

(
L′

L

)2/
T ′

T
= α(1+

1
2

k) . (2.62)

As examples, consider:

(i) Harmonic Oscillator : Here k = 2 and therefore

qσ(t) −→ qσ(t;α) = α qσ(t) . (2.63)

Thus, rescaling lengths alone gives another solution.

(ii) Kepler Problem : This is gravity, for which k = −1. Thus,

r(t) −→ r(t;α) = α r
(
α−3/2 t

)
. (2.64)

Thus, r3 ∝ t2, i.e. (
L′

L

)3

=

(
T ′

T

)2

, (2.65)

also known as Kepler’s Third Law.

2.6 Appendix I : Curvilinear Orthogonal Coor-

dinates

The standard cartesian coordinates are {x1, . . . , xd}, where d is the dimension

of space. Consider a different set of coordinates, {q1, . . . , qd}, which are related
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to the original coordinates xµ via the d equations

qµ = qµ
(
x1, . . . , xd

)
. (2.66)

In general these are nonlinear equationa.

Let ê0
i = x̂i be the Cartesian set of orthonormal unit vectors, and define êµ

to be the unit vector perpendicular to the surface dqµ = 0. A differential change
in position can now be described in both coordinate systems:

ds =
d∑

i=1

ê0
i dxi =

d∑
µ=1

êµ hµ(q) dqµ , (2.67)

where each hµ(q) is an as yet unknown function of all the components qν . Find-
ing the coefficient of dqµ then gives

hµ(q) êµ =
d∑

i=1

∂xi

∂qµ
ê0

i ⇒ êµ =
d∑

i=1

Mµ i ê
0
i , (2.68)

where

Mµi(q) =
1

hµ(q)

∂xi

∂qµ
. (2.69)

The dot product of unit vectors in the new coordinate system is then

êµ · êν =
(
MM t

)
µν

=
1

hµ(q)hν(q)

d∑
i=1

∂xi

∂qµ

∂xi

∂qν
. (2.70)

The condition that the new basis be orthonormal is then
d∑

i=1

∂xi

∂qµ

∂xi

∂qν
= h2

µ(q) δµν . (2.71)

This gives us the relation

hµ(q) =

√√√√ d∑
i=1

(
∂xi

∂qµ

)2

. (2.72)

Note that

(ds)2 =
d∑

µ=1

h2
µ(q) (dqµ)2 . (2.73)

For general coordinate systems, which are not necessarily orthogonal, we have

(ds)2 =
d∑

µ,ν=1

gµν(q) dqµ dqν , (2.74)

where gµν(q) is a real, symmetric, positive definite matrix called the metric
tensor .
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2.6.1 Example : Spherical Coordinates

Consider spherical coordinates (ρ, θ, φ):

x = ρ sin θ cosφ , y = ρ sin θ sinφ , z = ρ cos θ . (2.75)

It is now a simple matter to derive the results

h2
ρ = 1 , h2

θ = ρ2 , h2
φ = ρ2 sin2θ . (2.76)

Thus,
ds = ρ̂ dρ+ ρ θ̂ dθ + ρ sin θ φ̂ dφ . (2.77)

2.6.2 Vector Calculus : Grad, Div, Curl

Here we restrict our attention to d = 3. The gradient ∇U of a function U(q) is
defined by

dU =
∂U

∂q1
dq1 +

∂U

∂q2
dq2 +

∂U

∂q3
dq3

≡ ∇U · ds . (2.78)

Thus,

∇ =
ê1

h1(q)

∂

∂q1
+

ê2

h2(q)

∂

∂q2
+

ê3

h3(q)

∂

∂q3
. (2.79)

For the divergence, we use the divergence theorem, and we appeal to fig. 2.2:∫
Ω

dV ∇ ·A =

∫
∂Ω

dS n̂ ·A , (2.80)

whereΩ is a region of three-dimensional space and ∂Ω is its closed two-dimensional
boundary. The LHS of this equation is

LHS = ∇ ·A · (h1 dq1) (h2 dq2) (h3 dq3) . (2.81)

The RHS is

RHS = A1 h2 h3

∣∣∣q1+dq1

q1

dq2 dq3 + A2 h1 h3

∣∣∣q2+dq2

q2

dq1 dq3 + A3 h1 h2

∣∣∣q1+dq3

q3

dq1 dq2

=

[
∂

∂q1

(
A1 h2 h3

)
+

∂

∂q2

(
A2 h1 h3

)
+

∂

∂q3

(
A3 h1 h2

)]
dq1 dq2 dq3 . (2.82)
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Figure 2.2: Volume element Ω for computing divergences.

We therefore conclude

∇ ·A =
1

h1 h2 h3

[
∂

∂q1

(
A1 h2 h3

)
+

∂

∂q2

(
A2 h1 h3

)
+

∂

∂q3

(
A3 h1 h2

)]
. (2.83)

To obtain the curl ∇×A, we use Stokes’ theorem again,∫
Σ

dS n̂ ·∇×A =

∮
∂Σ

d` ·A , (2.84)

where Σ is a two-dimensional region of space and ∂Σ is its one-dimensional
boundary. Now consider a differential surface element satisfying dq1 = 0, i.e. a
rectangle of side lengths h2 dq2 and h3 dq3. The LHS of the above equation is

LHS = ê1 ·∇×A (h2 dq2) (h3 dq3) . (2.85)

The RHS is

RHS = A3 h3

∣∣∣q2+dq2

q2

dq3 − A2 h2

∣∣∣q3+dq3

q3

dq2

=

[
∂

∂q2

(
A3 h3

)
− ∂

∂q3

(
A2 h2

)]
dq2 dq3 . (2.86)

Therefore

(∇×A)1 =
1

h2 h3

(
∂(h3A3)

∂q2
− ∂(h2A2)

∂q3

)
. (2.87)
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This is one component of the full result

∇×A =
1

h1 h2 h2

det

h1 ê1 h2 ê2 h3 ê3
∂

∂q1

∂
∂q2

∂
∂q3

h1A1 h2A2 h3A3

 . (2.88)

The Laplacian of a scalar function U is given by

∇2U = ∇ ·∇U

=
1

h1 h2 h3

{
∂

∂q1

(
h2 h3

h1

∂U

∂q1

)
+

∂

∂q2

(
h1 h3

h2

∂U

∂q2

)
+

∂

∂q3

(
h1 h2

h3

∂U

∂q3

)}
.

(2.89)

2.6.3 Common Curvilinear Orthogonal Systems

Rectangular Coordinates

In rectangular coordinates (x, y, z), we have

hx = hy = hz = 1 . (2.90)

Then the gradient is

∇U = x̂
∂U

∂x
+ ŷ

∂U

∂y
+ ẑ

∂U

∂z
. (2.91)

The divergence is

∇ ·A =
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z
. (2.92)

The curl is

∇×A =

(
∂Az

∂y
− ∂Ay

∂z

)
x̂+

(
∂Ax

∂z
− ∂Az

∂x

)
ŷ +

(
∂Ay

∂x
− ∂Ax

∂y

)
ẑ . (2.93)

The Laplacian is

∇2U =
∂2U

∂x2
+
∂2U

∂y2
+
∂2U

∂z2
. (2.94)

Cylindrical Coordinates

In cylindrical coordinates (ρ, φ, z), we have

ρ̂ = x̂ cosφ+ ŷ sinφ x̂ = ρ̂ cosφ− φ̂ sinφ dρ̂ = φ̂ dφ (2.95)

φ̂ = −x̂ sinφ+ ŷ cosφ ŷ = ρ̂ sinφ+ φ̂ cosφ dφ̂ = −ρ̂ dφ . (2.96)
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The metric is given in terms of

hρ = 1 , hφ = ρ , hz = 1 . (2.97)

Then the gradient is

∇U = ρ̂
∂U

∂ρ
+
φ̂

ρ

∂U

∂φ
+ ẑ

∂U

∂z
. (2.98)

The divergence is

∇ ·A =
1

ρ

∂(ρAρ)

∂ρ
+

1

ρ

∂Aφ

∂φ
+
∂Az

∂z
. (2.99)

The curl is

∇×A =

(
1

ρ

∂Az

∂φ
− ∂Aφ

∂z

)
ρ̂+

(
∂Aρ

∂z
− ∂Az

∂ρ

)
φ̂+

(
1

ρ

∂(ρAφ)

∂ρ
− 1

ρ

∂Aρ

∂φ

)
ẑ . (2.100)

The Laplacian is

∇2U =
1

ρ

∂

∂ρ

(
ρ
∂U

∂ρ

)
+

1

ρ2

∂2U

∂φ2
+
∂2U

∂z2
. (2.101)

Spherical Coordinates

In spherical coordinates (r, θ, φ), we have

r̂ = x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ sin θ (2.102)

θ̂ = x̂ cos θ cosφ+ ŷ cos θ sinφ− ẑ cos θ (2.103)

φ̂ = −x̂ sinφ+ ŷ cosφ , (2.104)

for which
r̂ × θ̂ = φ̂ , θ̂ × φ̂ = r̂ , φ̂× r̂ = θ̂ . (2.105)

The inverse is

x̂ = r̂ sin θ cosφ+ θ̂ cos θ cosφ− φ̂ sinφ (2.106)

ŷ = r̂ sin θ sinφ+ θ̂ cos θ sinφ+ φ̂ cosφ (2.107)

ẑ = r̂ cos θ − θ̂ sin θ . (2.108)

The differential relations are

dr̂ = θ̂ dθ + sin θ φ̂ dφ (2.109)

dθ̂ = −r̂ dθ + cos θ φ̂ dφ (2.110)

dφ̂ = −
(
sin θ r̂ + cos θ θ̂

)
dφ (2.111)
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The metric is given in terms of

hr = 1 , hθ = r , hφ = r sin θ . (2.112)

Then the gradient is

∇U = r̂
∂U

∂ρ
+
θ̂

r

∂U

∂θ
+

φ̂

r sin θ

∂U

∂φ
. (2.113)

The divergence is

∇ ·A =
1

r2

∂(r2Ar)

r
+

1

r sin θ

∂(sin θ Aθ)

∂θ
+

1

r sin θ

∂Aφ

∂φ
. (2.114)

The curl is

∇×A =
1

r sin θ

(
∂(sin θ Aφ)

∂r
− ∂Aθ

∂φ

)
r̂ +

1

r

(
1

sin θ

∂Ar

∂φ
− ∂(rAφ)

∂r

)
θ̂

+
1

r

(
∂(rAθ)

∂r
− ∂Ar

∂θ

)
φ̂ . (2.115)

The Laplacian is

∇2U =
1

r2

∂

∂r

(
r2 ∂U

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂U

∂θ

)
+

1

r2 sin2θ

∂2U

∂φ2
. (2.116)
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Chapter 3

Conservative Mechanical Systems
in One Dimension

3.1 Description as a Dynamical System

For one-dimensional mechanical systems, Newton’s second law reads

mẍ = F (x) . (3.1)

A system is conservative if the force is derivable from a potential: F = −dU/dx.
The total energy,

E = T + U = 1
2
mẋ2 + U(x) , (3.2)

is then conserved. This may be verified explicitly:

dE

dt
=

d

dt

[
1
2
mẋ2 + U(x)

]
=
[
mẍ+ U ′(x)

]
ẋ = 0 . (3.3)

Conservation of energy allows us to reduce the equation of motion from
second order to first order:

dx

dt
= ±

√√√√ 2

m

(
E − U(x)

)
. (3.4)

Note that the constant E is a constant of integration. The ± sign above depends
on the direction of motion. Points x(E) which satisfy

E = U(x) ⇒ x(E) = U−1(E) , (3.5)
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where U−1 is the inverse function, are called turning points . When the total
energy is E, the motion of the system is bounded by the turning points, and
confined to the region(s) U(x) ≤ E. We can integrate eqn. 3.4 to obtain

t(x)− t(x0) = ±
√
m

2

x∫
x0

dx′√
E − U(x′)

. (3.6)

This is to be inverted to obtain the function x(t). Note that there are now two
constants of integration, E and x0. Since

E = E0 = 1
2
mv2

0 + U(x0) , (3.7)

we could also consider x0 and v0 as our constants of integration, writing E in
terms of x0 and v0. Thus, there are two independent constants of integration.

For motion confined between two turning points x±(E), the period of the
motion is given by

T (E) =
√

2m

x+(E)∫
x−(E)

dx′√
E − U(x′)

. (3.8)

3.1.1 Example : Harmonic Oscillator

In the case of the harmonic oscillator, we have

dt

dx
= ±

√
m

2E − kx2
. (3.9)

Let us substitute

x =

√
2E

k
sin θ . (3.10)

We then find

dt =

√
m

k
dθ , (3.11)

with solution
θ(t) = θ0 + ωt , (3.12)

where ω =
√
k/m is the harmonic oscillator frequency. Thus, the complete

motion of the system is given by

x(t) =

√
2E

k
sin(ωt+ θ0) . (3.13)

Note the two constants of integration, E and θ0.
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3.2 One-Dimensional Mechanics as a Dynami-

cal System

Rather than writing the equation of motion as a single second order ODE, we
can instead write it as two coupled first order ODEs, viz.

dx

dt
= v (3.14)

dv

dt
=

1

m
F (x) . (3.15)

This may be written in matrix-vector form, as

d

dt

(
x
v

)
=

(
v

1
m
F (x)

)
. (3.16)

This is an example of a dynamical system, described by the general form

dϕ

dt
= V (ϕ) , (3.17)

where ϕ = (ϕ1, . . . ,ϕN) is an N -dimensional vector in phase space. For the
model of eqn. 3.16, we evidently have N = 2. The object V (ϕ) is called a vector
field . It is itself a vector, existing at every point in phase space, RR N . Each of
the components of V (ϕ) is a function (in general) of all the components of ϕ:

Vj = Vj(ϕ1, . . . ,ϕN) (j = 1, . . . , N) . (3.18)

Solutions to the equation ϕ̇ = V (ϕ) are called integral curves . Each such
integral curve ϕ(t) is uniquely determined by N constants of integration, which
may be taken to be the initial value ϕ(0). The collection of all integral curves
is known as the phase portrait of the dynamical system.

In plotting the phase portrait of a dynamical system, we need to first solve
for its motion, starting from arbitrary initial conditions. In general this is a
difficult problem, which can only be treated numerically. But for conservative
mechanical systems in d = 1, it is a trivial matter! The reason is that energy
conservation completely determines the phase portraits. The velocity becomes

a unique double-valued function of position, v(x) = ±
√

2
m

(
E − U(x)

)
. The

phase curves are thus curves of constant energy.
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Figure 3.1: A potential U(x) and the corresponding phase portraits. Separatrices are
shown in red.

3.2.1 Sketching Phase Curves

To plot the phase curves,

(i) Sketch the potential U(x).

(ii) Below this plot, sketch v(x;E) = ±
√

2
m

(
E − U(x)

)
.

(iii) When E lies at a local extremum of U(x), the system is at a fixed point .

(a) For E slightly above Emin, the phase curves are ellipses.

(b) For E slightly below Emax, the phase curves are (locally) hyperbolae.

(c) For E = Emax the phase curve is called a separatrix .

(iv) When E > U(∞) or E > U(−∞), the motion is unbounded .

(v) Draw arrows along the phase curves: to the right for v > 0 and left for v < 0.

The period of the orbit T (E) has a simple geometric interpretation. The
area A in phase space enclosed by a bounded phase curve is

A(E) =

∮
E

v dx =
√

8
m

x+(E)∫
x−(E)

dx′
√
E − U(x′) . (3.19)

Thus, the period is proportional to the rate of change of A(E) with E:

T = m
∂A
∂E

. (3.20)
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3.3 Fixed Points and their Vicinity

A fixed point (x∗, v∗) of the dynamics satisfies U ′(x∗) = 0 and v∗ = 0. Taylor’s
theorem then allows us to expand U(x) in the vicinity of x∗:

U(x) = U(x∗)+U ′(x∗) (x−x∗)+ 1
2
U ′′(x∗) (x−x∗)2 + 1

6
U ′′′(x∗) (x−x∗)3 + . . . . (3.21)

Since U ′(x∗) = 0 the linear term in δx = x − x∗ vanishes. If δx is sufficiently
small, we can ignore the cubic, quartic, and higher order terms, leaving us with

U(δx) ≈ U0 + 1
2
k(δx)2 , (3.22)

where U0 = U(x∗) and k = U ′′(x∗) > 0. The solutions to the motion in this
potential are:

U ′′(x∗) > 0 : δx(t) = δx0 cos(ωt) +
δv0

ω
sin(ωt) (3.23)

U ′′(x∗) < 0 : δx(t) = δx0 cosh(γt) +
δv0

γ
sinh(γt) , (3.24)

where ω =
√
k/m for k > 0 and γ =

√
−k/m for k < 0. The energy is

E = U0 + 1
2
m (δv0)

2 + 1
2
k (δx0)

2 . (3.25)

For a separatrix, we have E = U0 and U ′′(x∗) < 0. From the equation
for the energy, we obtain δv0 = ±γ δx0. Let’s take δv0 = −γ δx0, so that the
initial velocity is directed toward the unstable fixed point (UFP). I.e. the initial
velocity is negative if we are to the right of the UFP (δx0 > 0) and positive if
we are to the left of the UFP (δx0 < 0). The motion of the system is then

δx(t) = δx0 exp(−γt) . (3.26)

The particle gets closer and closer to the unstable fixed point at δx = 0, but
it takes an infinite amount of time to actually get there. Put another way, the
time it takes to get from δx0 to a closer point δx < δx0 is

t = γ−1 ln

(
δx0

δx

)
. (3.27)

This diverges logarithmically as δx→ 0. Generically, then, the period of motion
along a separatrix is infinite.
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3.3.1 Linearized Dynamics in the Vicinity of a Fixed
Point

Linearizing in the vicinity of such a fixed point, we write δx = x − x∗ and
δv = v − v∗, obtaining

d

dt

(
δx
δv

)
=

(
0 1

− 1
m
U ′′(x∗) 0

)(
δx
δv

)
+ . . . , (3.28)

This is a linear equation, which we can solve completely.

Consider the general linear equation ϕ̇ = Aϕ, where A is a fixed real matrix.
Now whenever we have a problem involving matrices, we should start thinking
about eigenvalues and eigenvectors. Invariably, the eigenvalues and eigenvectors
will prove to be useful, if not essential, in solving the problem. The eigenvalue
equation is

Aψα = λαψα . (3.29)

Here ψα is the αth right eigenvector 1 of A. The eigenvalues are roots of the
characteristic equation P (λ) = 0, where P (λ) = det(λ · 11 − A). Let’s expand
ϕ(t) in terms of the right eigenvectors of A:

ϕ(t) =
∑

α

Cα(t)ψα . (3.30)

Assuming, for the purposes of this discussion, that A is nondegenerate, and its
eigenvectors span RR N , the dynamical system can be written as a set of decoupled
first order ODEs for the coefficients Cα(t):

Ċα = λαCα , (3.31)

with solutions
Cα(t) = Cα(0) exp(λαt) . (3.32)

If Re(λα) > 0, Cα(t) flows off to infinity, while if Re(λα) > 0, Cα(t) flows to
zero. If |λα| = 1, then Cα(t) oscillates with frequency Im(λα).

For a two-dimensional matrix, it is easy to show – an exercise for the reader
– that

P (λ) = λ2 − Tλ+D , (3.33)

where T = Tr(A) and D = det(A). The eigenvalues are then

λ± = 1
2
T ± 1

2

√
T 2 − 4D . (3.34)

1If A is symmetric, the right and left eigenvectors are the same. If A is not symmetric, the right
and left eigenvectors differ, although the set of corresponding eigenvalues is the same.
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Figure 3.2: Phase curves in the vicinity of centers and saddles.

We’ll study the general case in Physics 110B. For now, we focus on our conser-
vative mechanical system of eqn. 3.28. The trace and determinant of the above
matrix are T = 0 and D = 1

m
U ′′(x∗). Thus, there are only two (generic) possi-

bilities: centers , when U ′′(x∗) > 0, and saddles , when U ′′(x∗) < 0. Examples of
each are shown in Fig. 3.1.

3.4 Examples of Conservative One-Dimensional

Systems

3.4.1 Harmonic Oscillator

Recall again the harmonic oscillator, discussed in lecture 3. The potential energy
is U(x) = 1

2
kx2. The equation of motion is

m
d2x

dt2
= −dU

dx
= −kx , (3.35)

where m is the mass and k the force constant (of a spring). With v = ẋ, this
may be written as the N = 2 system,

d

dt

(
x
v

)
=

(
0 1
−ω2 0

)(
x
v

)
=

(
v

−ω2 x

)
, (3.36)
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Figure 3.3: Phase curves for the harmonic oscillator.

where ω =
√
k/m has the dimensions of frequency (inverse time). The solution

is well known:

x(t) = x0 cos(ωt) +
v0

ω
sin(ωt) (3.37)

v(t) = v0 cos(ωt)− ω x0 sin(ωt) . (3.38)

The phase curves are ellipses:

ω0 x
2(t) + ω−1

0 v2(t) = C , (3.39)

where C is a constant, independent of time. A sketch of the phase curves and
of the phase flow is shown in Fig. 3.3. Note that the x and v axes have different
dimensions.

Energy is conserved:
E = 1

2
mv2 + 1

2
kx2 . (3.40)

Therefore we may find the length of the semimajor and semiminor axes by
setting v = 0 or x = 0, which gives

xmax =

√
2E

k
, vmax =

√
2E

m
. (3.41)

The area of the elliptical phase curves is thus

A(E) = π xmax vmax =
2πE√
mk

. (3.42)

The period of motion is therefore

T (E) = m
∂A
∂E

= 2π

√
m

k
, (3.43)

which is independent of E.
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Figure 3.4: Phase curves for the simple pendulum. The separatrix divides phase space
into regions of vibration and libration.

3.4.2 Pendulum

Next, consider the simple pendulum, composed of a mass point m affixed to a
massless rigid rod of length `. The potential is U(θ) = −mg` cos θ, hence

m`2 θ̈ = −dU
dθ

= −mg` sin θ . (3.44)

This is equivalent to
d

dt

(
θ
ω

)
=

(
ω

−ω2
0 sin θ

)
, (3.45)

where ω = θ̇ is the angular velocity, and where ω0 =
√
g/` is the natural

frequency of small oscillations.

The conserved energy is

E = 1
2
m`2 θ̇2 + U(θ) . (3.46)

Assuming the pendulum is released from rest at θ = θ0,

2E

m`2
= θ̇2 − 2ω2

0 cos θ = −2ω2
0 cos θ0 . (3.47)

The period for motion of amplitude θ0 is then

T
(
θ0

)
=

√
8

ω0

θ0∫
0

dθ√
cos θ − cos θ0

=
4

ω0

K
(
sin2 1

2
θ0

)
, (3.48)
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where K(z) is the complete elliptic integral of the first kind. Expanding K(z),
we have

T
(
θ0

)
=

2π

ω0

{
1 + 1

4
sin2

(
1
2
θ0

)
+ 9

64
sin4

(
1
2
θ0

)
+ . . .

}
. (3.49)

For θ0 → 0, the period approaches the usual result 2π/ω0, valid for the linearized
equation θ̈ = −ω2

0 θ. As θ0 → π
2
, the period diverges logarithmically.

The phase curves for the pendulum are shown in Fig. 3.4. The small oscilla-
tions of the pendulum are essentially the same as those of a harmonic oscillator.
Indeed, within the small angle approximation, sin θ ≈ θ, and the pendulum
equations of motion are exactly those of the harmonic oscillator. These oscilla-
tions are called librations . They involve a back-and-forth motion in real space,
and the phase space motion is contractable to a point, in the topological sense.
However, if the initial angular velocity is large enough, a qualitatively different
kind of motion is observed, whose phase curves are rotations . In this case, the
pendulum bob keeps swinging around in the same direction, because, as we’ll
see in a later lecture, the total energy is sufficiently large. The phase curve
which separates these two topologically distinct motions is called a separatrix .

3.4.3 Other Potentials

Using the phase plotter application written by Ben Schmidel, available on the
Physics 110A course web page, it is possible to explore the phase curves for a
wide variety of potentials. Three examples are shown in the following pages.
The first is the effective potential for the Kepler problem,

Ueff(r) = −k
r

+
`2

2µr2
, (3.50)

about which we shall have much more to say when we study central forces.
Here r is the separation between two gravitating bodies of masses m1,2, µ =

m1m2/(m1 + m2) is the ‘reduced mass’, and k = Gm1m2, where G is the
Cavendish constant. We can then write

Ueff(r) = U0

{
− 1

x
+

1

2x2

}
, (3.51)

where r0 = `2/µk has the dimensions of length, and x ≡ r/r0, and where
U0 = k/r0 = µk2/`2. Thus, if distances are measured in units of r0 and the
potential in units of U0, the potential may be written in dimensionless form as
U(x) = − 1

x
+ 1

2x2 .
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The second is the hyperbolic secant potential,

U(x) = −U0 sech2(x/a) , (3.52)

which, in dimensionless form, is U(x) = −sech2(x), after measuring distances in
units of a and potential in units of U0.

The final example is

U(x) = U0

{
cos
(x
a

)
+

x

2a

}
. (3.53)

Again measuring x in units of a and U in units of U0, we arrive at U(x) =
cos(x) + 1

2
x.
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Figure 3.5: Phase curves for the Kepler effective potential U(x) = −x−1 + 1
2
x−2.
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Figure 3.6: Phase curves for the potential U(x) = −sech2(x).
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Figure 3.7: Phase curves for the potential U(x) = cos(x) + 1
2
x.
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Chapter 4

Linear Oscillations

Harmonic motion is ubiquitous in Physics. The reason is that any potential
energy function, when expanded in a Taylor series in the vicinity of a local
minimum, is a harmonic function:

U(~q ) = U(~q ∗)+
N∑

j=1

∇U(~q∗)=0︷ ︸︸ ︷
∂U

∂qj

∣∣∣∣
~q=~q ∗

(qj−q∗j )+ 1
2

N∑
j,k=1

∂2U

∂qj ∂qk

∣∣∣∣
~q=~q ∗

(qj−q∗j ) (qk−q
∗
k)+. . . , (4.1)

where the {qj} are generalized coordinates – more on this when we discuss
Lagrangians. In one dimension, we have simply

U(x) = U(x∗) + 1
2
U ′′(x∗) (x− x∗)2 + . . . . (4.2)

Provided the deviation η = q − q∗ is small enough in magnitude, the remaining
terms in the Taylor expansion may be ignored. Newton’s Second Law then gives

m η̈ = −U ′′(x∗) η +O(η2) . (4.3)

This, to lowest order, is the equation of motion for a harmonic oscillator. If
U ′′(x∗) > 0, the equilibrium point x = x∗ is stable, since for small deviations
from equilibrium the restoring force pushes the system back toward the equilib-
rium point. When U ′′(x∗) < 0, the equilibrium is unstable, and the forces push
one further away from equilibrium.

4.1 Damped Harmonic Oscillator

In the real world, there are frictional forces, which we here will approximate by
F = −γv. We begin with the homogeneous equation for a damped harmonic
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oscillator,
d2x

dt2
+ 2β

dx

dt
+ ω2

0 x = 0 , (4.4)

where γ = 2β. To solve, write x(t) =
∑

iCi e
−iωit. This renders the differential

equation 4.4 an algebraic equation for the two eigenfrequencies ωi, each of which
must satisfy

ω2 + 2iβω − ω2
0 = 0 , (4.5)

hence
ω± = −iβ ± (ω2

0 − β2)1/2 . (4.6)

The most general solution to eqn. 4.4 is then

x(t) = C+ e
−iω+t + C− e

−iω−t (4.7)

where C± are arbitrary constants. Notice that the eigenfrequencies are in general
complex, with a negative imaginary part (so long as the damping coefficient β

is positive). Thus e−iω±t decays to zero as t→∞.

4.1.1 Classification of Damped Harmonic Motion

We identify three classes of motion:

(i) Underdamped (ω2
0 > β2) : x(t) = C e−βt cos(νt) +D e−βt sin(νt)

(ii) Overdamped (ω2
0 < β2) : x(t) = C e−βt cosh(ν̃t) +D e−βt sinh(ν̃t)

(iii) Critically Damped (ω2
0 = β2) : x(t) = C e−βt +D t e−βt

where ν ≡ (ω2
0 − β2)1/2 and ν̃ ≡ iν = (β2 − ω2

0)
1/2. Note that for case (i) ν is

real and ν̃ is imaginary, while for case (ii) ν̃ is real and ν is imaginary. Note
also that the form for x(t) in case (i) can be applied to case (ii), and vice versa,
since

cos(νt) = cos(−iν̃t) = cosh(ν̃t)

sin(νt) = sin(−iν̃t) = sinh(ν̃t) .

The three types of behavior are depicted in fig. 4.1. To concretize these cases in
one’s mind, it is helpful to think of the case of a screen door or a shock absorber.
If the hinges on the door are underdamped, the door will swing back and forth
(assuming it doesn’t have a rim which smacks into the door frame) several times
before coming to a stop. If the hinges are overdamped, the door may take a
very long time to close. To see this, note that the overdamped solution can also
be written as

x(t) = Ae−
(

β−
√

β2−ω2
0

)
t +B e−

(
β−
√

β2−ω2
0

)
t , (4.8)
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Figure 4.1: Three classifications of damped harmonic motion. The initial conditions
are x(0) = 1, ẋ(0) = 0.

with A = 1
2
(C+D) and B = 1

2
(C−D). We now expand the expression

√
β2 − ω2

0

in powers of ω2
0/β

2:√
β2 − ω2

0 = β

(
1− ω2

0

β2

)−1/2

= β

(
1− ω2

0

2β2
− ω4

0

8β4
+ . . .

)
, (4.9)

which leads to

β −
√
β2 − ω2

0 =
ω2

0

2β
+

ω4
0

8β3
+ . . .

β +
√
β2 − ω2

0 = 2β − ω2
0

2β
−+ . . . . (4.10)

Thus, we can write

x(t) = Ae−t/τ1 +B e−t/τ2 , (4.11)
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with

τ1 =
1

β −
√
β2 − ω2

0

≈ 2β

ω2
0

(4.12)

τ2 =
1

β +
√
β2 − ω2

0

≈ 1

2β
. (4.13)

Thus x(t) is a sum of exponentials, with decay times τ1,2. For β � ω0, we have

that τ1 is much larger than τ2 – the ratio is τ1/τ2 ≈ 4β2/ω2
0 � 1. Thus, on time

scales on the order of τ1, the second term has completely damped away. The
decay time τ1, though, is very long, since β is so large. So a highly overdamped
oscillator will take a very long time to come to equilbrium.

4.1.2 Remarks on the Case of Critical Damping

Define the first order differential operator

Dt =
d

dt
+ β . (4.14)

The solution to Dt x(t) = 0 is x̃(t) = Ae−βt, where A is a constant. Note that
the commutator of Dt and t is unity:[

Dt , t
]

= 1 , (4.15)

where [A,B] ≡ AB − BA. The simplest way to verify eqn. 4.15 is to compute
its action upon an arbitrary function f(t):

[
Dt , t

]
f(t) =

(
d

dt
+ β

)
t f(t)− t

(
d

dt
+ β

)
f(t)

=
d

dt

(
t f(t)

)
− t

d

dt
f(t) = f(t) . (4.16)

We know that x(t) = x̃(t) = Ae−βt satisfies Dt x(t) = 0. Therefore

0 = Dt

[
Dt , t

]
x̃(t)

= D2
t

(
t x̃(t)

)
−Dt t

0︷ ︸︸ ︷
Dt x̃(t)

= D2
t

(
t x̃(t)

)
. (4.17)

46



We already know that D2
t x̃(t) = DtDt x̃(t) = 0. The above equation establishes

that the second independent solution to the second order ODE D2
t x(t) = 0 is

x(t) = t x̃(t). Indeed, we can keep going, and show that

Dn
t

(
tn−1 x̃(t)

)
= 0 . (4.18)

Thus, the n independent solutions to the nth order ODE(
d

dt
+ β

)n

x(t) = 0 (4.19)

are
xk(t) = A tk e−βt k = 0, 1, . . . , n− 1 . (4.20)

4.2 Damped Harmonic Oscillator with Forcing

When forced, the equation for the damped oscillator becomes

d2x

dt2
+ 2β

dx

dt
+ ω2

0 x = f(t) , (4.21)

where f(t) = F (t)/m. Since this equation is linear in x(t), we can, without loss
of generality, restrict out attention to harmonic forcing terms of the form

f(t) = f0 cos(Ωt+ ϕ0) = Re
[
f0 e

−iϕ0 e−iΩt
]

(4.22)

where Re stands for “real part”. Here, Ω is the forcing frequency.

Consider first the complex equation

d2z

dt2
+ 2β

dz

dt
+ ω2

0 z = f0 e
−iϕ0 e−iΩt . (4.23)

We try a solution z(t) = z0 e
−iΩt. Plugging in, we obtain the algebraic equation

z0 =
f0 e

−iϕ0

ω2
0 − 2iβΩ −Ω2

≡ A(Ω) eiδ(Ω) f0e
−iϕ0 . (4.24)

The amplitude A(Ω) and phase shift δ(Ω) are given by the equation

A(Ω) eiδ(Ω) =
1

ω2
0 − 2iβΩ −Ω2

. (4.25)
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A basic fact of complex numbers:

1

a− ib
=

a+ ib

a2 + b2
=
ei tan−1(b/a)

√
a2 + b2

. (4.26)

Thus,

A(Ω) =
(
(ω2

0 −Ω2)2 + 4β2Ω2
)−1/2

(4.27)

δ(Ω) = tan−1

(
2βΩ

ω2
0 −Ω2

)
. (4.28)

Now since the coefficients β and ω2
0 are real, we can take the complex con-

jugate of eqn. 4.23, and write

z̈ + 2β ż + ω2
0 z = f0 e

−iϕ0 e−iΩt (4.29)

¨̄z + 2β ˙̄z + ω2
0 z̄ = f0 e

+iϕ0 e+iΩt , (4.30)

where z̄ is the complex conjugate of z. We now add these two equations and
divide by two to arrive at

ẍ+ 2β ẋ+ ω2
0 x = f0 cos(Ωt+ϕ0) . (4.31)

Therefore, the real, physical solution we seek is

xinh(t) = Re
[
A(Ω) eiδ(Ω) · f0 e

−iϕ0 e−iΩt
]

= A(Ω) f0 cos
(
Ωt+ ϕ0 − δ(Ω)

)
. (4.32)

The quantity A(Ω) is the amplitude of the response (in units of f0), while δ(Ω)
is the (dimensionless) phase lag .

The maximum of the amplitude A(Ω) occurs when A′(Ω) = 0. From

dA

dΩ
= − 2Ω[

A(Ω)
]3 (Ω2 − ω2

0 + 2β2
)
, (4.33)

we conclude that A′(Ω) = 0 for Ω = 0 and for Ω = ΩR, where

ΩR =
√
ω2

0 − 2β2 . (4.34)

The solution at Ω = ΩR pertains only if ω2
0 > 2β2, of course, in which case

Ω = 0 is a local minimum and Ω = ΩR a local maximum. If ω2
0 < 2β2 there is

only a local maximum, at Ω = 0. See Fig. 4.2.
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Figure 4.2: Amplitude and phase shift versus oscillator frequency (units of ω0) for
β/ω0 values of 0.1 (red), 0.25 (magenta), 1.0 (green), and 2.0 (blue).

Since equation 4.21 is linear, we can add a solution to the homogeneous
equation to xinh(t) and we will still have a solution. Thus, the most general
solution to eqn. 4.21 is

x(t) = xinh(t) + xhom(t)

= Re
[
A(Ω) eiδ(Ω) · f0 e

−iϕ0 e−iΩt
]

+ C+ e
−iω+t + C− e

−iω−t

=

xinh(t)︷ ︸︸ ︷
A(Ω) f0 cos

(
Ωt+ϕ0 − δ(Ω)

)
+

xhom(t)︷ ︸︸ ︷
C e−βt cos(νt) +D e−βt sin(νt) . (4.35)

The last two terms in eqn. 4.35 are the solution to the homogeneous equa-
tion, i.e. with f(t) = 0. They are necessary to include because they carry with
them the two constants of integration which always arise in the solution of a
second order ODE. That is, C and D are adjusted so as to satisfy x(0) = x0 and
ẋ0 = v0. However, due to their e−βt prefactor, these terms decay to zero once
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t reaches a relatively low multiple of β−1. They are called transients , and may
be set to zero if we are only interested in the long time behavior of the system.
This means, incidentally, that the initial conditions are effectively forgotten over
a time scale on the order of β−1.

For ΩR > 0, one defines the quality factor , Q, of the oscillator by Q =
ΩR/2β. Q is a rough measure of how many periods the unforced oscillator
executes before its initial amplitude is damped down to a small value. For a
forced oscillator driven near resonance, and for weak damping, Q is also related
to the ratio of average energy in the oscillator to the energy lost per cycle by
the external source. To see this, let us compute the energy lost per cycle,

∆E = m

2π/Ω∫
0

dt ẋ f(t)

= −m
2π/Ω∫
0

dtΩ Af 2
0 sin(Ωt+ϕ0 − δ) cos(Ωt+ϕ0)

= πAf 2
0 m sin δ

= 2πβ mΩA2(Ω) f 2
0 , (4.36)

since sin δ(Ω) = 2βΩ A(Ω). The oscillator energy, averaged over the cycle, is

〈
E
〉

=
Ω

2π

2π/Ω∫
0

dt 1
2
m
(
ẋ2 + ω2

0 x
2
)

= 1
4
m (Ω2 + ω2

0)A
2(Ω) f 2

0 . (4.37)

Thus, we have
2π〈E〉
∆E

=
Ω2 + ω2

0

4βΩ
. (4.38)

Thus, for Ω ≈ ΩR and β2 � ω2
0, we have

Q ≈ 2π〈E〉
∆E

≈ ω0

2β
. (4.39)

4.2.1 Resonant Forcing

When the damping β vanishes, the response diverges at resonance. The solution
to the resonantly forced oscillator

ẍ+ ω2
0 x = f0 cos(ω0 t+ϕ0) (4.40)
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is given by

x(t) =
f0

2ω0

t sin(ω0 t+ ϕ0)+

xhom(t)︷ ︸︸ ︷
A cos(ω0 t) +B sin(ω0 t) . (4.41)

The amplitude of this solution grows linearly due to the energy pumped into
the oscillator by the resonant external forcing. In the real world, nonlinearities
can mitigate this unphysical, unbounded response.

4.2.2 R-L-C Circuits

Consider the R-L-C circuit of Fig. 4.3. When the switch is to the left, the
capacitor is charged, eventually to a steady state value Q = CV . At t = 0 the
switch is thrown to the right, completing the R-L-C circuit. Recall that the
sum of the voltage drops across the three elements must be zero:

L
dI

dt
+ IR +

Q

C
= 0 . (4.42)

We also have Q̇ = I, hence

d2Q

dt2
+
R

L

dQ

dt
+

1

LC
Q = 0 , (4.43)

which is the equation for a damped harmonic oscillator, with ω0 = (LC)−1/2

and β = R/2L.

The boundary conditions at t = 0 are Q(0) = CV and Q̇(0) = 0. Under

Figure 4.3: An R-L-C circuit which behaves as a damped harmonic oscillator.
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these conditions, the full solution at all times is

Q(t) = CV e−βt
(

cos νt+
β

ν
sin νt

)
(4.44)

I(t) = −CV ω2
0

ν
e−βt sin νt . (4.45)

4.2.3 Examples

Third Order Linear ODE with Forcing

The problem is to solve the equation

Lt x ≡
...
x + (a+ b+ c) ẍ+ (ab+ ac+ bc) ẋ+ abc x = f0 cos(Ωt) . (4.46)

The key to solving this is to note that the differential operator Lt factorizes:

Lt =
d3

dt3
+ (a+ b+ c)

d2

dt2
+ (ab+ ac+ bc)

d

dt
+ abc

=
( d
dt

+ a
)( d

dt
+ b
)( d

dt
+ c
)
, (4.47)

which says that the third order differential operator appearing in the ODE is in
fact a product of first order differential operators. Since

dx

dt
+ αx = 0 =⇒ x(t) = Ae−αx , (4.48)

we see that the homogeneous solution takes the form

xh(t) = Ae−at +B e−bt + C e−ct , (4.49)

where A, B, and C are constants.

To find the inhomogeneous solution, we solve Lt x = f0 e
−iΩt and take the

real part. Writing x(t) = x0 e
−iΩt, we have

Lt x0 e
−iΩt = (a− iΩ) (b− iΩ) (c− iΩ)x0 e

−iΩt (4.50)

and thus

x0 =
f0 e

−iΩt

(a− iΩ)(b− iΩ)(c− iΩ)
≡ A(Ω) eiδ f0 e

−iΩt ,

where

A(Ω) =
[
(a2 +Ω2) (b2 +Ω2) (c2 +Ω2)

]−1/2

(4.51)

δ(Ω) = tan−1
(Ω
a

)
+ tan−1

(Ω
b

)
+ tan−1

(Ω
c

)
. (4.52)
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Figure 4.4: A driven L-C-R circuit, with V (t) = V0 cos(ωt).

Thus, the most general solution to Lt x(t) = f0 cos(Ωt) is

x(t) = A(Ω) f0 cos
(
Ωt− δ(Ω)

)
+ Ae−at +B e−bt + C e−ct . (4.53)

Note that the phase shift increases monotonically from δ(0) = 0 to δ(∞) = 3
2
π.

Mechanical Analog of RLC Circuit

Consider the electrical circuit in fig. 4.4. Our task is to construct its mechanical
analog. To do so, we invoke Kirchoff’s laws around the left and right loops:

L1 İ1 +
Q1

C1

+R1 (I1 − I2) = 0 (4.54)

L2 İ2 +R2 I2 +R1 (I2 − I1) = V (t) . (4.55)

Let Q1(t) be the charge on the left plate of capacitor C1, and define

Q2(t) =

t∫
0

dt′ I2(t
′) . (4.56)

Then Kirchoff’s laws may be written

Q̈1 +
R1

L1

(Q̇1 − Q̇2) +
1

L1C1

Q1 = 0 (4.57)

Q̈2 +
R2

L2

Q̇2 +
R1

L2

(Q̇2 − Q̇1) =
V (t)

L2

. (4.58)
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Figure 4.5: The equivalent mechanical circuit for fig. 4.4.

Now consider the mechanical system in Fig. 4.5. The blocks have masses
M1 and M2. The friction coefficient between blocks 1 and 2 is b1, and the
friction coefficient between block 2 and the floor is b2. There is a spring of
spring constant k1 which connects block 1 to the wall. Finally, block 2 is driven
by a periodic acceleration f0 cos(ωt). We now identify

X1 ↔ Q1 , X2 ↔ Q2 , b1 ↔
R1

L1

, b2 ↔
R2

L2

, k1 ↔
1

L1C1

, (4.59)

as well as f(t) ↔ V (t)/L2.

The solution again proceeds by Fourier transform. We write

V (t) =

∞∫
−∞

dω

2π
V̂ (ω) e−iωt (4.60)

and {
Q1(t)

Î2(t)

}
=

∞∫
−∞

dω

2π

{
Q̂1(ω)

Î2(ω)

}
e−iωt (4.61)

The frequency space version of Kirchoff’s laws for this problem is

Ĝ(ω)︷ ︸︸ ︷−ω2 − iω R1/L1 + 1/L1C1 R1/L1

iω R1/L2 −iω + (R1 +R2)/L2

 Q̂1(ω)

Î2(ω)

 =

 0

V̂ (ω)/L2


(4.62)

The homogeneous equation has eigenfrequencies given by the solution to det Ĝ(ω) =
0, which is a cubic equation. Correspondingly, there are three initial conditions
to account for: Q1(0), I1(0), and I2(0). As in the case of the single damped
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harmonic oscillator, these transients are damped, and for large times may be
ignored. The solution then isQ̂1(ω)

Î2(ω)

 =

−ω2 − iω R1/L1 + 1/L1C1 R1/L1

iω R1/L2 −iω + (R1 +R2)/L2

−1 0

V̂ (ω)/L2

 .

(4.63)
To obtain the time-dependent Q1(t) and I2(t), we must compute the Fourier
transform back to the time domain.

4.2.4 General Solution by Green’s Function Method

For a general forcing function f(t), we solve by Fourier transform. Recall that a
function F (t) in the time domain has a Fourier transform F̂ (ω) in the frequency
domain. The relation between the two is:

F (t) =

∞∫
−∞

dω

2π
e−iωt F̂ (ω) ⇐⇒ F̂ (ω) =

∞∫
−∞

dt e+iωt F (t) . (4.64)

We can convert the differential equation 4.2 to an algebraic equation in the
frequency domain, x̂(ω) = Ĝ(ω) f̂(ω), where

Ĝ(ω) =
1

ω2
0 − 2iβω − ω2

(4.65)

is the Green’s function in the frequency domain. The general solution is written

x(t) =

∞∫
−∞

dω

2π
e−iωt Ĝ(ω) f̂(ω) + xh(t) , (4.66)

where xh(t) =
∑

iCi e
−iωit is a solution to the homogeneous equation. We may

also write the above integral over the time domain:

x(t) =

∞∫
−∞

dt′G(t− t′) f(t′) + xh(t) (4.67)

G(s) =

∞∫
−∞

dω

2π
e−iωs Ĝ(ω)

= ν−1 exp(−βs) sin(νs) Θ(s) (4.68)

where Θ(s) is the step function,

Θ(s) =

{
1 if s ≥ 0
0 if s < 0

(4.69)
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Example: Pulse Force

Consider a pulse force

f(t) = f0 Θ(t) Θ(T − t) =

{
f0 if 0 ≤ t ≤ T
0 otherwise.

(4.70)

In the underdamped regime, for example, we find the solution

x(t) =
f0

ω2
0

{
1− e−βt cos νt− β

ν
e−βt sin νt

}
(4.71)

if 0 ≤ t ≤ T and

x(t) =
f0

ω2
0

{(
e−β(t−T ) cos ν(t− T )− e−βt cos νt

)
+
β

ν

(
e−β(t−T ) sin ν(t− T )− e−βt sin νt

)}
(4.72)

if t > T .

Figure 4.6: Response of an underdamped oscillator to a pulse force.
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4.3 General Linear Autonomous Inhomogeneous

ODEs

This method immediately generalizes to the case of general autonomous linear
inhomogeneous ODEs of the form

dnx

dtn
+ an−1

dn−1x

dtn−1
+ . . .+ a1

dx

dt
+ a0 x = f(t) . (4.73)

We can write this as
Lt x(t) = f(t) , (4.74)

where Lt is the nth order differential operator

Lt =
dn

dtn
+ an−1

dn−1

dtn−1
+ . . .+ a1

d

dt
+ a0 . (4.75)

The general solution to the inhomogeneous equation is given by

x(t) = xh(t) +

∞∫
−∞

dt′ G(t, t′) f(t′) , (4.76)

where G(t, t′) is the Green’s function. Note that Lt xh(t) = 0. Thus, in order
for eqns. 4.74 and 4.92 to be true, we must have

Lt x(t) =

this vanishes︷ ︸︸ ︷
Lt xh(t) +

∞∫
−∞

dt′ LtG(t, t′) f(t′) = f(t) , (4.77)

which means that
LtG(t, t′) = δ(t− t′) , (4.78)

where δ(t− t′) is the Dirac δ-function. Some properties of δ(x):

b∫
a

dx f(x) δ(x− y) =


f(y) if a < y < b

0 if y < a or y > b .

(4.79)

δ
(
g(x)

)
=
∑

x
i
with

g(x
i
)=0

δ(x− xi)∣∣g′(xi)
∣∣ , (4.80)
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valid for any functions f(x) and g(x). The sum in the second equation is over
the zeros xi of g(x).

Incidentally, the Dirac δ-function enters into the relation between a function
and its Fourier transform, in the following sense. We have

f(t) =

∞∫
−∞

dω

2π
e−iωt f̂(ω) (4.81)

f̂(ω) =

∞∫
−∞

dt e+iωt f(t) . (4.82)

Substituting the second equation into the first, we have

f(t) =

∞∫
−∞

dω

2π
e−iωt

∞∫
−∞

dt′ eiωt′ f(t′)

=

∞∫
−∞

dt′

{ ∞∫
−∞

dω

2π
eiω(t′−t)

}
f(t′) , (4.83)

which is indeed correct because the term in brackets is a representation of δ(t−
t′):

∞∫
−∞

dω

2π
eiωs = δ(s) . (4.84)

If the differential equation Lt x(t) = f(t) is defined over some finite t interval
with prescribed boundary conditions on x(t) at the endpoints, then G(t, t′) will
depend on t and t′ separately. For the case we are considering, the interval is
the entire real line t ∈ (−∞,∞), and G(t, t′) = G(t − t′) is a function of the
single variable t− t′.

Note that Lt = L
(

d
dt

)
may be considered a function of the differential oper-

ator d
dt

. If we now Fourier transform the equation Lt x(t) = f(t), we obtain

∞∫
−∞

dt eiωt f(t) =

∞∫
−∞

dt eiωt

{
dn

dtn
+ an−1

dn−1

dtn−1
+ . . .+ a1

d

dt
+ a0

}
x(t) (4.85)

=

∞∫
−∞

dt eiωt

{
(−iω)n + an−1 (−iω)n−1 + . . .+ a1 (−iω) + a0

}
x(t) ,
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where we integrate by parts on t, assuming the boundary terms at t = ±∞
vanish, i.e. x(±∞) = 0, so that, inside the t integral,

eiωt

(
d

dt

)k

x(t) →

[(
− d

dt

)k

eiωt

]
x(t) = (−iω)k eiωt x(t) . (4.86)

Thus, if we define

L̂(ω) =
n∑

k=0

ak (−iω)k , (4.87)

then we have
L̂(ω) x̂(ω) = f̂(ω) , (4.88)

where an ≡ 1. According to the Fundamental Theorem of Algebra, the nth

degree polynomial L̂(ω) may be uniquely factored over the complex ω plane
into a product over n roots:

L̂(ω) = (−i)n (ω − ω1)(ω − ω2) · · · (ω − ωn) . (4.89)

If the {ak} are all real, then
[
L̂(ω)

]∗
= L̂(−ω∗), hence if Ω is a root then so is

−Ω∗. Thus, the roots appear in pairs which are symmetric about the imaginary
axis. I.e. if Ω = a+ ib is a root, then so is −Ω∗ = −a+ ib.

The general solution to the homogeneous equation is

xh(t) =
n∑

i=1

Ai e
−iωit , (4.90)

which involves n arbitrary complex constants Ai. The susceptibility, or Green’s
function in Fourier space, Ĝ(ω) is then

Ĝ(ω) =
1

L̂(ω)
=

in

(ω − ω1)(ω − ω2) · · · (ω − ωn)
, (4.91)

and the general solution to the inhomogeneous equation is again given by

x(t) = xh(t) +

∞∫
−∞

dt′ G(t− t′) f(t′) , (4.92)

where xh(t) is the solution to the homogeneous equation, i.e. with zero forcing,
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and where

G(s) =

∞∫
−∞

dω

2π
e−iωs Ĝ(ω)

= in
∞∫

−∞

dω

2π

e−iωs

(ω − ω1)(ω − ω2) · · · (ω − ωn)

=
n∑

j=1

e−iωjs

iL′(ωj)
Θ(s) , (4.93)

where we assume that Imωj < 0 for all j. The integral above was done using
Cauchy’s theorem and the calculus of residues – a beautiful result from the
theory of complex functions.

As an example, consider the familiar case

L̂(ω) = ω2
0 − 2iβω − ω2

= −(ω − ω+) (ω − ω−) , (4.94)

with ω± = −iβ ± ν, and ν = (ω2
0 − β2)1/2. This yields

L′(ω±) = ∓(ω+ − ω−) = ∓2ν . (4.95)

Then according to equation 4.93,

G(s) =

{
e−iω+s

iL′(ω+)
+

e−iω−s

iL′(ω−)

}
Θ(s)

=

{
e−βs e−iνs

−2iν
+
e−βs eiνs

2iν

}
Θ(s)

= ν−1 e−βs sin(νs) Θ(s) , (4.96)

exactly as before.
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4.4 Kramers-Krönig Relations (advanced ma-

terial)

Suppose χ̂(ω) ≡ Ĝ(ω) is analytic in the UHP1. Then for all ν, we must have

∞∫
−∞

dν

2π

χ̂(ν)

ν − ω + iε
= 0 , (4.97)

where ε is a positive infinitesimal. The reason is simple: just close the contour
in the UHP, assuming χ̂(ω) vanishes sufficiently rapidly that Jordan’s lemma
can be applied. Clearly this is an extremely weak restriction on χ̂(ω), given the
fact that the denominator already causes the integrand to vanish as |ω|−1.

Let us examine the function

1

ν − ω + iε
=

ν − ω

(ν − ω)2 + ε2
− iε

(ν − ω)2 + ε2
. (4.98)

which we have separated into real and imaginary parts. Under an integral sign,
the first term, in the limit ε→ 0, is equivalent to taking a principal part of the
integral. That is, for any function F (ν) which is regular at ν = ω,

lim
ε→0

∞∫
−∞

dν

2π

ν − ω

(ν − ω)2 + ε2
F (ν) ≡ P

∞∫
−∞

dν

2π

F (ν)

ν − ω
. (4.99)

The principal part symbol P means that the singularity at ν = ω is elided,
either by smoothing out the function 1/(ν − ε) as above, or by simply cutting
out a region of integration of width ε on either side of ν = ω.

The imaginary part is more interesting. Let us write

h(u) ≡ ε

u2 + ε2
. (4.100)

For |u| � ε, h(u) ' ε/u2, which vanishes as ε→ 0. For u = 0, h(0) = 1/ε which
diverges as ε→ 0. Thus, h(u) has a huge peak at u = 0 and rapidly decays to 0
as one moves off the peak in either direction a distance greater that ε. Finally,
note that

∞∫
−∞

du h(u) = π , (4.101)

1In this section, we use the notation χ̂(ω) for the susceptibility, rather than Ĝ(ω)
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a result which itself is easy to show using contour integration. Putting it all
together, this tells us that

lim
ε→0

ε

u2 + ε2
= πδ(u) . (4.102)

Thus, for positive infinitesimal ε,

1

u± iε
= P 1

u
∓ iπδ(u) , (4.103)

a most useful result.

We now return to our initial result 4.97, and we separate χ̂(ω) into real and
imaginary parts:

χ̂(ω) = χ̂′(ω) + iχ̂
′′
(ω) . (4.104)

(In this equation, the primes do not indicate differentiation with respect to
argument.) We therefore have, for every real value of ω,

0 =

∞∫
−∞

dν

2π

[
χ′(ν) + iχ′′(ν)

] [
P 1

ν − ω
− iπδ(ν − ω)

]
. (4.105)

Taking the real and imaginary parts of this equation, we derive the Kramers-
Krönig relations :

χ′(ω) = +P
∞∫

−∞

dν

π

χ̂′′(ν)

ν − ω
(4.106)

χ′′(ω) = −P
∞∫

−∞

dν

π

χ̂′(ν)

ν − ω
. (4.107)
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Chapter 5

Calculus of Variations

5.1 Snell’s Law

Warm-up problem: You are standing at point (x1, y1) on the beach and you
want to get to a point (x2, y2) in the water, a few meters offshore. The interface
between the beach and the water lies at x = 0. What path results in the shortest
travel time? It is not a straight line! This is because your speed v1 on the sand
is greater than your speed v2 in the water. The optimal path actually consists
of two line segments, as shown in Fig. 5.1. Let the path pass through the point
(0, y) on the interface. Then the time T is a function of y:

T (y) =
1

v1

√
x2

1 + (y − y1)
2 +

1

v2

√
x2

2 + (y2 − y)2 . (5.1)

To find the minimum time, we set

dT

dy
= 0 =

1

v1

y − y1√
x2

1 + (y − y1)
2

+
1

v2

y2 − y√
x2

2 + (y2 − y)2

=
sin θ1

v1

− sin θ2

v2

. (5.2)

Thus, the optimal path satisfies

sin θ1

sin θ2

=
v1

v2

, (5.3)

which is known as Snell’s Law.

Snell’s Law is familiar from optics, where the speed of light in a polarizable
medium is written v = c/n, where n is the index of refraction. In terms of n,

n1 sin θ1 = n2 sin θ2 . (5.4)

63



Figure 5.1: The shortest path between (x1, y1) and (x2, y2) is not a straight line, but
rather two successive line segments of different slope.

If there are several interfaces, Snell’s law holds at each one, so that

ni sin θi = ni+1 sin θi+1 , (5.5)

at the interface between media i and i+ 1.

Now let us imagine that there are many such interfaces between regions of
very small thicknesses. We can then regard n and θ as continuous functions of
the coordinate x. The differential form of Snell’s law is

n(x) sin
(
θ(x)

)
= n(x+ dx) sin

(
θ(x+ dx)

)
= (n+ n′ dx)

(
sin θ + cos θ θ′ dx

)
= n sin θ +

(
n′ sin θ + n cos θ θ′

)
dx . (5.6)

Thus,

ctn θ
dθ

dx
= − 1

n

dn

dx
. (5.7)

If we write the path as y = y(x), then tan θ = y′, and

θ′ =
d

dx
tan−1 y′ =

y′′

1 + y′2
, (5.8)

which yields

− 1

y′
· y′′

1 + y′2
=
n′

n
. (5.9)
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Figure 5.2: The path of shortest length is composed of three line segments. The
relation between the angles at each interface is governed by Snell’s Law.

This is a differential equation that y(x) must satisfy if the functional

T
[
y(x)

]
=

∫
ds

v
=

1

c

x2∫
x1

dxn(x)

√
1 + y′2 (5.10)

is to be minimized.

5.2 Functions and Functionals

A function is a mathematical object which takes a real (or complex) variable,
or several such variables, and returns a real (or complex) number. A functional
is a mathematical object which takes an entire function and returns a number.
In the case at hand, we have

T
[
y(x)

]
=

x2∫
x1

dxL(y, y′, x) , (5.11)

where the function L(y, y′, x) is given by

L(y, y′, x) = c−1 n(x)

√
1 + y′2 . (5.12)

65



Figure 5.3: A path y(x) and its variation y(x) + δy(x).

Here n(x) is a given function characterizing the medium, and y(x) is the path
whose time is to be evaluated.

In ordinary calculus, we extremize a function f(x) by demanding that f not
change to lowest order when we change x→ x+ dx:

f(x+ dx) = f(x) + f ′(x) dx+ 1
2
f ′′(x) (dx)2 + . . . . (5.13)

We say that x = x∗ is an extremum when f ′(x∗) = 0.

For a functional, the first functional variation is obtained by sending y(x) →
y(x) + δy(x), and extracting the variation in the functional to order δy. Thus,
we compute

T
[
y(x) + δy(x)

]
=

x2∫
x1

dxL(y + δy, y′ + δy′, x)

=

x2∫
x1

dx

{
L+

∂L

∂y
δy +

∂L

∂y′
δy′ +O

(
(δy)2

)}

= T
[
y(x)

]
+

x2∫
x1

dx

{
∂L

∂y
δy +

∂L

∂y′
d

dx
δy

}

= T
[
y(x)

]
+

x2∫
x1

dx

[
∂L

∂y
− d

dx

(
∂L

∂y′

)]
δy +

∂L

∂y′
δy

∣∣∣∣∣
x2

x1

. (5.14)

Now one very important thing about the variation δy(x) is that it must vanish
at the endpoints: δy(x1) = δy(x2) = 0. This is because the space of functions
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under consideration satisfy fixed boundary conditions y(x1) = y1 and y(x2) = y2.
Thus, the last term in the above equation vanishes, and we have

δT =

x2∫
x1

dx

[
∂L

∂y
− d

dx

(
∂L

∂y′

)]
δy . (5.15)

We say that the first functional derivative of T with respect to y(x) is

δT

δy(x)
=

[
∂L

∂y
− d

dx

(
∂L

∂y′

)]
x

, (5.16)

where the subscript indicates that the expression inside the square brackets is to
be evaluated at x. The functional T

[
y(x)

]
is extremized when its first functional

derivative vanishes, which results in a differential equation for y(x),

∂L

∂y
− d

dx

(
∂L

∂y′

)
= 0 , (5.17)

known as the Euler-Lagrange equation. Since L is independent of y, we have

0 =
d

dx

(
∂L

∂y′

)
=

1

c

d

dx

[
n y′√
1 + y′2

]

=
n′

c

y′√
1 + y′2

+
n

c

y′′(
1 + y′2

)3/2
. (5.18)

We thus recover the second order equation in 5.9. However, note that the above
equation directly gives

n(x) sin θ(x) = const. , (5.19)

which follows from the relation y′ = tan θ. For y(x) we obtain

n2 y′2

1 + y′2
≡ α2 = const. ⇒ dy

dx
=

α√
n2(x)− α2

. (5.20)

In general, we may expand a functional F [y + δy] in a functional Taylor series ,

F [y + δy] = F [y] +

∫
dx1K1(x1) δy(x1) + 1

2 !

∫
dx1

∫
dx2K2(x1, x2) δy(x1) δy(x2)

+ 1
3 !

∫
dx1

∫
dx2

∫
dx3K3(x1, x2, x3) δy(x1) δy(x2) δy(x3) + . . . (5.21)

and we write

Kn(x1, . . . , xn) ≡ δnF

δy(x1) · · · δy(xn)
(5.22)

for the nth functional derivative.
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5.3 Examples from the Calculus of Variations

Here we present three useful examples of variational calculus as applied to prob-
lems in mathematics and physics.

5.3.1 Example 1 : Minimal Surface of Revolution

Consider a surface formed by rotating the function y(x) about the x-axis. The
area is then

A
[
y(x)

]
=

x2∫
x1

dx 2πy

√
1 +

(
dy

dx

)2

, (5.23)

and is a functional of the curve y(x). Thus we can define L(y, y′) = 2πy
√

1 + y′2

and make the identification y(x) ↔ q(t). We can then apply what we have
derived for the mechanical action, with L = L(q, q̇, t), mutatis mutandis. Thus,
the equation of motion is

d

dx

(
∂L

∂y′

)
=
∂L

∂y
, (5.24)

which is a second order ODE for y(x). Rather than treat the second order
equation, though, we can integrate once to obtain a first order equation, by
noticing that

d

dx

[
y′
∂L

∂y′
− L

]
= y′′

∂L

∂y′
+ y′

d

dx

(
∂L

∂y′

)
− ∂L

∂y′
y′′ − ∂L

∂y
y′ − ∂L

∂x

= y′
[
d

dx

(
∂L

∂y′

)
− ∂L

∂y

]
− ∂L

∂x
. (5.25)

In the second line above, the term in square brackets vanishes, thus

J = y′
∂L

∂y′
− L ⇒ dJ

dx
= −∂L

∂x
, (5.26)

and when L has no explicit x-dependence, J is conserved. One finds

J = 2πy · y′2√
1 + y′2

− 2πy

√
1 + y′2 = − 2πy√

1 + y′2
. (5.27)

Solving for y′,

dy

dx
= ±

√(
2πy

J

)2

− 1 , (5.28)

68



which may be integrated with the substitution y = J
2π

coshχ, yielding

y(x) = b cosh

(
x− a

b

)
, (5.29)

where a and b = J
2π

are constants of integration. Note there are two such
constants, as the original equation was second order. This shape is called a
catenary. As we shall later find, it is also the shape of a uniformly dense
rope hanging between two supports, under the influence of gravity. To fix the
constants a and b, we invoke the boundary conditions y(x1) = y1 and y(x2) = y2.

Consider the case where −x1 = x2 ≡ x0 and y1 = y2 ≡ y0. Then clearly
a = 0, and we have

y0 = b cosh
(x0

b

)
⇒ γ = κ−1 coshκ , (5.30)

with γ ≡ y0/x0 and κ ≡ x0/b. One finds that for any γ > 1.5089 there are two
solutions, one of which is a local minimum and one of which is a saddle point of
A[y(x)]. The solution with the smaller value of κ (i.e. the larger value of sechκ)
yields the smaller value of A, as shown in Fig. 5.4. Note that

y

y0

=
cosh(x/b)

cosh(x0/b)
, (5.31)

so y(x = 0) = y0 sech(x0/b).

When extremizing functions that are defined over a finite or semi-infinite
interval, one must take care to evaluate the function at the boundary, for it may
be that the boundary yields a global extremum even though the derivative may
not vanish there. Similarly, when extremizing functionals, one must investigate
the functions at the boundary of function space. In this case, such a function
would be the discontinuous solution, with

y(x) =



y1 if x = x1

0 if x1 < x < x2

y2 if x = x2 .

(5.32)

This solution corresponds to a surface consisting of two discs of radii y1 and y2,
joined by an infinitesimally thin thread. The area functional evaluated for this
particular y(x) is clearly A = π(y2

1 +y2
2). In Fig. 5.4, we plot A/2πy2

0 versus the
parameter γ = y0/x0. For γ > γc ≈ 1.564, one of the catenary solutions is the
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Figure 5.4: Minimal surface solution, with y(x) = b cosh(x/b) and y(x0) = y0. Top
panel: A/2πy2

0 vs. y0/x0. Bottom panel: sech(x0/b) vs. y0/x0. The blue curve
corresponds to a local minimum of A[y(x), and the red curve to a saddle point.

global minimum. For γ < γc, the minimum area is achieved by the discontinuous
solution.

Note that the functional derivative,

K1(x) =
δA

δy(x)
=

{
∂L

∂y
− d

dx

(
∂L

∂y′

)}
=

2π
(
1 + y′2 − yy′′

)
(1 + y′2)3/2

, (5.33)

indeed vanishes for the catenary solutions, but does not vanish for the discon-
tinuous solution, where K1(x) = 2π throughout the interval (−x0, x0). Since
y = 0 on this interval, y cannot be decreased. The fact that K1(x) > 0 means
that increasing y will result in an increase in A, so the boundary value for A,
which is 2πy2

0, is indeed a local minimum.

We furthermore see in Fig. 5.4 that for γ < γ∗ ≈ 1.5089 the local minimum
and saddle are no longer present. This is the familiar saddle-node bifurcation,
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here in function space. Thus, for γ ∈ [0, γ∗) there are no extrema of A[y(x)],
and the minimum area occurs for the discontinuous y(x) lying at the bound-
ary of function space. For γ ∈ (γ∗, γc), two extrema exist, one of which is a
local minimum and the other a saddle point. Still, the area is minimized for
the discontinuous solution. For γ ∈ (γc,∞), the local minimum is the global
minimum, and has smaller area than for the discontinuous solution.

5.3.2 Example 2 : Geodesic on a Surface of Revolution

We use cylindrical coordinates (ρ, φ, z) on the surface z = z(ρ). Thus,

ds2 = dρ2 + ρ2 dφ2 + dx2

=
{

1 +
[
z′(ρ)

]2}
dρ+ ρ2 dφ2 , (5.34)

and the distance functional D
[
φ(ρ)

]
is

D
[
φ(ρ)

]
=

ρ2∫
ρ1

dρL(φ, φ′, ρ) , (5.35)

where

L(φ, φ′, ρ) =

√
1 + z′2(ρ) + ρ2 φ′2(ρ) . (5.36)

The Euler-Lagrange equation is

∂L

∂φ
− d

dρ

(
∂L

∂φ′

)
= 0 ⇒ ∂L

∂φ′
= const. (5.37)

Thus,
∂L

∂φ′
=

ρ2 φ′√
1 + z′2 + ρ2 φ′2

= a , (5.38)

where a is a constant. Solving for φ′, we obtain

dφ =
a
√

1 +
[
z′(ρ)

]2
ρ
√
ρ2 − a2

dρ , (5.39)

which we must integrate to find φ(ρ), subject to boundary conditions φ(ρi) = φi,
with i = 1, 2.

On a cone, z(ρ) = λρ, and we have

dφ = a
√

1 + λ2
dρ

ρ
√
ρ2 − a2

=
√

1 + λ2 d tan−1

√
ρ2

a2
− 1 , (5.40)
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which yields

φ(ρ) = β +
√

1 + λ2 tan−1

√
ρ2

a2
− 1 , (5.41)

which is equivalent to

ρ cos

(
φ− β√
1 + λ2

)
= a . (5.42)

The constants β and a are determined from φ(ρi) = φi.

5.3.3 Example 3 : Brachistochrone

Problem: find the path between (x1, y1) and (x2, y2) which a particle sliding
frictionlessly and under constant gravitational acceleration will traverse in the
shortest time. To solve this we first must invoke some elementary mechanics.
Assuming the particle is released from (x1, y1) at rest, energy conservation says

1
2
mv2 −mgy = mgy1 . (5.43)

Then the time, which is a functional of the curve y(x), is

T
[
y(x)

]
=

x2∫
x1

ds

v
=

1√
2g

x2∫
x1

dx

√
1 + y′2

y1 − y
(5.44)

≡
x2∫

x1

dxL(y, y′, x) ,

with

L(y, y′, x) =

√
1 + y′2

2g(y1 − y)
. (5.45)

Since L is independent of x, eqn. 5.25, we have that

J = y′
∂L

∂y′
− L = −

[
2g (y1 − y)

(
1 + y′

2)]−1/2

(5.46)

is conserved. This yields

dx = −
√

y1 − y

2a− y1 + y
dy , (5.47)

with a = (4gJ 2)−1. This may be integrated parametrically, writing

y1 − y = 2a sin2(1
2
θ) ⇒ dx = 2a sin2(1

2
θ) dθ , (5.48)
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which results in the parametric equations

x− x1 = a
(
θ − sin θ

)
(5.49)

y − y1 = −a (1− cos θ) . (5.50)

This curve is known as a cycloid.

5.3.4 Ocean Waves

Surface waves in fluids propagate with a definite relation between their angular
frequency ω and their wavevector k = 2π/λ, where λ is the wavelength. The
dispersion relation is a function ω = ω(k). The group velocity of the waves is
then v(k) = dω/dk.

In a fluid with a flat bottom at depth h, the dispersion relation turns out
to be

ω(k) =
√
gk tanh kh ≈


√
gh k shallow (kh� 1)

√
gk deep (kh� 1) .

(5.51)

Suppose we are in the shallow case, where the wavelength λ is significantly
greater than the depth h of the fluid. This is the case for ocean waves which
break at the shore. The phase velocity and group velocity are then identical,
and equal to v(h) =

√
gh. The waves propagate more slowly as they approach

the shore.

Let us choose the following coordinate system: x represents the distance
parallel to the shoreline, y the distance perpendicular to the shore (which lies
at y = 0), and h(y) is the depth profile of the bottom. We assume h(y) to be a
slowly varying function of y which satisfies h(0) = 0. Suppose a disturbance in
the ocean at position (x2, y2) propagates until it reaches the shore at (x1, y1 = 0).
The time of propagation is

T
[
y(x)

]
=

∫
ds

v
=

x2∫
x1

dx

√
1 + y′2

g h(y)
. (5.52)

We thus identify the integrand

L(y, y′, x) =

√
1 + y′2

g h(y)
. (5.53)
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Figure 5.5: For shallow water waves, v =
√
gh. To minimize the propagation time

from a source to the shore, the waves break parallel to the shoreline.

As with the brachistochrone problem, to which this bears an obvious resem-
blance, L is cyclic in the independent variable x, hence

J = y′
∂L

∂y′
− L = −

[
g h(y)

(
1 + y′

2)]−1/2

(5.54)

is constant. Solving for y′(x), we have

tan θ =
dy

dx
=

√
a

h(y)
− 1 , (5.55)

where a = (gJ )−1 is a constant, and where θ is the local slope of the function
y(x). Thus, we conclude that near y = 0, where h(y) → 0, the waves come in
parallel to the shoreline. If h(y) = αy has a linear profile, the solution is again
a cycloid, with

x(θ) = b (θ − sin θ) (5.56)

y(θ) = b (1− cos θ) , (5.57)

where b = 2a/α and where the shore lies at θ = 0. Expanding in a Taylor series
in θ for small θ, we may eliminate θ and obtain y(x) as

y(x) =
(

9
2

)1/3
b1/3 x2/3 + . . . . (5.58)
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A tsunami is a shallow water wave that manages propagates in deep water.
This requires λ > h, as we’ve seen, which means the disturbance must have a
very long spatial extent out in the open ocean, where h ∼ 10 km. An undersea
earthquake is the only possible source; the characteristic length of earthquake
fault lines can be hundreds of kilometers. If we take h = 10 km, we obtain
v =

√
gh ≈ 310 m/s or 1100 km/hr. At these speeds, a tsunami can cross the

Pacific Ocean in less than a day.

As the wave approaches the shore, it must slow down, since v =
√
gh is

diminishing. But energy is conserved, which means that the amplitude must
concomitantly rise. In extreme cases, the water level rise at shore may be 20
meters or more.
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Chapter 6

Lagrangian Mechanics

6.1 Generalized Coordinates

A set of generalized coordinates q1, . . . , qn completely describes the positions of
all particles in a mechanical system. In a system with df degrees of freedom
and k constraints, n = df − k independent generalized coordinates are needed
to completely specify all the positions. A constraint is a relation among coordi-
nates, such as x2 + y2 + z2 = a2 for a particle moving on a sphere of radius a.
In this case, df = 3 and k = 1. In this case, we could eliminate z in favor of x
and y, i.e. by writing z = ±

√
a2 − x2 − y2, or we could choose as coordinates

the polar and azimuthal angles θ and φ.

For the moment we will assume that n = df − k, and that the generalized
coordinates are independent, satisfying no additional constraints among them.
Later on we will learn how to deal with any remaining constraints among the
{q1, . . . , qn}.

The generalized coordinates may have units of length, or angle, or perhaps
something totally different. In the theory of small oscillations, the normal coor-
dinates are conventionally chosen to have units of (mass)1/2×(length). However,
once a choice of generalized coordinate is made, with a concomitant set of units,
the units of the conjugate momentum and force are determined:

[
pσ

]
=
ML2

T
· 1[
qσ
] ,

[
Fσ

]
=
ML2

T 2
· 1[
qσ
] , (6.1)

where
[
A
]

means ‘the units of A’, and where M , L, and T stand for mass,
length, and time, respectively. Thus, if qσ has dimensions of length, then pσ has
dimensions of momentum and Fσ has dimensions of force. If qσ is dimensionless,
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as is the case for an angle, pσ has dimensions of angular momentum (ML2/T )
and Fσ has dimensions of torque (ML2/T 2).

6.2 Hamilton’s Principle

The equations of motion of classical mechanics are embodied in a variational
principle, called Hamilton’s principle. Hamilton’s principle states that the mo-
tion of a system is such that the action functional

S
[
q(t)

]
=

t2∫
t1

dt L(q, q̇, t) (6.2)

is an extremum, i.e. δS = 0. Here, q = {q1, . . . , qn} is a complete set of gener-
alized coordinates for our mechanical system, and

L = T − U (6.3)

is the Lagrangian, where T is the kinetic energy and U is the potential en-
ergy. Setting the first variation of the action to zero gives the Euler-Lagrange
equations,

d

dt

momentum pσ︷ ︸︸ ︷(
∂L

∂q̇σ

)
=

force Fσ︷︸︸︷
∂L

∂qσ
. (6.4)

Thus, we have the familiar ṗσ = Fσ, also known as Newton’s second law. Note,
however, that the {qσ} are generalized coordinates , so pσ may not have dimen-
sions of momentum, nor Fσ of force. For example, if the generalized coordinate
in question is an angle φ, then the corresponding generalized momentum is the
angular momentum about the axis of φ’s rotation, and the generalized force is
the torque.

6.2.1 Momentum Conservation

Whenever L is independent of a generalized coordinate qσ, the conjugate force
Fσ = ∂L

∂qσ
vanishes and therefore the conjugate momentum pσ = ∂L

∂q̇σ
is conserved.

This is an example of a deep result known as Noether’s theorem which we
will explore more fully next week. Noether’s theorem guarantees that to every
continuous symmetry of L there corresponds an associated conserved quantity.
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6.2.2 Invariance of the Equations of Motion

Suppose

L̃(q, q̇, t) = L(q, q̇, t) +
d

dt
G(q, t) . (6.5)

Then
S̃[q(t)] = S[q(t)] +G(qb, tb)−G(qa, ta) . (6.6)

Since the difference S̃−S is a function only of the endpoint values {qa, qb}, their
variations are identical: δS̃ = δS. This means that L and L̃ result in the same
equations of motion. Thus, the equations of motion are invariant under a shift
of L by a total time derivative of a function of coordinates and time.

6.2.3 Remarks on the Order of the Equations of Motion

The equations of motion are second order in time. This follows from the fact
that L = L(q, q̇, t). Using the chain rule,

d

dt

(
∂L

∂q̇σ

)
=

∂2L

∂q̇σ ∂q̇σ′
q̈σ′ +

∂2L

∂q̇σ ∂qσ′
q̇σ′ +

∂L

∂t
. (6.7)

That the equations are second order in time can be regarded as an empirical
fact. It follows, as we have just seen, from the fact that L depends on q and on
q̇, but on no higher time derivative terms. Suppose the Lagrangian did depend
on the generalized accelerations q̈ as well. What would the equations of motion
look like?

Taking the variation of S,

δ

tb∫
ta

dt L(q, q̇, q̈, t) =

[
∂L

∂q̇σ
δqσ +

∂L

∂q̈σ
δq̇σ −

d

dt

(
∂L

∂q̈σ

)
δqσ

]tb

ta

+

tb∫
ta

dt

{
∂L

∂qσ
− d

dt

(
∂L

∂q̇σ

)
+
d2

dt2

(
∂L

∂q̈σ

)}
δqσ . (6.8)

The boundary term vanishes if we require δqσ(ta) = δqσ(tb) = δq̇σ(ta) = δq̇σ(tb) =
0 ∀ σ. The equations of motion would then be fourth order in time.
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6.2.4 Lagrangian for a Free Particle

For a free particle, we can use Cartesian coordinates for each particle as our sys-
tem of generalized coordinates. For a single particle, the Lagrangian L(x,v, t)
must be a function solely of v2. This is because homogeneity with respect to
space and time preclude any dependence of L on x or on t, and isotropy of space
means L must depend on v2. We next invoke Galilean relativity, which says that
the equations of motion are invariant under transformation to a reference frame
moving with constant velocity. Let V be the velocity of the new reference frame
K′ relative to our initial reference frame K. Then x′ = x−V t, and v′ = v−V .
In order that the equations of motion be invariant under the change in reference
frame, we demand

L′(v′) = L(v) +
d

dt
G(x, t) . (6.9)

The only possibility is L = 1
2
mv2, where the constant m is the mass of the

particle. Note:

L′ = 1
2
m(v − V )2 = 1

2
mv2 +

d

dt

(
1
2
mV 2 t−mV · x

)
= L+

dG

dt
. (6.10)

For N interacting particles,

L = 1
2

N∑
a=1

ma

(dxa

dt

)2

− U
(
{xa}, {ẋa}

)
. (6.11)

Here, U is the potential energy . Generally, U is of the form

U =
∑

a

U1(xa) +
∑
a<a′

v(xa − xa′) , (6.12)

however, as we shall see, velocity-dependent potentials appear in the case of
charged particles interacting with electromagnetic fields. In general, though,

L = T − U , (6.13)

where T is the kinetic energy, and U is the potential energy.

6.3 Remarks on the Choice of Generalized Co-

ordinates

Any choice of generalized coordinates will yield an equivalent set of equations of
motion. However, some choices result in an apparently simpler set than others.
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This is often true with respect to the form of the potential energy. Additionally,
certain constraints that may be present are more amenable to treatment using
a particular set of generalized coordinates.

The kinetic energy T is always simple to write in Cartesian coordinates, and
it is good practice, at least when one is first learning the method, to write T in
Cartesian coordinates and then convert to generalized coordinates. In Cartesian
coordinates, the kinetic energy of a single particle of mass m is

T = 1
2
m
(
ẋ2 + ẏ2 + ẋ2

)
. (6.14)

If the motion is two-dimensional, and confined to the plane z = const., one of
course has T = 1

2
m
(
ẋ2 + ẏ2

)
.

Two other commonly used coordinate systems are the cylindrical and spher-
ical systems. In cylindrical coordinates (ρ, φ, z), ρ is the radial coordinate in the
(x, y) plane and φ is the azimuthal angle:

x = ρ cosφ ẋ = cosφ ρ̇− ρ sinφ φ̇ (6.15)

y = ρ sinφ ẏ = sinφ ρ̇+ ρ cosφ φ̇ , (6.16)

and the third, orthogonal coordinate is of course z. The kinetic energy is

T = 1
2
m
(
ẋ2 + ẏ2 + ẋ2

)
= 1

2
m
(
ρ̇2 + ρ2 φ̇2 + ż2

)
. (6.17)

When the motion is confined to a plane with z = const., this coordinate system
is often referred to as ‘two-dimensional polar’ coordinates.

In spherical coordinates (r, θ, φ), r is the radius, θ is the polar angle, and
φ is the azimuthal angle. On the globe, θ would be the ‘colatitude’, which is
θ = π

2
− λ, where λ is the latitude. I.e. θ = 0 at the north pole. In spherical

polar coordinates,

x = r sin θ cosφ ẋ = sin θ cosφ ṙ + r cos θ cosφ θ̇ − r sin θ sinφ φ̇ (6.18)

y = r sin θ sinφ ẏ = sin θ sinφ ṙ + r cos θ sinφ θ̇ + r sin θ cosφ φ̇ (6.19)

z = r cos θ ż = cos θ ṙ − r sin θ θ̇ . (6.20)

The kinetic energy is

T = 1
2
m
(
ẋ2 + ẏ2 + ż2

)
= 1

2
m
(
ṙ2 + r2 θ̇2 + r2 sin2θ φ̇2

)
. (6.21)
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6.4 How to Solve Mechanics Problems

Here are some simple steps you can follow toward obtaining the equations of
motion:

1. Choose a set of generalized coordinates {q1, . . . , qn}.

2. Find the kinetic energy T (q, q̇, t), the potential energy U(q, t), and the La-
grangian L(q, q̇, t) = T − U . It is often helpful to first write the kinetic energy
in Cartesian coordinates for each particle before converting to generalized co-
ordinates.

3. Find the canonical momenta pσ = ∂L
∂q̇σ

and the generalized forces Fσ = ∂L
∂qσ

.

4. Evaluate the time derivatives ṗσ and write the equations of motion ṗσ = Fσ.
Be careful to differentiate properly, using the chain rule and the Leibniz rule
where appropriate.

5. Identify any conserved quantities (more about this later).

6.5 Examples

6.5.1 One-dimensional motion

For a one-dimensional mechanical system with potential energy U(x),

L = T − U = 1
2
mẋ2 − U(x) . (6.22)

The canonical momentum is

p =
∂L

∂ẋ
= mẋ (6.23)

and the equation of motion is

d

dt

(
∂L

∂ẋ

)
=
∂L

∂x
⇒ mẍ = −U ′(x) , (6.24)

which is of course F = ma.

Note that we can multiply the equation of motion by ẋ to get

0 = ẋ
{
mẍ+ U ′(x)

}
=

d

dt

{
1
2
mẋ2 + U(x)

}
=
dE

dt
, (6.25)

where E = T + U .
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6.5.2 Central force in two dimensions

Consider next a particle of massmmoving in two dimensions under the influence
of a potential U(ρ) which is a function of the distance from the origin ρ =√
x2 + y2. Clearly cylindrical (2d polar) coordinates are called for:

L = 1
2
m
(
ρ̇2 + ρ2 φ̇2

)
− U(ρ) . (6.26)

The equations of motion are

d

dt

(
∂L

∂ρ̇

)
=
∂L

∂ρ
⇒ mρ̈ = mρ φ̇2 − U ′(ρ) (6.27)

d

dt

(
∂L

∂φ̇

)
=
∂L

∂φ
⇒ d

dt

(
mρ2 φ̇

)
= 0 . (6.28)

Note that the canonical momentum conjugate to φ, which is to say the angular
momentum, is conserved:

pφ = mρ2 φ̇ = const. (6.29)

We can use this to eliminate φ̇ from the first Euler-Lagrange equation, obtaining

mρ̈ =
p2

φ

mρ3
− U ′(ρ) . (6.30)

We can also write the total energy as

E = 1
2
m
(
ρ̇2 + ρ2 φ̇2

)
+ U(ρ)

= 1
2
m ρ̇2 +

p2
φ

2mρ2
+ U(ρ) , (6.31)

from which it may be shown that E is also a constant:

dE

dt
=
(
m ρ̈−

p2
φ

mρ3
+ U ′(ρ)

)
ρ̇ = 0 . (6.32)

We shall discuss this case in much greater detail in the coming weeks.

6.5.3 A sliding point mass on a sliding wedge

Consider the situation depicted in Fig. 6.1, in which a point object of mass m
slides frictionlessly along a wedge of opening angle α. The wedge itself slides
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Figure 6.1: A wedge of mass M and opening angle α slides frictionlessly along a
horizontal surface, while a small object of mass m slides frictionlessly along the wedge.

frictionlessly along a horizontal surface, and its mass is M . We choose as gener-
alized coordinates the horizontal position X of the left corner of the wedge, and
the horizontal distance x from the left corner to the sliding point mass. The
vertical coordinate of the sliding mass is then y = x tanα, where the horizontal
surface lies at y = 0. With these generalized coordinates, the kinetic energy is

T = 1
2
MẊ2 + 1

2
m (Ẋ + ẋ)2 + 1

2
mẏ2

= 1
2
(M +m)Ẋ2 +mẊẋ+ 1

2
m (1 + tan2α) ẋ2 . (6.33)

The potential energy is simply

U = mgy = mg x tanα . (6.34)

Thus, the Lagrangian is

L = 1
2
(M +m)Ẋ2 +mẊẋ+ 1

2
m (1 + tan2α) ẋ2 −mg x tanα , (6.35)

and the equations of motion are

d

dt

(
∂L

∂Ẋ

)
=
∂L

∂X
⇒ (M +m)Ẍ +mẍ = 0

d

dt

(
∂L

∂ẋ

)
=
∂L

∂x
⇒ mẌ +m (1 + tan2α) ẍ = −mg tanα . (6.36)

At this point we can use the first of these equations to write

Ẍ = − m

M +m
ẍ . (6.37)

Substituting this into the second equation, we obtain the constant accelerations

ẍ = −(M +m)g sinα cosα

M +m sin2α
, Ẍ =

mg sinα cosα

M +m sin2α
. (6.38)
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Figure 6.2: The spring–pendulum system.

6.5.4 A pendulum attached to a mass on a spring

Consider next the system depicted in Fig. 6.2 in which a mass M moves hor-
izontally while attached to a spring of spring constant k. Hanging from this
mass is a pendulum of arm length ` and bob mass m.

A convenient set of generalized coordinates is (x, θ), where x is the displace-
ment of the mass M relative to the equilibrium extension a of the spring, and
θ is the angle the pendulum arm makes with respect to the vertical. Let the
Cartesian coordinates of the pendulum bob be (x1, y1). Then

x1 = a+ x+ ` sin θ , y1 = −l cos θ . (6.39)

The kinetic energy is

T = 1
2
Mẋ2 + 1

2
m (ẋ2 + ẏ2)

= 1
2
Mẋ2 + 1

2
m
[
(ẋ+ ` cos θ θ̇)2 + (` sin θ θ̇)2

]
= 1

2
(M +m) ẋ2 + 1

2
m`2 θ̇2 +m` cos θ ẋ θ̇ , (6.40)

and the potential energy is

U = 1
2
kx2 +mgy1

= 1
2
kx2 −mg` cos θ . (6.41)

Thus,

L = 1
2
(M +m) ẋ2 + 1

2
m`2 θ̇2 +m` cos θ ẋ θ̇ − 1

2
kx2 +mg` cos θ . (6.42)
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The canonical momenta are

px =
∂L

∂ẋ
= (M +m) ẋ+m` cos θ θ̇

pθ =
∂L

∂θ̇
= m` cos θ ẋ+m`2 θ̇ , (6.43)

and the canonical forces are

Fx =
∂L

∂x
= −kx

Fθ =
∂L

∂θ
= −m` sin θ ẋ θ̇ −mg` sin θ . (6.44)

The equations of motion then yield

(M +m) ẍ+m` cos θ θ̈ −m` sin θ θ̇2 = −kx (6.45)

m` cos θ ẍ+m`2 θ̈ = −mg` sin θ . (6.46)

Small Oscillations : If we assume both x and θ are small, we may write sin θ ≈ θ
and cos θ ≈ 1, in which case the equations of motion may be linearized to

(M +m) ẍ+m` θ̈ + kx = 0 (6.47)

m` ẍ+m`2 θ̈ +mg` θ = 0 . (6.48)

If we define

u ≡ x

`
, α ≡ m

M
, ω2

0 ≡
k

M
, ω2

1 ≡
g

`
, (6.49)

then

(1 + α) ü+ α θ̈ + ω2
0 u = 0 (6.50)

ü+ θ̈ + ω2
1 θ = 0 . (6.51)

We can solve by writing (
u(t)
θ(t)

)
=

(
a
b

)
e−iωt , (6.52)

in which case (
ω2

0 − (1 + α)ω2 −αω2

−ω2 ω2
1 − ω2

)(
a
b

)
=

(
0
0

)
. (6.53)

In order to have a nontrivial solution (i.e. without a = b = 0), the determinant
of the above 2 × 2 matrix must vanish. This gives a condition on ω2, with
solutions

ω2
± = 1

2

(
ω2

0 + (1 + α)ω2
1

)
± 1

2

√(
ω2

0 − ω2
1

)2
+ 2α (ω2

0 + ω2
1)ω

2
1 . (6.54)
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Figure 6.3: The double pendulum, with generalized coordinates θ1 and θ2. All motion
is confined to a single plane.

6.5.5 The double pendulum

As yet another example of the generalized coordinate approach to Lagrangian
dynamics, consider the double pendulum system, sketched in Fig. 6.3. We
choose as generalized coordinates the two angles θ1 and θ2. In order to evaluate
the Lagrangian, we must obtain the kinetic and potential energies in terms of
the generalized coordinates {θ1, θ2} and their corresponding velocities {θ̇1, θ̇2}.

In Cartesian coordinates,

T = 1
2
m1 (ẋ2

1 + ẏ2
1) + 1

2
m2 (ẋ2

2 + ẏ2
2) (6.55)

U = m1 g y1 +m2 g y2 . (6.56)

We therefore express the Cartesian coordinates {x1, y1, x2, y2} in terms of the
generalized coordinates {θ1, θ2}:

x1 = `1 sin θ1 x2 = `1 sin θ1 + `2 sin θ2 (6.57)

y1 = −`1 cos θ1 y2 = −`1 cos θ1 − `2 cos θ2 . (6.58)

Thus, the velocities are

ẋ1 = `1 θ̇1 cos θ1 ẋ2 = `1 θ̇1 cos θ1 + `2 θ̇2 cos θ2 (6.59)

ẏ1 = `1 θ̇1 sin θ1 ẏ2 = `1 θ̇1 sin θ1 + `2 θ̇2 sin θ2 . (6.60)

Thus,

T = 1
2
m1 `

2
1 θ̇

2
1 + 1

2
m2

{
`21 θ̇

2
1 + 2`1 `2 cos(θ1 − θ2) θ̇1 θ̇2 + `22 θ̇

2
2

}
(6.61)

U = −m1 g `1 cos θ1 −m2 g `1 cos θ1 −m2 g `2 cos θ2 , (6.62)
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and

L = T − U = 1
2
(m1 +m2) `

2
1 θ̇

2
1 +m2 `1 `2 cos(θ1 − θ2) θ̇1 θ̇2 + 1

2
m2 `

2
2 θ̇

2
2

+ (m1 +m2) g `1 cos θ1 +m2 g `2 cos θ2 . (6.63)

The generalized (canonical) momenta are

p1 =
∂L

∂θ̇1

= (m1 +m2) `
2
1 θ̇1 +m2 `1 `2 cos(θ1 − θ2) θ̇2 (6.64)

p2 =
∂L

∂θ̇2

= m2 `1 `2 cos(θ1 − θ2) θ̇1 +m2 `
2
2 θ̇2 , (6.65)

and the equations of motion are

ṗ1 = (m1 +m2) `
2
1 θ̈1 +m2 `1 `2 cos(θ1 − θ2) θ̈2 −m2 `1 `2 sin(θ1 − θ2) (θ̇1 − θ̇2) θ̇2

= −(m1 +m2) g `1 sin θ1 −m2 `1 `2 sin(θ1 − θ2) θ̇1 θ̇2 =
∂L

∂θ1

(6.66)

and

ṗ2 = m2 `1 `2 cos(θ1 − θ2) θ̈1 −m2 `1 `2 sin(θ1 − θ2) (θ̇1 − θ̇2) θ̇1 +m2 `
2
2 θ̈2

= −m2 g `2 sin θ2 +m2 `1 `2 sin(θ1 − θ2) θ̇1 θ̇2 =
∂L

∂θ2

. (6.67)

We therefore find

`1 θ̈1 +
m2 `2

m1 +m2

cos(θ1 − θ2) θ̈2 +
m2 `2

m1 +m2

sin(θ1 − θ2) θ̇
2
2 + g sin θ1 = 0 (6.68)

`1 cos(θ1 − θ2) θ̈1 + `2 θ̈2 − `1 sin(θ1 − θ2) θ̇
2
1 + g sin θ2 = 0 . (6.69)

Small Oscillations : The equations of motion are coupled, nonlinear second
order ODEs. When the system is close to equilibrium, the amplitudes of the
motion are small, and we may expand in powers of the θ1 and θ2. The linearized
equations of motion are then

θ̈1 + αβ θ̈2 + ω2
0 θ1 = 0 (6.70)

θ̈1 + β θ̈2 + ω2
0 θ2 = 0 , (6.71)
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where we have defined

α ≡ m2

m1 +m2

, β ≡ `2
`1

, ω2
0 ≡

g

`1
. (6.72)

We can solve this coupled set of equations by a nifty trick. Let’s take a linear
combination of the first equation plus an undetermined coefficient, r, times the
second:

(1 + r) θ̈1 + (α+ r)β θ̈2 + ω2
0 (θ1 + r θ2) = 0 . (6.73)

We now demand that the ratio of the coefficients of θ2 and θ1 is the same as the
ratio of the coefficients of θ̈2 and θ̈1:

(α+ r) β

1 + r
= r ⇒ r± = 1

2
(β − 1)± 1

2

√
(1− β)2 + 4αβ (6.74)

When r = r±, the equation of motion may be written

d2

dt2
(
θ1 + r± θ2

)
= − ω2

0

1 + r±

(
θ1 + r± θ2

)
(6.75)

and defining the (unnormalized) normal modes

ξ± ≡
(
θ1 + r± θ2

)
, (6.76)

we find
ξ̈± + ω2

± ξ± = 0 , (6.77)

with

ω± =
ω0√

1 + r±
. (6.78)

Thus, by switching to the normal coordinates, we decoupled the equations of
motion, and identified the two normal frequencies of oscillation. We shall have
much more to say about small oscillations further below.

For example, with `1 = `2 = ` and m1 = m2 = m, we have α = 1
2
, and

β = 1, in which case

r± = ± 1√
2

, ξ± = θ1 ± 1√
2
θ2 , ω± =

√
2∓

√
2

√
g

`
. (6.79)

Note that the oscillation frequency for the ‘in-phase’ mode ξ+ is low, and that
for the ‘out of phase’ mode ξ− is high.
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6.5.6 The Thingy

Four massless rods of length L are hinged together at their ends to form a
rhombus. A particle of mass M is attached to each vertex. The opposite
corners are joined by springs of spring constant k. In the square configuration,
the strings are unstretched. The motion is confined to a plane, and the particles
move only along the diagonals of the rhombus. Introduce suitable generalized
coordinates and find the Lagrangian of the system. Deduce the equations of
motion and find the frequency of small oscillations about equilibrium.

Solution

The rhombus is depicted in figure 6.4. Let a be the equilibrium length of the
springs; clearly L = a√

2
. Let φ be half of one of the opening angles, as shown.

Then the masses are located at (±X, 0) and (0,±Y ), with X = a√
2
cosφ and

Y = a√
2
sinφ. The spring extensions are δX = 2X − a and δY = 2Y − a. The

Figure 6.4: The thingy: a rhombus with opening angles 2φ and π − 2φ.
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kinetic and potential energies are therefore

T = M
(
Ẋ2 + Ẏ 2

)
= 1

2
Ma2 φ̇2

and

U = 1
2
k
(
δX
)2

+ 1
2
k
(
δY
)2

= 1
2
ka2

{(√
2 cosφ− 1

)2
+
(√

2 sinφ− 1
)2}

= 1
2
ka2

{
3− 2

√
2(cosφ+ sinφ)

}
.

Note that minimizing U(φ) gives sinφ = cosφ, i.e. φeq = π
4
. The Lagrangian is

then
L = T − U = 1

2
Ma2 φ̇2 +

√
2 ka2

(
cosφ+ sinφ

)
+ const.

The equations of motion are

d

dt

∂L

∂φ̇
=
∂L

∂φ
⇒ Ma2 φ̈ =

√
2 ka2 (cosφ− sinφ)

It’s always smart to expand about equilibrium, so let’s write φ = π
4

+ δ, which
leads to

δ̈ + ω2
0 sin δ = 0 ,

with ω0 =
√

2k/M . This is the equation of a pendulum! Linearizing gives

δ̈ + ω2
0 δ = 0, so the small oscillation frequency is just ω0.

6.6 Conserved Quantities

A conserved quantity Λ(q, q̇, t) is one which does not vary throughout the motion
of the system. This means

dΛ

dt

∣∣∣∣∣
q=q(t)

= 0 . (6.80)

We shall discuss conserved quantities in detail in the chapter on Noether’s The-
orem, which follows.
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6.6.1 Momentum Conservation

The simplest case of a conserved quantity occurs when the Lagrangian does not
explicitly depend on one or more of the generalized coordinates, i.e. when

Fσ =
∂L

∂qσ
= 0 . (6.81)

We then say that L is cyclic in the coordinate qσ. In this case, the Euler-
Lagrange equations ṗσ = Fσ say that the conjugate momentum pσ is conserved.
Consider, for example, the motion of a particle of mass m near the surface of
the earth. Let (x, y) be coordinates parallel to the surface and z the height. We
then have

T = 1
2
m
(
ẋ2 + ẏ2 + ż2

)
(6.82)

U = mgz (6.83)

L = T − U = 1
2
m
(
ẋ2 + ẏ2 + ż2

)
−mgz . (6.84)

Since

Fx =
∂L

∂x
= 0 and Fy =

∂L

∂y
= 0 , (6.85)

we have that px and py are conserved, with

px =
∂L

∂ẋ
= mẋ , py =

∂L

∂ẏ
= mẏ . (6.86)

These first order equations can be integrated to yield

x(t) = x(0) +
px

m
t , y(t) = y(0) +

py

m
t . (6.87)

The z equation is of course

ṗz = mz̈ = −mg = Fz , (6.88)

with solution
z(t) = z(0) + ż(0) t− 1

2
gt2 . (6.89)

As another example, consider a particle moving in the (x, y) plane under
the influence of a potential U(x, y) = U

(√
x2 + y2

)
which depends only on the

particle’s distance from the origin ρ =
√
x2 + y2. The Lagrangian, expressed in

two-dimensional polar coordinates (ρ, φ), is

L = 1
2
m
(
ρ̇2 + ρ2φ̇2

)
− U(ρ) . (6.90)
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We see that L is cyclic in the angle φ, hence

pφ =
∂L

∂φ̇
= mρ2φ̇ (6.91)

is conserved. pφ is the angular momentum of the particle about the ẑ axis.
In the language of the calculus of variations, momentum conservation is what
follows when the integrand of a functional is independent of the independent
variable.

6.6.2 Energy Conservation

When the integrand of a functional is independent of the dependent variable,
another conservation law follows. For Lagrangian mechanics, consider the ex-
pression

H(q, q̇, t) =
n∑

σ=1

pσ q̇σ − L . (6.92)

Now we take the total time derivative of H:

dH

dt
=

n∑
σ=1

{
pσ q̈σ + ṗσ q̇σ −

∂L

∂qσ
q̇σ −

∂L

∂q̇σ
q̈σ

}
− ∂L

∂t
. (6.93)

We evaluate Ḣ along the motion of the system, which entails that the terms in
the curly brackets above cancel for each σ:

pσ =
∂L

∂q̇σ
, ṗσ =

∂L

∂qσ
. (6.94)

Thus, we find
dH

dt
= −∂L

∂t
, (6.95)

which means that H is conserved whenever the Lagrangian contains no explicit
time dependence. For a Lagrangian of the form

L =
∑

a

1
2
maṙ

2
a − U(r1, . . . , rN) , (6.96)

we have that pa = ma ṙa, and

H = T + U =
∑

a

1
2
maṙ

2
a + U(r1, . . . , rN) . (6.97)

However, it is not always the case that H = T + U is the total energy, as we
shall see in the next chapter.
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6.6.3 Appendix : Virial Theorem

The virial theorem is a statement about the time-averaged motion of a mechan-
ical system. Define the virial ,

G(q, p) =
∑

σ

pσ qσ . (6.98)

Then

dG

dt
=
∑

σ

(
ṗσ qσ + pσ q̇σ

)
=
∑

σ

qσ Fσ +
∑

σ

q̇σ
∂L

∂q̇σ
. (6.99)

Now suppose that T = 1
2

∑
σ,σ′ Tσσ′ q̇σ q̇σ′ is homogeneous of degree k = 2 in q̇,

and that U is homogeneous of degree zero in q̇. Then∑
σ

q̇σ
∂L

∂q̇σ
=
∑

σ

q̇σ
∂T

∂q̇σ
= 2T, (6.100)

which follows from Euler’s theorem on homogeneous functions.

Now consider the time average of Ġ over a period τ :

〈dG
dt

〉
=

1

τ

τ∫
0

dt
dG

dt

=
1

τ

[
G(τ)−G(0)

]
. (6.101)

If G(t) is bounded, then in the limit τ → ∞ we must have 〈Ġ〉 = 0. Any
bounded motion, such as the orbit of the earth around the Sun, will result in
〈Ġ〉τ→∞ = 0. But then〈dG

dt

〉
= 2 〈T 〉+

〈∑
σ

qσ Fσ

〉
= 0 , (6.102)

which implies

〈T 〉 = −1
2

〈∑
σ

qσ Fσ

〉
= +

〈
1
2

∑
σ

qσ
∂U

∂qσ

〉
=
〈

1
2

∑
i

ri ·∇iU
(
r1, . . . , rN

)〉
(6.103)

= 1
2
k 〈U〉 , (6.104)
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where the last line pertains to homogeneous potentials of degree k. Finally,
since T + U = E is conserved, we have

〈T 〉 =
k E

k + 2
, 〈U〉 =

2E

k + 2
. (6.105)
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Chapter 7

Noether’s Theorem

7.1 Continuous Symmetry Implies Conserved

Charges

Consider a particle moving in two dimensions under the influence of an external
potential U(r). The potential is a function only of the magnitude of the vector
r. The Lagrangian is then

L = T − U = 1
2
m
(
ṙ2 + r2 φ̇2

)
− U(r) , (7.1)

where we have chosen generalized coordinates (r, φ). The momentum conjugate
to φ is pφ = mr2 φ̇. The generalized force Fφ clearly vanishes, since L does not
depend on the coordinate φ. (One says that L is ‘cyclic’ in φ.) Thus, although
r = r(t) and φ = φ(t) will in general be time-dependent, the combination
pφ = mr2 φ̇ is constant. This is the conserved angular momentum about the ẑ
axis.

In general, whenever the system exhibits a continuous symmetry , there is
an associated conserved charge. (The terminology ‘charge’ is from field theory.)
Indeed, this is a rigorous result, known as Noether’s Theorem. Consider a one-
parameter family of transformations,

qσ −→ q̃σ(q, ζ) , (7.2)

where ζ is the continuous parameter. Suppose further (without loss of gener-
ality) that at ζ = 0 this transformation is the identity, i.e. q̃σ(q, ζ) = qσ. The
transformation may be nonlinear in the generalized coordinates. Suppose fur-
ther that the Lagrangian L s invariant under the replacement q → q̃. Then we
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must have

0 =
d

dζ

∣∣∣∣∣
ζ=0

L(q̃, ˙̃q, t) =
∂L

∂qσ

∂q̃σ
∂ζ

∣∣∣∣∣
ζ=0

+
∂L

∂q̇σ

∂ ˙̃qσ

∂ζ

∣∣∣∣∣
ζ=0

=
d

dt

(
∂L

∂q̇σ

)
∂q̃σ
∂ζ

∣∣∣∣∣
ζ=0

+
∂L

∂q̇σ

d

dt

(
∂q̃σ
∂ζ

)
ζ=0

=
d

dt

(
∂L

∂q̇σ

∂q̃σ
∂ζ

)
ζ=0

. (7.3)

Thus, there is an associated conserved charge

Λ =
∂L

∂q̇σ

∂q̃σ
∂ζ

∣∣∣∣∣
ζ=0

. (7.4)

7.1.1 Examples of one-parameter families of transforma-
tions

Consider the Lagrangian

L = 1
2
m(ẋ2 + ẏ2)− U

(√
x2 + y2

)
. (7.5)

In two-dimensional polar coordinates, we have

L = 1
2
m(ṙ2 + r2φ̇2)− U(r) , (7.6)

and we may now define

r̃(ζ) = r (7.7)

φ̃(ζ) = φ+ ζ . (7.8)

Note that r̃(0) = r and φ̃(0) = φ, i.e. the transformation is the identity when
ζ = 0. We now have

Λ =
∑

σ

∂L

∂q̇σ

∂q̃σ
∂ζ

∣∣∣∣∣
ζ=0

=
∂L

∂ṙ

∂r̃

∂ζ

∣∣∣∣∣
ζ=0

+
∂L

∂φ̇

∂φ̃

∂ζ

∣∣∣∣∣
ζ=0

= mr2φ̇ . (7.9)

Another way to derive the same result which is somewhat instructive is to
work out the transformation in Cartesian coordinates. We then have

x̃(ζ) = x cos ζ − y sin ζ (7.10)

ỹ(ζ) = x sin ζ + y cos ζ . (7.11)
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Thus,
∂x̃

∂ζ
= −y(ζ) ,

∂ỹ

∂ζ
= x(ζ) (7.12)

and

Λ =
∂L

∂ẋ

∂x̃

∂ζ

∣∣∣∣∣
ζ=0

+
∂L

∂ẏ

∂ỹ

∂ζ

∣∣∣∣∣
ζ=0

= m(xẏ − yẋ) . (7.13)

But
m(xẏ − yẋ) = mẑ · r × ṙ = mr2φ̇ . (7.14)

As another example, consider the potential

U(ρ, φ, z) = V (ρ, aφ+ z) , (7.15)

where (ρ, φ, z) are cylindrical coordinates for a particle of mass m, and where a
is a constant with dimensions of length. The Lagrangian is

1
2
m
(
ρ̇2 + ρ2φ̇2 + ẋ2

)
− V (ρ, aφ+ z) . (7.16)

This model possesses a helical symmetry, with a one-parameter family

ρ̃(ζ) = ρ (7.17)

φ̃(ζ) = φ+ ζ (7.18)

z̃(ζ) = z − ζa . (7.19)

Note that
aφ̃+ z̃ = aφ+ z , (7.20)

so the potential energy, and the Lagrangian as well, is invariant under this one-
parameter family of transformations. The conserved charge for this symmetry
is

Λ =
∂L

∂ρ̇

∂ρ̃

∂ζ

∣∣∣∣∣
ζ=0

+
∂L

∂φ̇

∂φ̃

∂ζ

∣∣∣∣∣
ζ=0

+
∂L

∂ż

∂z̃

∂ζ

∣∣∣∣∣
ζ=0

= mρ2φ̇−maż . (7.21)

We can check explicitly that Λ is conserved, using the equations of motion

d

dt

∂L

∂φ̇
=

d

dt

(
mρ2φ̇

)
=
∂L

∂φ
= −a∂V

∂z
(7.22)

d

dt

∂L

∂φ̇
=

d

dt
(mż) =

∂L

∂φ
= −∂V

∂z
. (7.23)

Thus,

Λ̇ =
d

dt

(
mρ2φ̇

)
− a

d

dt
(mż) = 0 . (7.24)
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7.2 Conservation of Linear and Angular Mo-

mentum

Suppose that the Lagrangian of a mechanical system is invariant under a uniform
translation of all particles in the n̂ direction. Then our one-parameter family
of transformations is given by

x̃a = xa + ζ n̂ , (7.25)

and the associated conserved Noether charge is

Λ =
∑

a

∂L

∂ẋa

· n̂ = n̂ · P , (7.26)

where P =
∑

a pa is the total momentum of the system.

If the Lagrangian of a mechanical system is invariant under rotations about
an axis n̂, then

x̃a = R(ζ, n̂)xa

= xa + ζ n̂× xa +O(ζ2) , (7.27)

where we have expanded the rotation matrix R(ζ, n̂) in powers of ζ. The con-
served Noether charge associated with this symmetry is

Λ =
∑

a

∂L

∂ẋa

· n̂× xa = n̂ ·
∑

a

xa × pa = n̂ ·L , (7.28)

where L is the total angular momentum of the system.

7.3 Advanced discussion : Invariance of L vs.

invariance of S

Observant readers might object that demanding invariance of L is too strict.
We should instead be demanding invariance of the action S1. Suppose S is
invariant under

t→ t̃(q, t, ζ) (7.29)

qσ(t) → q̃σ(q, t, ζ) . (7.30)

1Indeed, we should be demanding that S only change by a function of the endpoint values.
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Then invariance of S means

S =

tb∫
ta

dt L(q, q̇, t) =

t̃b∫
t̃a

dt L(q̃, ˙̃q, t) . (7.31)

Note that t is a dummy variable of integration, so it doesn’t matter whether
we call it t or t̃. The endpoints of the integral, however, do change under
the transformation. Now consider an infinitesimal transformation, for which
δt = t̃− t and δq = q̃

(
t̃
)
− q(t) are both small. Invariance of S means

S =

tb∫
ta

dt L(q, q̇, t) =

tb+δtb∫
ta+δta

dt
{
L(q, q̇, t) +

∂L

∂qσ
δ̄qσ +

∂L

∂q̇σ
δ̄q̇σ + . . .

}
, (7.32)

where

δ̄qσ(t) ≡ q̃σ(t)− qσ(t)

= q̃σ
(
t̃
)
− q̃σ

(
t̃
)

+ q̃σ(t)− qσ(t)

= δqσ − q̇σ δt+O(δq δt) (7.33)

Subtracting the top line from the bottom, we obtain

0 = Lb δtb − La δta +
∂L

∂q̇σ

∣∣∣∣
b

δ̄qσ,b −
∂L

∂q̇σ

∣∣∣∣
a

δ̄qσ,a +

tb+δtb∫
ta+δta

dt

{
∂L

∂qσ
− d

dt

(
∂L

∂q̇σ

)}
δ̄q(t)

=

tb∫
ta

dt
d

dt

{(
L− ∂L

∂q̇σ
q̇σ

)
δt+

∂L

∂q̇σ
δqσ

}
. (7.34)

Thus, if ζ ≡ δζ is infinitesimal, and

δt = A(q, t) δζ (7.35)

δqσ = Bσ(q, t) δζ , (7.36)

then the conserved charge is

Λ =

(
L− ∂L

∂q̇σ
q̇σ

)
A(q, t) +

∂L

∂q̇σ
Bσ(q, t)

= −H(q, p, t)A(q, t) + pσ Bσ(q, t) . (7.37)
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Thus, when A = 0, we recover our earlier results, obtained by assuming invari-
ance of L. Note that conservation of H follows from time translation invariance:
t→ t+ ζ, for which A = 1 and Bσ = 0. Here we have written

H = pσ q̇σ − L , (7.38)

and expressed it in terms of the momenta pσ, the coordinates qsigma, and time
t. H is called the Hamiltonian.

7.3.1 The Hamiltonian

The Lagrangian is a function of generalized coordinates, velocities, and time.
The canonical momentum conjugate to the generalized coordinate qσ is

pσ =
∂L

∂q̇σ
. (7.39)

The Hamiltonian is a function of coordinates, momenta, and time. It is defined
as the Legendre transform of L:

H(q, p, t) =
∑

σ

pσ q̇σ − L . (7.40)

Let’s examine the differential of H:

dH =
∑

σ

(
q̇σ dpσ + pσ dq̇σ −

∂L

∂qσ
dqσ −

∂L

∂q̇σ
dq̇σ

)
− ∂L

∂t
dt

=
∑

σ

(
q̇σ dpσ −

∂L

∂qσ
dqσ

)
− ∂L

∂t
dt , (7.41)

where we have invoked the definition of pσ to cancel the coefficients of dq̇σ. Since
ṗσ = ∂L/∂qσ, we have Hamilton’s equations of motion,

q̇σ =
∂H

∂pσ

, ṗσ = −∂H
∂qσ

. (7.42)

Thus, we can write

dH =
∑

σ

(
q̇σ dpσ − ṗσ dqσ

)
− ∂L

∂t
dt . (7.43)

Dividing by dt, we obtain
dH

dt
= −∂L

∂t
, (7.44)

100



which says that the Hamiltonian is conserved (i.e. it does not change with time)
whenever there is no explicit time dependence to L.

Example #1 : For a simple d = 1 system with L = 1
2
mẋ2 − U(x), we have

p = mẋ and

H = p ẋ− L = 1
2
mẋ2 + U(x) =

p2

2m
+ U(x) . (7.45)

Example #2 : Consider now the mass point – wedge system analyzed above,
with

L = 1
2
(M +m)Ẋ2 +mẊẋ+ 1

2
m (1 + tan2α) ẋ2 −mg x tanα , (7.46)

The canonical momenta are

P =
∂L

∂Ẋ
= (M +m) Ẋ +mẋ (7.47)

p =
∂L

∂ẋ
= mẊ +m (1 + tan2α) ẋ . (7.48)

The Hamiltonian is given by

H = P Ẋ + p ẋ− L

= 1
2
(M +m)Ẋ2 +mẊẋ+ 1

2
m (1 + tan2α) ẋ2 +mg x tanα . (7.49)

However, this is not quite H, since H = H(X, x, P, p, t) must be expressed
in terms of the coordinates and the momenta and not the coordinates and
velocities. So we must eliminate Ẋ and ẋ in favor of P and p. We do this by
inverting the relations(

P
p

)
=

(
M +m m
m m (1 + tan2α)

)(
Ẋ
ẋ

)
(7.50)

to obtain(
Ẋ
ẋ

)
=

1

m
(
M + (M +m) tan2α

) (m (1 + tan2α) −m
−m M +m

)(
P
p

)
. (7.51)

Substituting into 7.49, we obtain

H =
M +m

2m

P 2 cos2α

M +m sin2α
− Pp cos2α

M +m sin2α
+

p2

2 (M +m sin2α)
+mg x tanα . (7.52)

Notice that Ṗ = 0 since ∂L
∂X

= 0. P is the total horizontal momentum of the
system (wedge plus particle) and it is conserved.
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7.3.2 Is H = T + U ?

The most general form of the kinetic energy is

T = T2 + T1 + T0

= 1
2
T

(2)
σσ′(q, t) q̇σ q̇σ′ + T (1)

σ (q, t) q̇σ + T (0)(q, t) , (7.53)

where Tn(q, q̇, t) is homogeneous of degree n in the velocities2. We assume a
potential energy of the form

U = U1 + U0

= U (1)
σ (q, t) q̇σ + U (0)(q, t) , (7.54)

which allows for velocity-dependent forces, as we have with charged particles
moving in an electromagnetic field. The Lagrangian is then

L = T − U = 1
2
T

(2)
σσ′(q, t) q̇σ q̇σ′ + T (1)

σ (q, t) q̇σ + T (0)(q, t)− U (1)
σ (q, t) q̇σ − U (0)(q, t) .

(7.55)
We have assumed U(q, t) is velocity-independent, but the above form for L =
T −U is quite general. (E.g. any velocity-dependence in U can be absorbed into
the Bσ q̇σ term.) The canonical momentum conjugate to qσ is

pσ =
∂L

∂q̇σ
= T

(2)
σσ′ q̇σ′ + T (1)

σ (q, t)− U (1)
σ (q, t) (7.56)

which is inverted to give

q̇σ = T
(2)
σσ′

−1
(
pσ′ − T

(1)
σ′ + U

(1)
σ′

)
. (7.57)

The Hamiltonian is then

H = pσ q̇σ − L

= 1
2
T

(2)
σσ′

−1
(
pσ − T (1)

σ + U (1)
σ

)(
pσ′ − T

(1)
σ′ + U

(1)
σ′

)
− T0 + U0 (7.58)

= T2 − T0 + U0 . (7.59)

If T0, T1, and U1 vanish, i.e. if T (q, q̇, t) is a homogeneous function of degree
two in the generalized velocities, and U(q, t) is velocity-independent, then H =
T + U . But if T0 or T1 is nonzero, or the potential is velocity-dependent, then
H 6= T + U .

2A homogeneous function of degree k satisfies f(λx1, . . . , λxn) = λkf(x1, . . . , xn). It is then easy
to prove Euler’s theorem,

∑n
i=1 xi

∂f
∂xi

= kf .
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Figure 7.1: A bead of mass m on a rotating hoop of radius a.

7.3.3 Example: A Bead on a Rotating Hoop

Consider a bead of mass m constrained to move along a hoop of radius a. The
hoop is further constrained to rotate with angular velocity ω about the ẑ-axis,
as shown in Fig. 7.1.

The most convenient set of generalized coordinates is spherical polar (r, θ, φ),
in which case

T = 1
2
m
(
ṙ2 + r2 θ̇2 + r2 sin2 θ φ̇2

)
= 1

2
ma2

(
θ̇2 + ω2 sin2 θ

)
. (7.60)

Thus, T2 = 1
2
ma2θ̇2 and T0 = 1

2
ma2ω2 sin2 θ. The potential energy is U(θ) =

mga(1− cos θ). The momentum conjugate to θ is pθ = ma2θ̇, and thus

H(θ, p) = T2 − T0 + U

= 1
2
ma2θ̇2 − 1

2
ma2ω2 sin2 θ +mga(1− cos θ)

=
p2

θ

2ma2
− 1

2
ma2ω2 sin2 θ +mga(1− cos θ) . (7.61)

For this problem, we can define the effective potential

Ueff(θ) ≡ U − T0 = mga(1− cos θ)− 1
2
ma2ω2 sin2 θ

= mga
(
1− cos θ − ω2

2ω2
0

sin2 θ
)
, (7.62)

where ω0 ≡ g/a2. The Lagrangian may then be written

L = 1
2
ma2θ̇2 − Ueff(θ) , (7.63)
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Figure 7.2: The effective potential Ueff(θ) = mga
[
1 − cos θ − ω2

2ω2
0

sin2 θ
]
. (The di-

mensionless potential Ũeff(x) = Ueff/mga is shown, where x = θ/π.) Left panels:
ω = 1

2

√
3ω0. Right panels: ω =

√
3ω0.

and thus the equations of motion are

ma2θ̈ = −∂Ueff

∂θ
. (7.64)

Equilibrium is achieved when U ′
eff(θ) = 0, which gives

∂Ueff

∂θ
= mga sin θ

{
1− ω2

ω2
0

cos θ
}

= 0 , (7.65)

i.e. θ∗ = 0, θ∗ = π, or θ∗ = ± cos−1(ω2
0/ω

2), where the last pair of equilibria
are present only for ω2 > ω2

0. The stability of these equilibria is assessed by
examining the sign of U ′′

eff(θ∗). We have

U ′′
eff(θ) = mga

{
cos θ − ω2

ω2
0

(
2 cos2 θ − 1

)}
. (7.66)
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Thus,

U ′′
eff(θ∗) =



mga
(
1− ω2

ω2
0

)
at θ∗ = 0

−mga
(
1 + ω2

ω2
0

)
at θ∗ = π

mga
(

ω2

ω2
0
− ω2

0

ω2

)
at θ∗ = ± cos−1

(
ω2

0

ω2

)
.

(7.67)

Thus, θ∗ = 0 is stable for ω2 < ω2
0 but becomes unstable when the rotation

frequency ω is sufficiently large, i.e. when ω2 > ω2
0. In this regime, there are two

new equilibria, at θ∗ = ± cos−1(ω2
0/ω

2), which are both stable. The equilibrium
at θ∗ = π is always unstable, independent of the value of ω. The situation is
depicted in Fig. 7.2.

7.4 Charged Particle in a Magnetic Field

Consider next the case of a charged particle moving in the presence of an elec-
tromagnetic field. The particle’s potential energy is

U(r) = q φ(r, t)− q

c
A(r, t) · ṙ , (7.68)

which is velocity-dependent. The kinetic energy is T = 1
2
m ṙ2, as usual. Here

φ(r) is the scalar potential and A(r) the vector potential. The electric and
magnetic fields are given by

E = −∇φ− 1

c

∂A

∂t
, B = ∇×A . (7.69)

The canonical momentum is

p =
∂L

∂ṙ
= m ṙ +

q

c
A , (7.70)

and hence the Hamiltonian is

H(r,p, t) = p · ṙ − L

= mṙ2 +
q

c
A · ṙ − 1

2
m ṙ2 − q

c
A · ṙ + q φ

= 1
2
m ṙ2 + q φ

=
1

2m

(
p− q

c
A(r, t)

)2

+ q φ(r, t) . (7.71)

If A and φ are time-independent, then H(r,p) is conserved.
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Let’s work out the equations of motion. We have

d

dt

(
∂L

∂ṙ

)
=
∂L

∂r
(7.72)

which gives

m r̈ +
q

c

dA

dt
= −q∇φ+

q

c
∇(A · ṙ) , (7.73)

or, in component notation,

mẍi +
q

c

∂Ai

∂xj

ẋj +
q

c

∂Ai

∂t
= −q ∂φ

∂xi

+
q

c

∂Aj

∂xi

ẋj , (7.74)

which is to say

mẍi = −q ∂φ
∂xi

− q

c

∂Ai

∂t
+
q

c

(
∂Aj

∂xi

− ∂Ai

∂xj

)
ẋj . (7.75)

It is convenient to express the cross product in terms of the completely anti-
symmetric tensor of rank three, εijk:

Bi = εijk
∂Ak

∂xj

, (7.76)

and using the result
εijk εimn = δjm δkn − δjn δkm , (7.77)

we have εijk Bi = ∂j Ak − ∂k Aj, and

mẍi = −q ∂φ
∂xi

− q

c

∂Ai

∂t
+
q

c
εijk ẋj Bk , (7.78)

or, in vector notation,

m r̈ = −q∇φ− q

c

∂A

∂t
+
q

c
ṙ × (∇×A)

= qE +
q

c
ṙ ×B , (7.79)

which is, of course, the Lorentz force law.

7.5 Field Theory: Systems with Several Inde-

pendent Variables

Suppose φa(x) depends on several independent variables: {x1, x2, . . . , xn}. Fur-
thermore, suppose

S
[
{φa(x)

]
=

∫
Ω

dxL(φa ∂µφa,x) , (7.80)
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i.e. the Lagrangian density L is a function of the fields φa and their partial
derivatives ∂φa/∂x

µ. Here Ω is a region in RK . Then the first variation of S is

δS =

∫
Ω

dx

{
∂L
∂φa

δφa +
∂L

∂(∂µφa)

∂ δφa

∂xµ

}

=

∮
∂Ω

dΣ nµ ∂L
∂(∂µφa)

δφa −
∫
Ω

dx

{
∂L
∂φa

− ∂

∂xµ

(
∂L

∂(∂µφa)

)}
δφa , (7.81)

where ∂Ω is the (n−1)-dimensional boundary of Ω, dΣ is the differential surface
area, and nµ is the unit normal. If we demand ∂L/∂(∂µφa)

∣∣
∂Ω

= 0 of δφa

∣∣
∂Ω

= 0,
the surface term vanishes, and we conclude

δS

δφa(x)
=

∂L
∂φa

− ∂

∂xµ

(
∂L

∂(∂µφa)

)
. (7.82)

As an example, consider the case of a stretched string of linear mass density
µ and tension τ . The action is a functional of the height y(x, t), where the
coordinate along the string, x, and time, t, are the two independent variables.
The Lagrangian density is

L = 1
2
µ

(
∂y

∂t

)2

− 1
2
τ

(
∂y

∂x

)2

, (7.83)

whence the Euler-Lagrange equations are

0 =
δS

δy(x, t)
= − ∂

∂x

(
∂L
∂y′

)
− ∂

∂t

(
∂L
∂ẏ

)
= τ

∂2y

∂x2
− µ

∂2y

∂t2
, (7.84)

where y′ = ∂y
∂x

and ẏ = ∂y
∂t

. Thus, µÿ = τy′′, which is the Helmholtz equation.

We’ve assumed boundary conditions where δy(xa, t) = δy(xb, t) = δy(x, ta) =

δy(x, tb) = 0.

The Lagrangian density for an electromagnetic field with sources is

L = − 1
16π

Fµν F
µν − JµA

µ . (7.85)

The equations of motion are then

∂L
∂Aν

− ∂

∂xν

(
∂L

∂(∂µAν)

)
= 0 ⇒ ∂µ F

µν = 4πJν , (7.86)
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which are Maxwell’s equations.

Recall the result of Noether’s theorem for mechanical systems:

d

dt

(
∂L

∂q̇σ

∂q̃σ
∂ζ

)
ζ=0

= 0 , (7.87)

where q̃σ = q̃σ(q, ζ) is a one-parameter (ζ) family of transformations of the
generalized coordinates which leaves L invariant. We generalize to field theory
by replacing

qσ(t) −→ φa(x, t) , (7.88)

where {φa(x, t)} are a set of fields, which are functions of the independent
variables {x, y, z, t}. We will adopt covariant relativistic notation and write for
four-vector xµ = (ct, x, y, z). The generalization of dΛ/dt = 0 is

∂

∂xµ

(
∂L

∂ (∂µφa)

∂φ̃a

∂ζ

)
ζ=0

= 0 , (7.89)

where there is an implied sum on both µ and a. We can write this as ∂µ J
µ = 0,

where

Jµ ≡ ∂L
∂ (∂µφa)

∂φ̃a

∂ζ

∣∣∣∣∣
ζ=0

. (7.90)

We call Λ = J0/c the total charge. If we assume J = 0 at the spatial boundaries
of our system, then integrating the conservation law ∂µ J

µ over the spatial region
Ω gives

dΛ

dt
=

∫
Ω

d3x ∂0 J
0 = −

∫
Ω

d3x∇ · J = −
∮
∂Ω

dΣ n̂ · J = 0 , (7.91)

assuming J = 0 at the boundary ∂Ω.

As an example, consider the case of a complex scalar field, with Lagrangian
density3

L(ψ, , ψ∗, ∂µψ, ∂µψ
∗) = 1

2
K (∂µψ

∗)(∂µψ)− U
(
ψ∗ψ

)
. (7.92)

This is invariant under the transformation ψ → eiζ ψ, ψ∗ → e−iζ ψ∗. Thus,

∂ψ̃

∂ζ
= i eiζ ψ ,

∂ψ̃∗

∂ζ
= −i e−iζ ψ∗ , (7.93)

and, summing over both ψ and ψ∗ fields, we have

Jµ =
∂L

∂ (∂µψ)
· (iψ) +

∂L
∂ (∂µψ∗)

· (−iψ∗)

=
K

2i

(
ψ∗∂µψ − ψ ∂µψ∗

)
. (7.94)

3We raise and lower indices using the Minkowski metric gµν = diag (+,−,−,−).
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The potential, which depends on |ψ|2, is independent of ζ. Hence, this form of
conserved 4-current is valid for an entire class of potentials.

7.5.1 Gross-Pitaevskii Model

As one final example of a field theory, consider the Gross-Pitaevskii model, with

L = ih̄ ψ∗
∂ψ

∂t
− h̄2

2m
∇ψ∗ ·∇ψ − g

(
|ψ|2 − n0

)2
. (7.95)

This describes a Bose fluid with repulsive short-ranged interactions. Here ψ(x, t)
is again a complex scalar field, and ψ∗ is its complex conjugate. Using the
Leibniz rule, we have

δS[ψ∗, ψ] = S[ψ∗ + δψ∗, ψ + δψ]

=

∫
dt

∫
ddx

{
ih̄ ψ∗

∂δψ

∂t
+ ih̄ δψ∗

∂ψ

∂t
− h̄2

2m
∇ψ∗ ·∇δψ − h̄2

2m
∇δψ∗ ·∇ψ

− 2g
(
|ψ|2 − n0

)
(ψ∗δψ + ψδψ∗)

}
=

∫
dt

∫
ddx

{[
− ih̄

∂ψ∗

∂t
+
h̄2

2m
∇2ψ∗ − 2g

(
|ψ|2 − n0

)
ψ∗
]
δψ

+

[
ih̄
∂ψ

∂t
+
h̄2

2m
∇2ψ − 2g

(
|ψ|2 − n0

)
ψ

]
δψ∗

}
, (7.96)

where we have integrated by parts where necessary and discarded the bound-
ary terms. Extremizing S[ψ∗, ψ] therefore results in the nonlinear Schrödinger
equation (NLSE),

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + 2g

(
|ψ|2 − n0

)
ψ (7.97)

as well as its complex conjugate,

−ih̄ ∂ψ
∗

∂t
= − h̄2

2m
∇2ψ∗ + 2g

(
|ψ|2 − n0

)
ψ∗ . (7.98)

Note that these equations are indeed the Euler-Lagrange equations:

δS

δψ
=
∂L
∂ψ

− ∂

∂xµ

(
∂L
∂ ∂µψ

)
(7.99)

δS

δψ∗
=

∂L
∂ψ∗

− ∂

∂xµ

(
∂L

∂ ∂µψ∗

)
, (7.100)
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with xµ = (t,x)4 Plugging in

∂L
∂ψ

= −2g
(
|ψ|2 − n0

)
ψ∗ ,

∂L
∂ ∂tψ

= ih̄ ψ∗ ,
∂L
∂∇ψ

= − h̄2

2m
∇ψ∗ (7.101)

and

∂L
∂ψ∗

= ih̄ ψ − 2g
(
|ψ|2 − n0

)
ψ ,

∂L
∂ ∂tψ∗

= 0 ,
∂L

∂∇ψ∗
= − h̄2

2m
∇ψ , (7.102)

we recover the NLSE and its conjugate.

The Gross-Pitaevskii model also possesses a U(1) invariance, under

ψ(x, t) → ψ̃(x, t) = eiζ ψ(x, t) , ψ∗(x, t) → ψ̃∗(x, t) = e−iζ ψ∗(x, t) . (7.103)

Thus, the conserved Noether current is then

Jµ =
∂L
∂ ∂µψ

∂ψ̃

∂ζ

∣∣∣∣∣
ζ=0

+
∂L

∂ ∂µψ∗
∂ψ̃∗

∂ζ

∣∣∣∣∣
ζ=0

J0 = −h̄ |ψ|2 (7.104)

J = − h̄2

2im

(
ψ∗∇ψ − ψ∇ψ∗

)
. (7.105)

Dividing out by h̄, taking J0 ≡ −h̄ρ and J ≡ −h̄j, we obtain the continuity
equation,

∂ρ

∂t
+ ∇ · j = 0 , (7.106)

where

ρ = |ψ|2 , j =
h̄

2im

(
ψ∗∇ψ − ψ∇ψ∗

)
. (7.107)

are the particle density and the particle current, respectively.

4In the nonrelativistic case, there is no utility in defining x0 = ct, so we simply define x0 = t.
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Chapter 8

Constraints

A mechanical system of N point particles in d dimensions possesses n = dN
degrees of freedom1. To specify these degrees of freedom, we can choose any
independent set of generalized coordinates {q1, . . . , qK}. Oftentimes, however,
not all n coordinates are independent.

Consider, for example, the situation in Fig. 8.1, where a cylinder of radius
a rolls over a half-cylinder of radius R. If there is no slippage, then the angles
θ1 and θ2 are not independent, and they obey the equation of constraint ,

Rθ1 = a (θ2 − θ1) . (8.1)

In this case, we can easily solve the constraint equation and substitute θ2 =(
1 + R

a

)
θ1. In other cases, though, the equation of constraint might not be so

easily solved (e.g. it may be nonlinear). How then do we proceed?

8.1 Constraints and Variational Calculus

Before addressing the subject of constrained dynamical systems, let’s consider
the issue of constraints in the broader context of variational calculus. Suppose
we have a functional

F [y(x)] =

xb∫
xa

dxL(y, y′, x) , (8.2)

1For N rigid bodies, the number of degrees of freedom is n′ = 1
2d(d + 1)N , corresponding to d

center-of-mass coordinates and 1
2d(d − 1) angles of orientation for each particle. The dimension of

the group of rotations in d dimensions is 1
2d(d − 1), corresponding to the number of parameters in

a general rank-d orthogonal matrix (i.e. an element of the group O(d)).

111



Figure 8.1: A cylinder of radius a rolls along a half-cylinder of radius R. When there
is no slippage, the angles θ1 and θ2 obey the constraint equation Rθ1 = a(θ2 − θ1).

which we want to extremize subject to some constraints. Here y may stand for
a set of functions {yσ(x)}. There are two classes of constraints we will consider:

1. Integral constraints: These are of the form

xb∫
xa

dxNl(y, y
′, x) = Cl , (8.3)

where k labels the constraint.

2. Holonomic constraints: These are of the form

Gk(y, x) = 0 . (8.4)

The cylinders system in Fig. 8.1 provides an example of a holonomic constraint.
There, G(θ, t) = Rθ1 − a (θ2 − θ1) = 0. As an example of a problem with an
integral constraint, suppose we want to know the shape of a hanging rope of
fixed length C. This means we minimize the rope’s potential energy,

U [y(x)] = λg

xb∫
xa

ds y(x) = λg

xb∫
xa

dx y

√
1 + y′2 , (8.5)
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where λ is the linear mass density of the rope, subject to the fixed-length con-
straint

C =

xb∫
xa

ds =

xb∫
xa

dx

√
1 + y′2 . (8.6)

Note ds =
√
dx2 + dy2 is the differential element of arc length along the rope.

To solve problems like these, we turn to Lagrange’s method of undetermined
multipliers .

8.2 Constrained Extremization of Functions

Given F (x1, . . . , xn) to be extremized subject to k constraints of the form
Gj(x1, . . . , xn) = 0 where j = 1, . . . , k, construct

F ∗(x1, . . . , xn;λ1, . . . , λk

)
≡ F (x1, . . . , xn) +

k∑
j=1

λj Gj(x1, . . . , xn) (8.7)

which is a function of the (n+ k) variables
{
x1, . . . , xn;λ1, . . . , λk

}
. Now freely

extremize the extended function F ∗:

dF ∗ =
n∑

σ=1

∂F ∗

∂xσ

dxσ +
k∑

j=1

∂F ∗

∂λj

dλj (8.8)

=
n∑

σ=1

(
∂F

∂xσ

+
k∑

j=1

λj
∂Gj

∂xσ

)
dxσ +

k∑
j=1

Gj dλj = 0 (8.9)

This results in the (n+ k) equations

∂F

∂xσ

+
k∑

j=1

λj
∂Gj

∂xσ

= 0 (σ = 1, . . . , n) (8.10)

Gj = 0 (j = 1, . . . , k) . (8.11)

The interpretation of all this is as follows. The n equations in 8.10 can be
written in vector form as

∇F +
k∑

j=1

λj ∇Gj = 0 . (8.12)

This says that the (n-component) vector ∇F is linearly dependent upon the
k vectors ∇Gj. Thus, any movement in the direction of ∇F must necessarily
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entail movement along one or more of the directions ∇Gj. This would require

violating the constraints, since movement along ∇Gj takes us off the level set

Gj = 0. Were ∇F linearly independent of the set {∇Gj}, this would mean that
we could find a differential displacement dx which has finite overlap with ∇F
but zero overlap with each ∇Gj. Thus x+dx would still satisfy Gj(x+dx) = 0,
but F would change by the finite amount dF = ∇F (x) · dx.

8.3 Extremization of Functionals : Integral Con-

straints

Given a functional

F
[
{yσ(x)}

]
=

xb∫
xa

dxL
(
{yσ}, {y′σ}, x

)
(σ = 1, . . . , n) (8.13)

subject to boundary conditions δyσ(xa) = δyσ(xb) = 0 and k constraints of the
form

xb∫
xa

dxNl

(
{yσ}, {y′σ}, x

)
= Cl (l = 1, . . . , k) , (8.14)

construct the extended functional

F ∗[{yσ(x)}; {λj}
]
≡

xb∫
xa

dx

{
L
(
{yσ}, {y′σ}, x

)
+

k∑
l=1

λl Nl

(
{yσ}, {y′σ}, x

)}
−

k∑
l=1

λl Cl

(8.15)
and freely extremize over {y1, . . . , yn;λ1, . . . , λk}. This results in (n + k) equa-
tions

∂L

∂yσ

− d

dx

(
∂L

∂y′σ

)
+

k∑
l=1

λl

{
∂Nl

∂yσ

− d

dx

(
∂Nl

∂y′σ

)}
= 0 (σ = 1, . . . , n) (8.16)

xb∫
xa

dxNl

(
{yσ}, {y′σ}, x

)
= Cl (l = 1, . . . , k) . (8.17)
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8.4 Extremization of Functionals : Holonomic

Constraints

Given a functional

F
[
{yσ(x)}

]
=

xb∫
xa

dxL
(
{yσ}, {y′σ}, x

)
(σ = 1, . . . , n) (8.18)

subject to boundary conditions δyσ(xa) = δyσ(xb) = 0 and k constraints of the
form

Gj

(
{yσ(x)}, x

)
= 0 (j = 1, . . . , k) , (8.19)

construct the extended functional

F ∗[{yσ(x)}; {λj(x)}
]
≡

xb∫
xa

dx

{
L
(
{yσ}, {y′σ}, x

)
+

k∑
j=1

λj Gj

(
{yσ}

)}
(8.20)

and freely extremize over
{
y1, . . . , yn;λ1, . . . , λk

}
:

δF ∗ =

xb∫
xa

dx

{
n∑

σ=1

(
∂L

∂yσ

− d

dx

(
∂L

∂y′σ

)
+

k∑
j=1

λj
∂Gj

∂yσ

)
δyσ +

k∑
j=1

Gj δλj

}
= 0 , (8.21)

resulting in the (n+ k) equations

d

dx

(
∂L

∂y′σ

)
− ∂L

∂yσ

=
k∑

j=1

λj
∂Gj

∂yσ

(σ = 1, . . . , n) (8.22)

Gj

(
{yσ}, x

)
= 0 (j = 1, . . . , k) . (8.23)

8.4.1 Examples of Extremization with Constraints

Volume of a cylinder : As a warm-up problem, let’s maximize the volume V =
πa2h of a cylinder of radius a and height h, subject to the constraint

G(a, h) = 2πa+
h2

b
− ` = 0 . (8.24)

We therefore define

V ∗(a, h, λ) ≡ V (a, h) + λG(a, h) , (8.25)
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and set

∂V ∗

∂a
= 2πah+ 2πλ = 0 (8.26)

∂V ∗

∂h
= πa2 + 2λ

h

b
= 0 (8.27)

∂V ∗

∂λ
= 2πa+

h2

b
− ` = 0 . (8.28)

Solving these three equations simultaneously gives

a =
2`

5π
, h =

√
b`

5
, λ =

2π

53/2
b1/2 `3/2 , V =

4

55/2 π
`5/2 b1/2 . (8.29)

Hanging rope : We minimize the energy functional

E
[
y(x)

]
= µg

x2∫
x1

dx y

√
1 + y′2 , (8.30)

where µ is the linear mass density, subject to the constraint of fixed total length,

C
[
y(x)

]
=

x2∫
x1

dx

√
1 + y′2 . (8.31)

Thus,

E∗[y(x), λ] = E
[
y(x)

]
+ λC

[
y(x)

]
=

x2∫
x1

dxL∗(y, y′, x) , (8.32)

with

L∗(y, y′, x) = (µgy + λ)

√
1 + y′2 . (8.33)

Since ∂L∗

∂x
= 0 we have that

J = y′
∂L∗

∂y′
− L∗ = − µgy + λ√

1 + y′2
(8.34)

is constant. Thus,
dy

dx
= ±J −1

√
(µgy + λ)2 − J 2 , (8.35)

with solution

y(x) = − λ

µg
+
J
µg

cosh
(µg
J

(x− a)
)
. (8.36)
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Here, J , a, and λ are constants to be determined by demanding y(xi) = yi

(i = 1, 2), and that the total length of the rope is C.

Geodesic on a curved surface : Consider next the problem of a geodesic on a
curved surface. Let the equation for the surface be

G(x, y, z) = 0 . (8.37)

We wish to extremize the distance,

D =

b∫
a

ds =

b∫
a

√
dx2 + dy2 + dz2 . (8.38)

We introduce a parameter t defined on the unit interval: t ∈ [0, 1], such that
x(0) = xa, x(1) = xb, etc. Then D may be regarded as a functional, viz.

D
[
x(t), y(t), z(t)

]
=

1∫
0

dt
√
ẋ2 + ẏ2 + ż2 . (8.39)

We impose the constraint by forming the extended functional, D∗:

D∗[x(t), y(t), z(t), λ(t)
]
≡

1∫
0

dt

{√
ẋ2 + ẏ2 + ż2 + λG(x, y, z)

}
, (8.40)

and we demand that the first functional derivatives of D∗ vanish:

δD∗

δx(t)
= − d

dt

(
ẋ√

ẋ2 + ẏ2 + ż2

)
+ λ

∂G

∂x
= 0 (8.41)

δD∗

δy(t)
= − d

dt

(
ẏ√

ẋ2 + ẏ2 + ż2

)
+ λ

∂G

∂y
= 0 (8.42)

δD∗

δz(t)
= − d

dt

(
ż√

ẋ2 + ẏ2 + ż2

)
+ λ

∂G

∂z
= 0 (8.43)

δD∗

δλ(t)
= G(x, y, z) = 0 . (8.44)

Thus,

λ(t) =
vẍ− ẋv̇

v2 ∂xG
=
vÿ − ẏv̇

v2 ∂yG
=
vz̈ − żv̇

v2 ∂zG
, (8.45)

with v =
√
ẋ2 + ẏ2 + ż2 and ∂x ≡ ∂

∂x
, etc. These three equations are supple-

mented by G(x, y, z) = 0, which is the fourth.
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8.5 Application to Mechanics

Let us write our system of constraints in the differential form

n∑
σ=1

gjσ(q, t) dqσ + hj(q, t)dt = 0 (j = 1, . . . , k) . (8.46)

If the partial derivatives satisfy

∂gjσ

∂qσ′
=
∂gjσ′

∂qσ
,

∂gjσ

∂t
=
∂hj

∂qσ
, (8.47)

then the differential can be integrated to give dG(q, t) = 0, where

gjσ =
∂Gj

∂qσ
, hj =

∂Gj

∂t
. (8.48)

The action functional is

S[{qσ(t)}] =

tb∫
ta

dt L
(
{qσ}, {q̇σ}, t

)
(σ = 1, . . . , n) , (8.49)

subject to boundary conditions δqσ(ta) = δqσ(tb) = 0. The first variation of S
is given by

δS =

tb∫
ta

dt
n∑

σ=1

{
∂L

∂qσ
− d

dt

(
∂L

∂q̇σ

)}
δqσ . (8.50)

Since the {qσ(t)} are no longer independent, we cannot infer that the term in
brackets vanishes for each σ. What are the constraints on the variations δqσ(t)?
The constraints are expressed in terms of virtual displacements which take no
time: δt = 0. Thus,

n∑
σ=1

gjσ(q, t) δqσ(t) = 0 . (8.51)

We may now relax the constraint by introducing k undetermined functions λj(t),
by adding integrals of the above equations with undetermined coefficient func-
tions to δS:

n∑
σ=1

{
∂L

∂qσ
− d

dt

(
∂L

∂q̇σ

)
+

k∑
j=1

λj(t) gjσ(q, t)

}
δqσ(t) = 0 . (8.52)
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Now we can demand that the term in brackets vanish for all σ. Thus, we obtain
a set of (n+ k) equations,

d

dt

(
∂L

∂q̇σ

)
− ∂L

∂qσ
=

k∑
j=1

λj(t) gjσ(q, t) ≡ Qσ (8.53)

gjσ(q, t) q̇σ + hj(q, t) = 0 , (8.54)

in (n+ k) unknowns
{
q1, . . . , qn, λ1, . . . , λk

}
. Here, Qσ is the force of constraint

conjugate to the generalized coordinate qσ. Thus, with

pσ =
∂L

∂q̇σ
, Fσ =

∂L

∂qσ
, Qσ =

k∑
j=1

λj gjσ , (8.55)

we write Newton’s second law as

ṗσ = Fσ +Qσ . (8.56)

Note that we can write

δS

δq(t)
=
∂L

∂q
− d

dt

(
∂L

∂q̇

)
(8.57)

and that the instantaneous constraints may be written

gj · δq = 0 (j = 1, . . . , k) . (8.58)

Thus, by demanding

δS

δq(t)
+

k∑
j=1

λj gj = 0 (8.59)

we require that the functional derivative be linearly dependent on the k vectors
gj.

8.5.1 Constraints and conservation laws

We have seen how invariance of the Lagrangian with respect to a one-parameter
family of coordinate transformations results in an associated conserved quantity
Λ, and how a lack of explicit time dependence in L results in the conservation
of the Hamiltonian H. In deriving both these results, however, we used the
equations of motion ṗσ = Fσ. What happens when we have constraints, in
which case ṗσ = Fσ +Qσ?
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Let’s begin with the Hamiltonian. We have H = q̇σ pσ − L, hence

dH

dt
=

(
pσ −

∂L

∂q̇σ

)
q̈σ +

(
ṗσ −

∂L

∂qσ

)
q̇σ −

∂L

∂t

= Qσ q̇σ −
∂L

∂t
. (8.60)

We now use
Qσ q̇σ = λj gjσ q̇σ = −λj hj (8.61)

to obtain
dH

dt
= −λj hj −

∂L

∂t
. (8.62)

We therefore conclude that in a system with constraints of the form gjσ q̇σ +hj =

0, the Hamiltonian is conserved if each hj = 0 and if L is not explicitly dependent

on time. In the case of holonomic constraints, hj =
∂Gj

∂t
, so H is conserved if

neither L nor any of the constraints Gj is explicitly time-dependent.

Next, let us rederive Noether’s theorem when constraints are present. We
assume a one-parameter family of transformations qσ → q̃σ(ζ) leaves L invariant.
Then

0 =
dL

dζ
=
∂L

∂q̃σ

∂q̃σ
∂ζ

+
∂L

∂ ˙̃qσ

∂ ˙̃qσ

∂ζ

=
(
˙̃pσ − Q̃σ

) ∂q̃σ
∂ζ

+ p̃σ

d

dt

(
∂q̃σ
∂ζ

)
=

d

dt

(
p̃σ

∂q̃σ
∂ζ

)
− λj g̃jσ

∂q̃σ
∂ζ

. (8.63)

Now let us write the constraints in differential form as

g̃jσ dq̃σ + h̃j dt+ k̃j dζ = 0 . (8.64)

We now have
dΛ

dt
= λj k̃j , (8.65)

which says that if the constraints are independent of ζ then Λ is conserved. For
holonomic constraints, this means that

Gj

(
q̃(ζ), t

)
= 0 ⇒ k̃j =

∂Gj

∂ζ
= 0 , (8.66)

i.e. Gj(q̃, t) has no explicit ζ dependence.
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8.6 Worked Examples

Here we consider several example problems of constrained dynamics, and work
each out in full detail.

8.6.1 One cylinder rolling off another

As an example of the constraint formalism, consider the system in Fig. 8.1,
where a cylinder of radius a rolls atop a cylinder of radius R. We have two
constraints:

G1(r, θ1, θ2) = r −R− a = 0 (cylinders in contact) (8.67)

G2(r, θ1, θ2) = Rθ1 − a (θ2 − θ1) = 0 (no slipping) , (8.68)

from which we obtain the gjσ:

gjσ =

(
1 0 0
0 R + a −a

)
, (8.69)

which is to say

∂G1

∂r
= 1

∂G1

∂θ1

= 0
∂G1

∂θ2

= 0 (8.70)

∂G2

∂r
= 0

∂G2

∂θ1

= R + a
∂G2

∂θ2

= −a . (8.71)

The Lagrangian is

L = T − U = 1
2
M
(
ṙ2 + r2 θ̇2

1

)
+ 1

2
I θ̇2

2 −Mgr cos θ1 , (8.72)

where M and I are the mass and rotational inertia of the rolling cylinder,
respectively. Note that the kinetic energy is a sum of center-of-mass translation
Ttr = 1

2
M
(
ṙ2 + r2 θ̇2

1

)
and rotation about the center-of-mass, Trot = 1

2
I θ̇2

2. The
equations of motion are

d

dt

(
∂L

∂r

)
− ∂L

∂r
= Mr̈ −Mr θ̇2

1 +Mg cos θ1 = λ1 ≡ Qr (8.73)

d

dt

(
∂L

∂θ1

)
− ∂L

∂θ1

= Mr2θ̈1 + 2Mrṙ θ̇1 −Mgr sin θ1 = (R + a)λ2 ≡ Qθ1
(8.74)

d

dt

(
∂L

∂θ2

)
− ∂L

∂θ2

= Iθ̈2 = −a λ2 ≡ Qθ2
. (8.75)
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To these three equations we add the two constraints, resulting in five equations
in the five unknowns

{
r, θ1, θ2, λ1, λ2

}
.

We solve by first implementing the constraints, which give r = (R + a) a
constant (i.e. ṙ = 0), and θ̇2 =

(
1 + R

a

)
θ̇1. Substituting these into the above

equations gives

−M(R + a) θ̇2
1 +Mg cos θ1 = λ1 (8.76)

M(R + a)2θ̈1 −Mg(R + a) sin θ1 = (R + a)λ2 (8.77)

I

(
R + a

a

)
θ̈1 = −aλ2 . (8.78)

From eqn. 8.78 we obtain

λ2 = −I
a
θ̈2 = −R + a

a2
I θ̈1 , (8.79)

which we substitute into eqn. 8.77 to obtain(
M +

I

a2

)
(R + a)2θ̈1 −Mg(R + a) sin θ1 = 0 . (8.80)

Multiplying by θ̇1, we obtain an exact differential, which may be integrated to
yield

1
2
M

(
1 +

I

Ma2

)
θ̇2
1 +

Mg

R + a
cos θ1 =

Mg

R + a
cos θ◦1 . (8.81)

Here, we have assumed that θ̇1 = 0 when θ1 = θ◦1, i.e. the rolling cylinder is
released from rest at θ1 = θ◦1. Finally, inserting this result into eqn. 8.76, we
obtain the radial force of constraint,

Qr =
Mg

1 + α

{
(3 + α) cos θ1 − 2 cos θ◦1

}
, (8.82)

where α = I/Ma2 is a dimensionless parameter (0 ≤ α ≤ 1). This is the radial
component of the normal force between the two cylinders. When Qr vanishes,
the cylinders lose contact – the rolling cylinder flies off. Clearly this occurs at
an angle θ1 = θ∗1, where

θ∗1 = cos−1

(
2 cos θ◦1
3 + α

)
. (8.83)

The detachment angle θ∗1 is an increasing function of α, which means that larger
I delays detachment. This makes good sense, since when I is larger the gain in
kinetic energy is split between translational and rotational motion of the rolling
cylinder.
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Figure 8.2: Frictionless motion under gravity along a curved surface. The skier flies
off the surface when the normal force vanishes.

8.6.2 Frictionless motion along a curve

Consider the situation in Fig. 8.2 where a skier moves frictionlessly under the
influence of gravity along a general curve y = h(x). The Lagrangian for this
problem is

L = 1
2
m(ẋ2 + ẏ2)−mgy (8.84)

and the (holonomic) constraint is

G(x, y) = y − h(x) = 0 . (8.85)

Accordingly, the Euler-Lagrange equations are

d

dt

(
∂L

∂q̇σ

)
− ∂L

∂qσ
= λ

∂G

∂qσ
, (8.86)

where q1 = x and q2 = y. Thus, we obtain

mẍ = −λh′(x) = Qx (8.87)

mÿ +mg = λ = Qy . (8.88)

We eliminate y in favor of x by invoking the constraint. Since we need ÿ, we
must differentiate the constraint, which gives

ẏ = h′(x) ẋ , ÿ = h′(x) ẍ+ h′′(x) ẋ2 . (8.89)

Using the second Euler-Lagrange equation, we then obtain

λ

m
= g + h′(x) ẍ+ h′′(x) ẋ2 . (8.90)

123



Finally, we substitute this into the first E-L equation to obtain an equation for
x alone: (

1 +
[
h′(x)

]2)
ẍ+ h′(x)h′′(x) ẋ2 + g h′(x) = 0 . (8.91)

Had we started by eliminating y = h(x) at the outset, writing

L(x, ẋ) = 1
2
m
(
1 +

[
h′(x)

]2)
ẋ2 −mg h(x) , (8.92)

we would also have obtained this equation of motion.

The skier flies off the curve when the vertical force of constraint Qy = λ
starts to become negative, because the curve can only supply a positive normal
force. Suppose the skier starts from rest at a height y0. We may then determine
the point x at which the skier detaches from the curve by setting λ(x) = 0. To
do so, we must eliminate ẋ and ẍ in terms of x. For ẍ, we may use the equation
of motion to write

ẍ = −
(
gh′ + h′ h′′ ẋ2

1 + h′2

)
, (8.93)

which allows us to write

λ = m

(
g + h′′ ẋ2

1 + h′2

)
. (8.94)

To eliminate ẋ, we use conservation of energy,

E = mgy0 = 1
2
m
(
1 + h′

2)
ẋ2 +mgh , (8.95)

which fixes

ẋ2 = 2g

(
y0 − h

1 + h′2

)
. (8.96)

Putting it all together, we have

λ(x) =
mg(

1 + h′2
){1 + h′

2
+ 2(y0 − h)h′′

}
. (8.97)

The skier detaches from the curve when λ(x) = 0, i.e. when

1 + h′
2
+ 2(y0 − h)h′′ = 0 . (8.98)

There is a somewhat easier way of arriving at the same answer. This is
to note that the skier must fly off when the local centripetal force equals the
gravitational force normal to the curve, i.e.

mv2(x)

R(x)
= mg cos θ(x) , (8.99)
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Figure 8.3: Finding the local radius of curvature: z = η2/2R.

where R(x) is the local radius of curvature. Now tan θ = h′, so cos θ =
(
1 +

h′2
)−1/2

. The square of the velocity is v2 = ẋ2 + ẏ2 =
(
1 + h′2

)
ẋ2. What is

the local radius of curvature R(x)? This can be determined from the following
argument, and from the sketch in Fig. 8.3. Writing x = x∗ + ε, we have

y = h(x∗) + h′(x∗) ε+ 1
2
h′′(x∗) ε2 + . . . . (8.100)

We now drop a perpendicular segment of length z from the point (x, y) to the
line which is tangent to the curve at

(
x∗, h(x∗)

)
. According to Fig. 8.3, this

means (
ε
y

)
= η · 1√

1+h′2

(
1
h′

)
− z · 1√

1+h′2

(
−h′
1

)
. (8.101)

Thus, we have

y = h′ ε+ 1
2
h′′ ε2

= h′
(
η + z h′√
1 + h′2

)
+ 1

2
h′′
(
η + z h′√
1 + h′2

)2

=
η h′ + z h′2√

1 + h′2
+

h′′ η2

2
(
1 + h′2

) +O(ηz)

=
η h′ − z√

1 + h′2
, (8.102)

from which we obtain

z = − h′′ η2

2
(
1 + h′2

)3/2
+O(η3) (8.103)

125



and therefore

R(x) = − 1

h′′(x)
·
(
1 +

[
h′(x)

]2)3/2

. (8.104)

Thus, the detachment condition,

mv2

R
= − mh′′ ẋ2√

1 + h′2
=

mg√
1 + h′2

= mg cos θ (8.105)

reproduces the result from eqn. 8.94.

8.6.3 Disk rolling down an inclined plane

A hoop of mass m and radius R rolls without slipping down an inclined plane.
The inclined plane has opening angle α and mass M , and itself slides friction-
lessly along a horizontal surface. Find the motion of the system.

Figure 8.4: A hoop rolling down an inclined plane lying on a frictionless surface.

Solution : Referring to the sketch in Fig. 8.4, the center of the hoop is located
at

x = X + s cosα− a sinα

y = s sinα+ a cosα ,

whereX is the location of the lower left corner of the wedge, and s is the distance
along the wedge to the bottom of the hoop. If the hoop rotates through an angle
θ, the no-slip condition is a θ̇ + ṡ = 0. Thus,

L = 1
2
MẊ2 + 1

2
m
(
ẋ2 + ẏ2

)
+ 1

2
Iθ̇2 −mgy

= 1
2

(
m+

I

a2

)
ṡ2 + 1

2
(M +m)Ẋ2 +m cosα Ẋ ṡ−mgs sinα−mga cosα .
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Since X is cyclic in L, the momentum

PX = (M +m)Ẋ +m cosα ṡ ,

is preserved: ṖX = 0. The second equation of motion, corresponding to the
generalized coordinate s, is(

1 +
I

ma2

)
s̈+ cosα Ẍ = −g sinα .

Using conservation of PX , we eliminate s̈ in favor of Ẍ, and immediately obtain

Ẍ =
g sinα cosα(

1 + M
m

)(
1 + I

ma2

)
− cos2 α

≡ aX .

The result

s̈ = −
g
(
1 + M

m

)
sinα(

1 + M
m

)(
1 + I

ma2

)
− cos2 α

≡ as

follows immediately. Thus,

X(t) = X(0) + Ẋ(0) t+ 1
2
aXt

2

s(t) = s(0) + ṡ(0) t+ 1
2
ast

2 .

Note that as < 0 while aX > 0, i.e. the hoop rolls down and to the left as the
wedge slides to the right. Note that I = ma2 for a hoop; we’ve computed the
answer here for general I.

8.6.4 Pendulum with nonrigid support

A particle of mass m is suspended from a flexible string of length ` in a uniform
gravitational field. While hanging motionless in equilibrium, it is struck a hor-
izontal blow resulting in an initial angular velocity ω0. Treating the system as
one with two degrees of freedom and a constraint, answer the following:

(a) Compute the Lagrangian, the equation of constraint, and the equations of mo-
tion.

Solution : The Lagrangian is

L = 1
2
m
(
ṙ2 + r2 θ̇2

)
+mgr cos θ .

The constraint is r = `. The equations of motion are

mr̈ −mr θ̇2 −mg cos θ = λ

mr2 θ̈ + 2mr ṙ θ̇ −mg sin θ = 0 .
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(b) Compute the tension in the string as a function of angle θ.

Solution : Energy is conserved, hence

1
2
m`2 θ̇2 −mg` cos θ = 1

2
m`2 θ̇2

0 −mg` cos θ0 .

We take θ0 = 0 and θ̇0 = ω0. Thus,

θ̇2 = ω2
0 − 2Ω2

(
1− cos θ

)
,

with Ω =
√
g/`. Substituting this into the equation for λ, we obtain

λ = mg

{
2− 3 cos θ − ω2

0

Ω2

}
.

(c) Show that if ω2
0 < 2g/` then the particle’s motion is confined below the hori-

zontal and that the tension in the string is always positive (defined such that
positive means exerting a pulling force and negative means exerting a pushing
force). Note that the difference between a string and a rigid rod is that the
string can only pull but the rod can pull or push. Thus, the string tension must
always be positive or else the string goes “slack”.

Solution : Since θ̇2 ≥ 0, we must have

ω2
0

2Ω2
≥ 1− cos θ .

The condition for slackness is λ = 0, or

ω2
0

2Ω2
= 1− 3

2
cos θ .

Thus, if ω2
0 < 2Ω2, we have

1 >
ω2

0

2Ω2
> 1− cos θ > 1− 3

2
cos θ ,

and the string never goes slack. Note the last equality follows from cos θ > 0.
The string rises to a maximum angle

θmax = cos−1
(
1− ω2

0

2Ω2

)
.

(d) Show that if 2g/` < ω2
0 < 5g/` the particle rises above the horizontal and the

string becomes slack (the tension vanishes) at an angle θ∗. Compute θ∗.
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Solution : When ω2 > 2Ω2, the string rises above the horizontal and goes slack
at an angle

θ∗ = cos−1
(

2
3
− ω2

0

3Ω2

)
.

This solution craps out when the string is still taut at θ = π, which means
ω2

0 = 5Ω2.

(e) Show that if ω2
0 > 5g/` the tension is always positive and the particle executes

circular motion.

Solution : For ω2
0 > 5Ω2, the string never goes slack. Furthermore, θ̇ never

vanishes. Therefore, the pendulum undergoes circular motion, albeit not with
constant angular velocity.

8.6.5 Falling ladder

A uniform ladder of length ` and mass m has one end on a smooth horizontal
floor and the other end against a smooth vertical wall. The ladder is initially
at rest and makes an angle θ0 with respect to the horizontal.

Figure 8.5: A ladder sliding down a wall and across a floor.

(a) Make a convenient choice of generalized coordinates and find the Lagrangian.
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Solution : I choose as generalized coordinates the Cartesian coordinates (x, y)
of the ladder’s center of mass, and the angle θ it makes with respect to the floor.
The Lagrangian is then

L = 1
2
m (ẋ2 + ẏ2) + 1

2
I θ̇2 +mgy .

There are two constraints: one enforcing contact along the wall, and the other
enforcing contact along the floor. These are written

G1(x, y, θ) = x− 1
2
` cos θ = 0

G2(x, y, θ) = y − 1
2
` sin θ = 0 .

(b) Prove that the ladder leaves the wall when its upper end has fallen to a height
2
3
L sin θ0. The equations of motion are

d

dt

(
∂L

∂q̇σ

)
− ∂L

∂qσ
=
∑

j

λj
∂Gj

∂qσ
.

Thus, we have

mẍ = λ1 = Qx

m ÿ +mg = λ2 = Qy

I θ̈ = 1
2
`
(
λ1 sin θ − λ2 cos θ

)
= Qθ .

We now implement the constraints to eliminate x and y in terms of θ. We have

ẋ = −1
2
` sin θ θ̇ ẍ = −1

2
` cos θ θ̇2 − 1

2
` sin θ θ̈

ẏ = 1
2
` cos θ θ̇ ÿ = −1

2
` sin θ θ̇2 + 1

2
` cos θ θ̈ .

We can now obtain the forces of constraint in terms of the function θ(t):

λ1 = −1
2
m`
(
sin θ θ̈ + cos θ θ̇2

)
λ2 = +1

2
m`
(
cos θ θ̈ − sin θ θ̇2

)
+mg .

We substitute these into the last equation of motion to obtain the result

I θ̈ = −I0 θ̈ − 1
2
mg` cos θ ,

or
(1 + α) θ̈ = −2ω2

0 cos θ ,

with I0 = 1
4
m`2, α ≡ I/I0 and ω0 =

√
g/`. This may be integrated once

(multiply by θ̇ to convert to a total derivative) to yield

1
2
(1 + α) θ̇2 + 2ω2

0 sin θ = 2ω2
0 sin θ0 ,
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which is of course a statement of energy conservation. This,

θ̇2 =
4ω2

0 (sin θ0 − sin θ)

1 + α

θ̈ = −2ω2
0 cos θ

1 + α
.

We may now obtain λ1(θ) and λ2(θ):

λ1(θ) = − mg

1 + α

(
3 sin θ − 2 sin θ0

)
cos θ

λ2(θ) =
mg

1 + α

{
(3 sin θ − 2 sin θ0

)
sin θ + α

}
.

Demanding λ1(θ) = 0 gives the detachment angle θ = θd, where

sin θd = 2
3
sin θ0 .

Note that λ2(θd) = mgα/(1 + α) > 0, so the normal force from the floor is

always positive for θ > θd. The time to detachment is

T1(θ0) =

∫
dθ

θ̇
=

√
1 + α

2ω0

θ0∫
θd

dθ√
sin θ0 − sin θ

.

(c) Show that the subsequent motion can be reduced to quadratures (i.e. explicit
integrals).

Solution : After the detachment, there is no longer a constraint G1. The equa-
tions of motion are

mẍ = 0 (conservation of x-momentum)

m ÿ +mg = λ

I θ̈ = −1
2
` λ cos θ ,

along with the constraint y = 1
2
` sin θ. Eliminating y in favor of θ using the

constraint, the second equation yields

λ = mg − 1
2
m` sin θ θ̇2 + 1

2
m` cos θ θ̈ .

Plugging this into the third equation of motion, we find

I θ̈ = −2 I0 ω
2
0 cos θ + I0 sin θ cos θ θ̇2 − I0 cos2 θ θ̈ .
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Figure 8.6: Plot of time to fall for the slipping ladder. Here x = sin θ0.

Multiplying by θ̇ one again obtains a total time derivative, which is equivalent
to rediscovering energy conservation:

E = 1
2

(
I + I0 cos2 θ

)
θ̇2 + 2 I0 ω

2
0 sin θ .

By continuity with the first phase of the motion, we obtain the initial conditions
for this second phase:

θ = sin−1
(

2
3
sin θ0

)
θ̇ = −2ω0

√
sin θ0

3 (1 + α)
.

Thus,

E = 1
2

(
I + I0 − 4

9
I0 sin2 θ0

)
· 4ω2

0 sin θ0

3 (1 + α)
+ 1

3
mg` sin θ0

= 2 I0 ω
2
0 ·
{

1 + 4
27

sin2 θ0

1 + α

}
sin θ0 .

(d) Find an expression for the time T (θ0) it takes the ladder to smack against the
floor. Note that, expressed in units of the time scale

√
L/g, T is a dimensionless

function of θ0. Numerically integrate this expression and plot T versus θ0.
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Solution : The time from detachment to smack is

T2(θ0) =

∫
dθ

θ̇
=

1

2ω0

θd∫
0

dθ

√
1 + α cos2 θ(

1− 4
27

sin2 θ0

1+α

)
sin θ0 − sin θ

.

The total time is then T (θ0) = T1(θ0) + T2(θ0). For a uniformly dense ladder,
I = 1

12
m`2 = 1

3
I0, so α = 1

3
.

(e) What is the horizontal velocity of the ladder at long times?

Solution : From the moment of detachment, and thereafter,

ẋ = −1
2
` sin θ θ̇ =

√
g `

3 (1 + α)
sin3/2θ0 .

(f) Describe in words the motion of the ladder subsequent to it slapping against
the floor.

Solution : Only a fraction of the ladder’s initial potential energy is converted into
kinetic energy of horizontal motion. The rest is converted into kinetic energy of
vertical motion and of rotation. The slapping of the ladder against the floor is
an elastic collision. After the collision, the ladder must rise again, and continue
to rise and fall ad infinitum, as it slides along with constant horizontal velocity.

8.6.6 Point mass inside rolling hoop

Consider the point mass m inside the hoop of radius R, depicted in Fig. 8.7.
We choose as generalized coordinates the Cartesian coordinates (X, Y ) of the
center of the hoop, the Cartesian coordinates (x, y) for the point mass, the angle
φ through which the hoop turns, and the angle θ which the point mass makes
with respect to the vertical. These six coordinates are not all independent.
Indeed, there are only two independent coordinates for this system, which can
be taken to be θ and φ. Thus, there are four constraints:

X −Rφ ≡ G1 = 0 (8.106)

Y −R ≡ G2 = 0 (8.107)

x−X −R sin θ ≡ G3 = 0 (8.108)

y − Y +R cos θ ≡ G4 = 0 . (8.109)

The kinetic and potential energies are easily expressed in terms of the Carte-
sian coordinates, aside from the energy of rotation of the hoop about its CM,
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Figure 8.7: A point mass m inside a hoop of mass M , radius R, and moment of inertia
I.

which is expressed in terms of φ̇:

T = 1
2
M(Ẋ2 + Ẏ 2) + 1

2
m(ẋ2 + ẏ2) + 1

2
I φ̇2 (8.110)

U = MgY +mgy . (8.111)

The moment of inertia of the hoop about its CM is I = MR2, but we could
imagine a situation in which I were different. For example, we could instead
place the point mass inside a very short cylinder with two solid end caps, in
which case I = 1

2
MR2. The Lagrangian is then

L = 1
2
M(Ẋ2 + Ẏ 2) + 1

2
m(ẋ2 + ẏ2) + 1

2
I φ̇2 −MgY −mgy . (8.112)

Note that L as written is completely independent of θ and θ̇!

Continuous symmetry

Note that there is an continuous symmetry to L which is satisfied by all the
constraints, under

X̃(ζ) = X + ζ Ỹ (ζ) = Y (8.113)

x̃(ζ) = x+ ζ ỹ(ζ) = y (8.114)

φ̃(ζ) = φ+
ζ

R
θ̃(ζ) = θ . (8.115)
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Thus, according to Noether’s theorem, there is a conserved quantity

Λ =
∂L

∂Ẋ
+
∂L

∂ẋ
+

1

R

∂L

∂φ̇

= MẊ +mẋ+
I

R
φ̇ . (8.116)

This means Λ̇ = 0. This reflects the overall conservation of momentum in the
x-direction.

Energy conservation

Since neither L nor any of the constraints are explicitly time-dependent, the
Hamiltonian is conserved. And since T is homogeneous of degree two in the
generalized velocities, we have H = E = T + U :

E = 1
2
M(Ẋ2 + Ẏ 2) + 1

2
m(ẋ2 + ẏ2) + 1

2
I φ̇2 +MgY +mgy . (8.117)

Equations of motion

We have n = 6 generalized coordinates and k = 4 constraints. Thus, there are
four undetermined multipliers {λ1, λ2, λ3, λ4} used to impose the constraints.
This makes for ten unknowns:

X , Y , x , y , φ , θ , λ1 , λ2 , λ3 , λ4 . (8.118)

Accordingly, we have ten equations: six equations of motion plus the four equa-
tions of constraint. The equations of motion are obtained from

d

dt

(
∂L

∂q̇σ

)
=
∂L

∂qσ
+

k∑
j=1

λj
∂Gj

∂qσ
. (8.119)
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Taking each generalized coordinate in turn, the equations of motion are thus

MẌ = λ1 − λ3 (8.120)

MŸ = −Mg + λ2 − λ4 (8.121)

mẍ = λ3 (8.122)

mÿ = −mg + λ4 (8.123)

I φ̈ = −Rλ1 (8.124)

0 = −R cos θ λ3 −R sin θ λ4 . (8.125)

Along with the four constraint equations, these determine the motion of the
system. Note that the last of the equations of motion, for the generalized co-
ordinate qσ = θ, says that Qθ = 0, which means that the force of constraint
on the point mass is radial. Were the point mass replaced by a rolling object,
there would be an angular component to this constraint in order that there be
no slippage.

Implementation of constraints

We now use the constraint equations to eliminate X, Y , x, and y in terms of θ
and φ:

X = Rφ , Y = R , x = Rφ+R sin θ , y = R(1− cos θ) . (8.126)

We also need the derivatives:

ẋ = R φ̇+R cos θ θ̇ , ẍ = R φ̈+R cos θ θ̈ −R sin θ θ̇2 , (8.127)

and
ẏ = R sin θ θ̇ , ẍ = R sin θ θ̈ +R cos θ θ̇2 , (8.128)

as well as
Ẋ = R φ̇ , Ẍ = R φ̈ , Ẏ = 0 , Ÿ = 0 . (8.129)

We now may write the conserved charge as

Λ =
1

R
(I +MR2 +mR2) φ̇+mR cos θ θ̇ . (8.130)
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This, in turn, allows us to eliminate φ̇ in terms of θ̇ and the constant Λ:

φ̇ =
γ

1 + γ

(
Λ

mR
− θ̇ cos θ

)
, (8.131)

where

γ =
mR2

I +MR2
. (8.132)

The energy is then

E = 1
2
(I +MR2) φ̇2 + 1

2
m
(
R2 φ̇2 +R2 θ̇2 + 2R2 cos θ φ̇ θ̇

)
+MgR +mgR(1− cos θ)

= 1
2
mR2

{(
1 + γ sin2θ

1 + γ

)
θ̇2 +

2g

R
(1− cos θ) +

γ

1 + γ

(
Λ

mR

)2

+
2Mg

mR

}
. (8.133)

The last two terms inside the big bracket are constant, so we can write this as(
1 + γ sin2θ

1 + γ

)
θ̇2 +

2g

R
(1− cos θ) =

4gk

R
. (8.134)

Here, k is a dimensionless measure of the energy of the system, after subtracting
the aforementioned constants. If k > 1, then θ̇2 > 0 for all θ, which would result
in ‘loop-the-loop’ motion of the point mass inside the hoop – provided, that is,
the normal force of the hoop doesn’t vanish and the point mass doesn’t detach
from the hoop’s surface.

Equation motion for θ(t)

The equation of motion for θ obtained by eliminating all other variables from
the original set of ten equations is the same as Ė = 0, and may be written(

1 + γ sin2θ

1 + γ

)
θ̈ +

(
γ sin θ cos θ

1 + γ

)
θ̇2 = − g

R
. (8.135)

We can use this to write θ̈ in terms of θ̇2, and, after invoking eqn. 11.98, in
terms of θ itself. We find

θ̇2 =
4g

R
·
(

1 + γ

1 + γ sin2θ

)(
k − sin2 1

2
θ
)

(8.136)

θ̈ = − g

R
· (1 + γ) sin θ(

1 + γ sin2θ
)2 [4γ (k − sin2 1

2
θ
)
cos θ + 1 + γ sin2θ

]
. (8.137)
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Forces of constraint

We can solve for the λj, and thus obtain the forces of constraint Qσ =
∑

j λj
∂Gj

∂qσ
.

λ3 = mẍ = mR φ̈+mR cos θ θ̈ −mR sin θ θ̇2

=
mR

1 + γ

[
θ̈ cos θ − θ̇2 sin θ

]
(8.138)

λ4 = mÿ +mg = mg +mR sin θ θ̈ +mR cos θ θ̇2

= mR
[
θ̈ sin θ + θ̇2 sin θ +

g

R

]
(8.139)

λ1 = − I

R
φ̈ =

(1 + γ)I

mR2
λ3 (8.140)

λ2 = (M +m)g +mÿ = λ4 +Mg . (8.141)

One can check that λ3 cos θ + λ4 sin θ = 0.

The condition that the normal force of the hoop on the point mass vanish
is λ3 = 0, which entails λ4 = 0. This gives

−(1 + γ sin2θ) cos θ = 4(1 + γ)
(
k − sin2 1

2
θ
)
. (8.142)

Note that this requires cos θ < 0, i.e. the point of detachment lies above the
horizontal diameter of the hoop. Clearly if k is sufficiently large, the equal-
ity cannot be satisfied, and the point mass executes a periodic ‘loop-the-loop’
motion. In particular, setting θ = π, we find that

kc = 1 +
1

4(1 + γ)
. (8.143)

If k > kc, then there is periodic ‘loop-the-loop’ motion. If k < kc, then the
point mass may detach at a critical angle θ∗, but only if the motion allows for
cos θ < 0. From the energy conservation equation, we have that the maximum
value of θ achieved occurs when θ̇ = 0, which means

cos θmax = 1− 2k . (8.144)

If 1
2
< k < kc, then, we have the possibility of detachment. This means the

energy must be large enough but not too large.
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Chapter 9

Central Forces and Orbital
Mechanics

9.1 Reduction to a one-body problem

Consider two particles interacting via a potential U(r1, r2) = U
(
|r1−r2|

)
. Such

a potential, which depends only on the relative distance between the particles,
is called a central potential. The Lagrangian of this system is then

L = T − U = 1
2
m1ṙ

2
1 + 1

2
m2ṙ

2
2 − U

(
|r1 − r2|

)
. (9.1)

9.1.1 Center-of-Mass (CM) and Relative Coordinates

The two-body central force problem may always be reduced to two indepen-
dent one-body problems, by transforming to center-of-mass (R) and relative
(r) coordinates (see Fig. 9.1), viz.

R =
m1r1 +m2r2

m1 +m2

r1 = R+
m2

m1 +m2

r (9.2)

r = r1 − r2 r2 = R− m1

m1 +m2

r (9.3)

We then have

L = 1
2
m1ṙ1

2 + 1
2
m2ṙ2

2 − U
(
|r1 − r2|

)
(9.4)

= 1
2
MṘ2 + 1

2
µṙ2 − U(r) . (9.5)
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Figure 9.1: Center-of-mass (R) and relative (r) coordinates.

where

M = m1 +m2 (total mass) (9.6)

µ =
m1m2

m1 +m2

(reduced mass) . (9.7)

9.1.2 Solution to the CM problem

We have ∂L/∂R = 0, which gives R̈ = 0 and hence

R(t) = R(0) + Ṙ(0) t . (9.8)

Thus, the CM problem is trivial. The center-of-mass moves at constant velocity.

9.1.3 Solution to the Relative Coordinate Problem

Angular momentum conservation: We have that ` = r × p = µr × ṙ is a
constant of the motion. This means that the motion r(t) is confined to a plane
perpendicular to `. It is convenient to adopt two-dimensional polar coordinates
(r, φ). The magnitude of ` is

` = µr2φ̇ = 2µȦ (9.9)
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where dA = 1
2
r2dφ is the differential element of area subtended relative to the

force center. The relative coordinate vector for a central force problem subtends
equal areas in equal times. This is known as Kepler’s Second Law.

Energy conservation: The equation of motion for the relative coordinate is

d

dt

(
∂L

∂ṙ

)
=
∂L

∂r
⇒ µr̈ = −∂U

∂r
. (9.10)

Taking the dot product with ṙ, we have

0 = µr̈ · ṙ +
∂U

∂r
· ṙ

=
d

dt

{
1
2
µṙ2 + U(r)

}
=
dE

dt
. (9.11)

Thus, the relative coordinate contribution to the total energy is itself conserved.
The total energy is of course Etot = E + 1

2
MṘ2.

Since ` is conserved, and since r · ` = 0, all motion is confined to a plane
perpendicular to `. Choosing coordinates such that ẑ = ˆ̀, we have

E = 1
2
µṙ2 + U(r) = 1

2
µṙ2 +

`2

2µr2
+ U(r)

= 1
2
µṙ2 + Ueff(r) (9.12)

Ueff(r) =
`2

2µr2
+ U(r) . (9.13)

Integration of the Equations of Motion, Step I: The second order equa-
tion for r(t) is

dE

dt
= 0 ⇒ µr̈ =

`2

µr3
− dU(r)

dr
= −dUeff(r)

dr
. (9.14)

However, conservation of energy reduces this to a first order equation, via

ṙ = ±
√

2

µ

(
E − Ueff(r)

)
⇒ dt = ±

√
µ
2
dr√

E − `2

2µr2 − U(r)
. (9.15)

This gives t(r), which must be inverted to obtain r(t). In principle this is
possible. Note that a constant of integration also appears at this stage – call it
r0 = r(t = 0).
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Integration of the Equations of Motion, Step II: After finding r(t) one
can integrate to find φ(t) using the conservation of `:

φ̇ =
`

µr2
⇒ dφ =

`

µr2(t)
dt . (9.16)

This gives φ(t), and introduces another constant of integration – call it φ0 =
φ(t = 0).

Pause to Reflect on the Number of Constants: Confined to the plane per-
pendicular to `, the relative coordinate vector has two degrees of freedom. The
equations of motion are second order in time, leading to four constants of inte-
gration. Our four constants are E, `, r0, and φ0.

The original problem involves two particles, hence six positions and six
velocities, making for 12 initial conditions. Six constants are associated with
the CM system: R(0) and Ṙ(0). The six remaining constants associated with
the relative coordinate system are ` (three components), E, r0, and φ0.

Geometric Equation of the Orbit: From ` = µr2φ̇, we have

d

dt
=

`

µr2

d

dφ
, (9.17)

leading to
d2r

dφ2
− 2

r

(
dr

dφ

)2

=
µr4

`2
F (r) + r (9.18)

where F (r) = −dU(r)/dr is the magnitude of the central force. This second
order equation may be reduced to a first order one using energy conservation:

E = 1
2
µṙ2 + Ueff(r)

=
`2

2µr4

(
dr

dφ

)2

+ Ueff(r) . (9.19)

Thus,

dφ = ± `√
2µ
· dr

r2
√
E − Ueff(r)

, (9.20)

which can be integrated to yield φ(r), and then inverted to yield r(φ). Note that
only one integration need be performed to obtain the geometric shape of the
orbit, while two integrations – one for r(t) and one for φ(t) – must be performed
to obtain the full motion of the system.
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It is sometimes convenient to rewrite this equation in terms of the variable
s = 1/r:

d2s

dφ2
+ s = − µ

`2s2
F
(
s−1
)
. (9.21)

As an example, suppose the geometric orbit is r(φ) = k eαφ, known as a loga-
rithmic spiral. What is the force? We invoke (9.18), with s′′(φ) = α2 s, yielding

F
(
s−1
)

= −(1 + α2)
`2

µ
s3 ⇒ F (r) = −C

r3
(9.22)

with

α2 =
µC

`2
− 1 . (9.23)

The general solution for s(φ) for this force law is

s(φ) =


A cosh(αφ) +B sinh(−αφ) if `2 > µC

A′ cos
(
|α|φ

)
+B′ sin

(
|α|φ

)
if `2 < µC .

(9.24)

The logarithmic spiral shape is a special case of the first kind of orbit.

9.2 Almost Circular Orbits

A circular orbit with r(t) = r0 satisfies r̈ = 0, which means that U ′
eff(r0) = 0,

which says that F (r0) = −`2/µr3
0. This is negative, indicating that a circular

orbit is possible only if the force is attractive over some range of distances.
Since ṙ = 0 as well, we must also have E = Ueff(r0). An almost circular orbit
has r(t) = r0 + η(t), where |η/r0| � 1. To lowest order in η, one derives the
equations

d2η

dt2
= −ω2 η , ω2 =

1

µ
U ′′

eff(r0) . (9.25)

If ω2 > 0, the circular orbit is stable and the perturbation oscillates harmon-
ically. If ω2 < 0, the circular orbit is unstable and the perturbation grows expo-
nentially. For the geometric shape of the perturbed orbit, we write r = r0 + η,
and from (9.18) we obtain

d2η

dφ2
=

(
µr4

0

`2
F ′(r0)− 3

)
η = −β2 η , (9.26)

with

β2 = 3 +
d lnF (r)

d ln r

∣∣∣∣∣
r0

. (9.27)
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Figure 9.2: Stable and unstable circular orbits. Left panel: U(r) = −k/r produces a
stable circular orbit. Right panel: U(r) = −k/r4 produces an unstable circular orbit.

The solution here is
η(φ) = η0 cos β(φ− δ0) , (9.28)

where η0 and δ0 are initial conditions. Setting η = η0, we obtain the sequence
of φ values

φn = δ0 +
2πn

β
, (9.29)

at which η(φ) is a local maximum, i.e. at apoapsis, where r = r0 + η0. Setting
r = r0 − η0 is the condition for closest approach, i.e. periapsis. This yields the
identical set if angles, just shifted by π. The difference,

∆φ = φn+1 − φn − 2π = 2π
(
β−1 − 1

)
, (9.30)

is the amount by which the apsides (i.e. periapsis and apoapsis) precess during
each cycle. If β > 1, the apsides advance, i.e. it takes less than a complete
revolution ∆φ = 2π between successive periapses. If β < 1, the apsides retreat,
and it takes longer than a complete revolution between successive periapses. The
situation is depicted in Fig. 9.3 for the case β = 1.1. Below, we will exhibit a
soluble model in which the precessing orbit may be determined exactly. Finally,
note that if β = p/q is a rational number, then the orbit is closed , i.e. it
eventually retraces itself, after every q revolutions.

As an example, let F (r) = −kr−α. Solving for a circular orbit, we write

U ′
eff(r) =

k

rα
− `2

µr3
= 0 , (9.31)

which has a solution only for k > 0, corresponding to an attractive potential.
We then find

r0 =

(
`2

µk

)1/(3−α)

, (9.32)
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and β2 = 3 − α. The shape of the perturbed orbits follows from η′′ = −β2 η.
Thus, while circular orbits exist whenever k > 0, small perturbations about
these orbits are stable only for β2 > 0, i.e. for α < 3. One then has η(φ) =
A cos β(φ − φ0). The perturbed orbits are closed, at least to lowest order in η,
for α = 3 − (p/q)2, i.e. for β = p/q. The situation is depicted in Fig. 9.2, for
the potentials U(r) = −k/r (α = 2) and U(r) = −k/r4 (α = 5).

9.3 Precession in a Soluble Model

Let’s start with the answer and work backwards. Consider the geometrical orbit,

r(φ) =
r0

1− ε cos βφ
. (9.33)

Our interest is in bound orbits, for which 0 ≤ ε < 1 (see Fig. 9.3). What sort
of potential gives rise to this orbit? Writing s = 1/r as before, we have

s(φ) = s0 (1− ε cos βφ) . (9.34)

Substituting into (9.21), we have

− µ

`2s2
F
(
s−1
)

=
d2s

dφ2
+ s

= β2 s0 ε cos βφ+ s

= (1− β2) s+ β2 s0 , (9.35)

from which we conclude

F (r) = − k

r2
+
C

r3
, (9.36)

with

k = β2s0
`2

µ
, C = (β2 − 1)

`2

µ
. (9.37)

The corresponding potential is

U(r) = −k
r

+
C

2r2
+ U∞ , (9.38)

where U∞ is an arbitrary constant, conveniently set to zero. If µ and C are
given, we have

r0 =
`2

µk
+
C

k
, β =

√
1 +

µC

`2
. (9.39)
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Figure 9.3: Precession in a soluble model, with geometric orbit r(φ) = r0/(1 −
ε cos βφ), shown here with β = 1.1. Periapsis and apoapsis advance by ∆φ =
2π(1− β−1) per cycle.

When C = 0, these expressions recapitulate those from the Kepler problem.
Note that when `2 + µC < 0 that the effective potential is monotonically in-
creasing as a function of r. In this case, the angular momentum barrier is
overwhelmed by the (attractive, C < 0) inverse square part of the potential,
and Ueff(r) is monotonically increasing. The orbit then passes through the force
center. It is a useful exercise to derive the total energy for the orbit,

E = (ε2 − 1)
µk2

2(`2 + µC)
⇐⇒ ε2 = 1 +

2E(`2 + µC)

µk2
. (9.40)

9.4 The Kepler Problem: U(r) = −k r−1

9.4.1 Geometric Shape of Orbits

The force is F (r) = −kr−2, hence the equation for the geometric shape of the
orbit is

d2s

dφ2
+ s = − µ

`2s2
F (s−1) =

µk

`2
, (9.41)
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Figure 9.4: The effective potential for the Kepler problem, and associated phase
curves. The orbits are geometrically described as conic sections: hyperbolae (E > 0),
parabolae (E = 0), ellipses (Emin < E < 0), and circles (E = Emin).

with s = 1/r. Thus, the most general solution is

s(φ) = s0 − C cos(φ− φ0) , (9.42)

where C and φ0 are constants. Thus,

r(φ) =
r0

1− ε cos(φ− φ0)
, (9.43)

where r0 = `2/µk and where we have defined a new constant ε ≡ Cr0.

9.4.2 Laplace-Runge-Lenz vector

Consider the vector
A = p× `− µk r̂ , (9.44)
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where r̂ = r/|r| is the unit vector pointing in the direction of r. We may now
show that A is conserved:

dA

dt
=

d

dt

{
p× `− µk

r

r

}
= ṗ× `+ p× ˙̀ − µk

rṙ − rṙ
r2

= −kr
r3
× (µr × ṙ)− µk

ṙ

r
+ µk

ṙr

r2

= −µk r(r · ṙ)
r3

+ µk
ṙ(r · r)
r3

− µk
ṙ

r
+ µk

ṙr

r2
= 0 . (9.45)

So A is a conserved vector which clearly lies in the plane of the motion. A
points toward periapsis, i.e. toward the point of closest approach to the force
center.

Let’s assume apoapsis occurs at φ = φ0. Then

A · r = −Ar cos(φ− φ0) = `2 − µkr (9.46)

giving

r(φ) =
`2

µk − A cos(φ− φ0)
=

a(1− ε2)

1− ε cos(φ− φ0)
, (9.47)

where

ε =
A

µk
, a(1− ε2) =

`2

µk
. (9.48)

The orbit is a conic section with eccentricity ε. Squaring A, onefinds

A2 = (p× `)2 − 2µkr̂ · p× `+ µ2k2

= p2`2 − 2µ`2
k

r
+ µ2k2

= 2µ`2
(
p2

2µ
− k

r
+
µk2

2`2

)
= 2µ`2

(
E +

µk2

2`2

)
(9.49)

and thus

a = − k

2E
, ε2 = 1 +

2E`2

µk2
. (9.50)

9.4.3 Kepler orbits are conic sections

There are four classes of conic sections:
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Figure 9.5: Keplerian orbits are conic sections, classified according to eccentricity:
hyperbola (ε > 1), parabola (ε = 1), ellipse (0 < ε < 1), and circle (ε = 0). The
Laplace-Runge-Lenz vector, A, points toward periapsis.

• Circle: ε = 0, E = −µk2/2`2, radius a = `2/µk. The force center lies at the
center of circle.

• Ellipse: 0 < ε < 1, −µk2/2`2 < E < 0, semimajor axis a = −k/2E, semiminor
axis b = a

√
1− ε2. The force center is at one of the foci.

• Parabola: ε = 1, E = 0, force center is the focus.

• Hyperbola: ε > 1, E > 0, force center is closest focus (attractive) or farthest
focus (repulsive).

To see that the Keplerian orbits are indeed conic sections, consider the
ellipse of Fig. 9.6. The law of cosines gives

ρ2 = r2 + 4f 2 − 4rf cosφ , (9.51)

where f = εa is the focal distance. Now for any point on an ellipse, the sum of
the distances to the left and right foci is a constant, and taking φ = 0 we see
that this constant is 2a. Thus, ρ = 2a− r, and we have

(2a− r)2 = 4a2 − 4ar + r2 = r2 + 4ε2a2 − 4εr cosφ

⇒ r(1− ε cosφ) = a(1− ε2) . (9.52)

149



Figure 9.6: The Keplerian ellipse, with the force center at the left focus. The focal
distance is f = εa, where a is the semimajor axis length. The length of the semiminor
axis is b =

√
1− ε2 a.

Thus, we obtain

r(φ) =
a (1− ε2)

1− ε cosφ
, (9.53)

and we therefore conclude that

r0 =
`2

µk
= a (1− ε2) . (9.54)

Next let us examine the energy,

E = 1
2
µṙ2 + Ueff(r)

= 1
2
µ

(
`

µr2

dr

dφ

)2

+
`2

2µr2
− k

r

=
`2

2µ

(
ds

dφ

)2

+
`2

2µ
s2 − ks , (9.55)

with

s =
1

r
=
µk

`2

(
1− ε cosφ

)
. (9.56)

Thus,
ds

dφ
=
µk

`2
ε sinφ , (9.57)
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Figure 9.7: The Keplerian hyperbolae, with the force center at the left focus. The
left (blue) branch corresponds to an attractive potential, while the right (red) branch
corresponds to a repulsive potential. The equations of these branches are r = ρ =
∓2a, where the top sign corresponds to the left branch and the bottom sign to the
right branch.

and (
ds

dφ

)2

=
µ2k2

`4
ε2 sin2φ

=
µ2k2ε2

`4
−
(
µk

`2
− s

)2

= −s2 +
2µk

`2
s+

µ2k2

`4
(
ε2 − 1

)
. (9.58)

Substituting this into eqn. 9.55, we obtain

E =
µk2

2`2
(
ε2 − 1

)
. (9.59)

For the hyperbolic orbit, depicted in Fig. 9.7, we have r − ρ = ∓2a, de-
pending on whether we are on the attractive or repulsive branch, respectively.
We then have

(r ± 2a)2 = 4a2 ± 4ar + r2 = r2 + 4ε2a2 − 4εr cosφ

⇒ r(±1 + ε cosφ) = a(ε2 − 1) . (9.60)

This yields

r(φ) =
a (ε2 − 1)

±1 + ε cosφ
. (9.61)
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9.4.4 Period of Bound Kepler Orbits

From ` = µr2φ̇ = 2µȦ, the period is τ = 2µA/`, where A = πa2
√

1− ε2 is the
area enclosed by the orbit. This gives

τ = 2π

(
µa3

k

)1/2

= 2π

(
a3

GM

)1/2

(9.62)

as well as
a3

τ 2
=
GM

4π2
, (9.63)

where k = Gm1m2 and M = m1 +m2 is the total mass. For planetary orbits,
m1 = M� is the solar mass and m2 = mp is the planetary mass. We then have

a3

τ 2
=
(
1 +

mp

M�

)GM�

4π2
≈ GM�

4π2
, (9.64)

which is to an excellent approximation independent of the planetary mass. (Note
that mp/M� ≈ 10−3 even for Jupiter.) This analysis also holds, mutatis mutan-
dis, for the case of satellites orbiting the earth, and indeed in any case where
the masses are grossly disproportionate in magnitude.

9.4.5 Escape Velocity

The threshold for escape from a gravitational potential occurs at E = 0. Since
E = T +U is conserved, we determine the escape velocity for a body a distance
r from the force center by setting

E = 0 = 1
2
µv2

esc(t)−
GMm

r
⇒ vesc(r) =

√
2G(M +m)

r
. (9.65)

When M � m, vesc(r) =
√

2GM/r. Thus, for an object at the surface of the
earth, vesc =

√
2gRE = 11.2 km/s.

9.4.6 Satellites and Spacecraft

A satellite in a circular orbit a distance h above the earth’s surface has an orbital
period

τ =
2π√
GME

(RE + h)3/2 , (9.66)

152



where we takemsatellite �ME. For low earth orbit (LEO), h� RE = 6.37×106 m,
in which case τLEO = 2π

√
RE/g = 1.4 hr.

Consider a weather satellite in an elliptical orbit whose closest approach
to the earth (perigee) is 200 km above the earth’s surface and whose farthest
distance (apogee) is 7200 km above the earth’s surface. What is the satellite’s
orbital period? From Fig. 9.6, we see that

dapogee = RE + 7200 km = 13571 km

dperigee = RE + 200 km = 6971 km

a = 1
2
(dapogee + dperigee) = 10071 km . (9.67)

We then have

τ =
( a

RE

)3/2

· τLEO ≈ 2.65 hr . (9.68)

What happens if a spacecraft in orbit about the earth fires its rockets?
Clearly the energy and angular momentum of the orbit will change, and this
means the shape will change. If the rockets are fired (in the direction of motion)
at perigee, then perigee itself is unchanged, because v · r = 0 is left unchanged

at this point. However, E is increased, hence the eccentricity ε =
√

1 + 2E`2

µk2

increases. This is the most efficient way of boosting a satellite into an orbit with
higher eccentricity. Conversely, and somewhat paradoxically, when a satellite
in LEO loses energy due to frictional drag of the atmosphere, the energy E
decreases. Initially, because the drag is weak and the atmosphere is isotropic,
the orbit remains circular. Since E decreases, 〈T 〉 = −E must increase, which
means that the frictional forces cause the satellite to speed up!

9.4.7 Two Examples of Orbital Mechanics

• Problem #1: At perigee of an elliptical Keplerian orbit, a satellite receives an
impulse ∆p = p0r̂. Describe the resulting orbit.

◦ Solution #1: Since the impulse is radial, the angular momentum ` = r × p is
unchanged. The energy, however, does change, with ∆E = p2

0/2µ. Thus,

ε2
f = 1 +

2Ef`
2

µk2
= ε2

i +

(
`p0

µk

)2

. (9.69)

The new semimajor axis length is

af =
`2/µk

1− ε2
f

= ai ·
1− ε2

i

1− ε2
f

=
ai

1− (aip2
0/µk)

. (9.70)
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Figure 9.8: At perigee of an elliptical orbit ri(φ), a radial impulse ∆p is applied. The
shape of the resulting orbit rf(φ) is shown.

The shape of the final orbit must also be a Keplerian ellipse, described by

rf(φ) =
`2

µk
· 1

1− εf cos(φ+ δ)
, (9.71)

where the phase shift δ is determined by setting

ri(π) = rf(π) =
`2

µk
· 1

1 + εi

. (9.72)

Solving for δ, we obtain
δ = cos−1

(
εi/εf

)
. (9.73)

The situation is depicted in Fig. 9.8.

• Problem #2: Which is more energy efficient – to send nuclear waste outside the
solar system, or to send it into the Sun?

◦ Solution #2: Escape velocity for the solar system is vesc,�(r) =
√
GM�/r.

At a distance aE, we then have vesc,�(aE) =
√

2 vE, where vE =
√
GM�/aE =

2πaE/τE = 29.9 km/s is the velocity of the earth in its orbit. The satellite is
launched from earth, and clearly the most energy efficient launch will be one in
the direction of the earth’s motion, in which case the velocity after escape from
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Figure 9.9: The larger circular orbit represents the orbit of the earth. The elliptical
orbit represents that for an object orbiting the Sun with distance at perihelion equal
to the Sun’s radius.

earth must be u =
(√

2 − 1
)
vE = 12.4 km/s. The speed just above the earth’s

atmosphere must then be ũ, where

1
2
mũ2 − GMEm

RE

= 1
2
mu2 , (9.74)

or, in other words,
ũ2 = u2 + v2

esc,E . (9.75)

We compute ũ = 16.7 km/s.

The second method is to place the trash ship in an elliptical orbit whose peri-
helion is the Sun’s radius, R� = 6.98× 108 m, and whose aphelion is aE. Using
the general equation r(φ) = (`2/µk)/(1 − ε cosφ) for a Keplerian ellipse, we
therefore solve the two equations

r(φ = π) = R� =
1

1 + ε
· `

2

µk
(9.76)

r(φ = 0) = aE =
1

1− ε
· `

2

µk
. (9.77)

We thereby obtain

ε =
aE −R�
aE +R�

= 0.991 , (9.78)
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which is a very eccentric ellipse, and

`2

µk
=

a2
E v

2

G(M� +m)
≈ aE ·

v2

v2
E

= (1− ε) aE =
2aER�
aE +R�

. (9.79)

Hence,

v2 =
2R�

aE +R�
v2

E , (9.80)

and the necessary velocity relative to earth is

u =

(√
2R�

aE +R�
− 1

)
vE ≈ −0.904 vE , (9.81)

i.e. u = −27.0 km/s. Launch is in the opposite direction from the earth’s
orbital motion, and from ũ2 = u2 + v2

esc,E we find ũ = −29.2 km/s, which is
larger (in magnitude) than in the first scenario. Thus, it is cheaper to ship the
trash out of the solar system than to send it crashing into the Sun, by a factor
ũ2

I /ũ
2
II = 0.327.

9.5 Mission to Neptune

Four earth-launched spacecraft have escaped the solar system: Pioneer 10 (launch
3/3/72), Pioneer 11 (launch 4/6/73), Voyager 1 (launch 9/5/77), and Voyager
2 (launch 8/20/77).1 The latter two are still functioning, and each are moving
away from the Sun at a velocity of roughly 3.5 AU/yr.

As the first objects of earthly origin to leave our solar system, both Pioneer
spacecraft featured a graphic message in the form of a 6” x 9” gold anodized
plaque affixed to the spacecrafts’ frame. This plaque was designed in part by
the late astronomer and popular science writer Carl Sagan. The humorist Dave
Barry, in an essay entitled Bring Back Carl’s Plaque, remarks,

But the really bad part is what they put on the plaque. I mean, if we’re
going to have a plaque, it ought to at least show the aliens what we’re
really like, right? Maybe a picture of people eating cheeseburgers and
watching “The Dukes of Hazzard.” Then if aliens found it, they’d say,
“Ah. Just plain folks.”

1There is a very nice discussion in the Barger and Olsson book on ‘Grand Tours of the Outer
Planets’. Here I reconstruct and extend their discussion.
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Figure 9.10: The unforgivably dorky Pioneer 10 and Pioneer 11 plaque.

But no. Carl came up with this incredible science-fair-wimp plaque that
features drawings of – you are not going to believe this – a hydrogen atom
and naked people. To represent the entire Earth! This is crazy! Walk
the streets of any town on this planet, and the two things you will almost
never see are hydrogen atoms and naked people.

During August, 1989, Voyager 2 investigated the planet Neptune. A direct
trip to Neptune along a Keplerian ellipse with rp = aE = 1 AU and ra = aN =
30.06 AU would take 30.6 years. To see this, note that rp = a (1 − ε) and
ra = a (1 + ε) yield

a = 1
2

(
aE + aN

)
= 15.53 AU , ε =

aN − aE

aN + aE

= 0.9356 . (9.82)

Thus,

τ = 1
2
τE ·

( a
aE

)3/2

= 30.6 yr . (9.83)

The energy cost per kilogram of such a mission is computed as follows. Let the
speed of the probe after its escape from earth be vp = λvE, and the speed just
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above the atmosphere (i.e. neglecting atmospheric friction) is v0. For the most
efficient launch possible, the probe is shot in the direction of earth’s instanta-
neous motion about the Sun. Then we must have

1
2
mv2

0 −
GMEm

RE

= 1
2
m (λ− 1)2 v2

E , (9.84)

since the speed of the probe in the frame of the earth is vp − vE = (λ − 1) vE.
Thus,

E

m
= 1

2
v2

0 =
[

1
2
(λ− 1)2 + h

]
v2

E (9.85)

v2
E =

GM�

aE

= 6.24× 107 J/kg ,

where

h ≡ ME

M�
· aE

RE

= 7.050× 10−2 . (9.86)

Therefore, a convenient dimensionless measure of the energy is

η ≡ 2E

mv2
E

=
v2

0

v2
E

= (λ− 1)2 + 2h . (9.87)

As we shall derive below, a direct mission to Neptune requires

λ ≥
√

2aN

aN + aE

= 1.3913 , (9.88)

which is close to the criterion for escape from the solar system, λesc =
√

2. Note
that about 52% of the energy is expended after the probe escapes the Earth’s
pull, and 48% is expended in liberating the probe from Earth itself.

This mission can be done much more economically by taking advantage of
a Jupiter flyby, as shown in Fig. 9.11. The idea of a flyby is to steal some of
Jupiter’s momentum and then fly away very fast before Jupiter realizes and gets
angry. The CM frame of the probe-Jupiter system is of course the rest frame of
Jupiter, and in this frame conservation of energy means that the final velocity
uf is of the same magnitude as the initial velocity ui. However, in the frame

of the Sun, the initial and final velocities are vJ + ui and vJ + uf , respectively,

where vJ is the velocity of Jupiter in the rest frame of the Sun. If, as shown in
the inset to Fig. 9.11, uf is roughly parallel to vJ, the probe’s velocity in the
Sun’s frame will be enhanced. Thus, the motion of the probe is broken up into
three segments:

I : Earth to Jupiter

II : Scatter off Jupiter’s gravitational pull

III : Jupiter to Neptune
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Figure 9.11: Mission to Neptune. The figure at the lower right shows the orbits
of Earth, Jupiter, and Neptune in black. The cheapest (in terms of energy) direct
flight to Neptune, shown in blue, would take 30.6 years. By swinging past the planet
Jupiter, the satellite can pick up great speed and with even less energy the mission
time can be cut to 8.5 years (red curve). The inset in the upper left shows the
scattering event with Jupiter.

We now analyze each of these segments in detail. In so doing, it is useful to
recall that the general form of a Keplerian orbit is

r(φ) =
d

1− ε cosφ
, d =

`2

µk
=
∣∣ε2 − 1

∣∣ a . (9.89)

The energy is

E = (ε2 − 1)
µk2

2`2
, (9.90)

with k = GMm, where M is the mass of either the Sun or a planet. In either
case, M dominates, and µ = Mm/(M + m) ' m to extremely high accuracy.
The time for the trajectory to pass from φ = φ1 to φ = φ2 is

T =

∫
dt =

φ2∫
φ1

dφ

φ̇
=
µ

`

φ2∫
φ1

dφ r2(φ) =
`3

µk2

φ2∫
φ1

dφ[
1− ε cosφ

]2 . (9.91)
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For reference,

aE = 1 AU aJ = 5.20 AU aN = 30.06 AU

ME = 5.972× 1024 kg MJ = 1.900× 1027 kg M� = 1.989× 1030 kg

with 1 AU = 1.496 × 108 km. Here aE,J,N and ME,J,� are the orbital radii and
masses of Earth, Jupiter, and Neptune, and the Sun. The last thing we need to
know is the radius of Jupiter,

RJ = 9.558× 10−4 AU .

We need RJ because the distance of closest approach to Jupiter, or perijove,
must be RJ or greater, or else the probe crashes into Jupiter!

9.5.1 I. Earth to Jupiter

The probe’s velocity at perihelion is vp = λvE. The angular momentum is

` = µaE · λvE, whence

d =
(aEλvE)

2

GM�
= λ2 aE . (9.92)

From r(π) = aE, we obtain
εI = λ2 − 1 . (9.93)

This orbit will intersect the orbit of Jupiter if ra ≥ aJ, which means

d

1− εI

≥ aJ ⇒ λ ≥
√

2aJ

aJ + aE

= 1.2952 . (9.94)

If this inequality holds, then intersection of Jupiter’s orbit will occur for

φJ = 2π − cos−1

(
aJ − λ2aE

(λ2 − 1) aJ

)
. (9.95)

Finally, the time for this portion of the trajectory is

τEJ = τE · λ3

φJ∫
π

dφ

2π

1[
1− (λ2 − 1) cosφ

]2 . (9.96)
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9.5.2 II. Encounter with Jupiter

We are interested in the final speed vf of the probe after its encounter with

Jupiter. We will determine the speed vf and the angle δ which the probe makes
with respect to Jupiter after its encounter. According to the geometry of Fig.
9.11,

v2
f = v2

J + u2 − 2uvJ cos(χ+ γ) (9.97)

cos δ =
v2

J + v2
f − u2

2vfvJ

(9.98)

Note that

v2
J =

GM�

aJ

=
aE

aJ

· v2
E . (9.99)

But what are u, χ, and γ?

To determine u, we invoke

u2 = v2
J + v2

i − 2vJvi cos β . (9.100)

The initial velocity (in the frame of the Sun) when the probe crosses Jupiter’s
orbit is given by energy conservation:

1
2
m(λvE)

2 − GM�m

aE

= 1
2
mv2

i −
GM�m

aJ

, (9.101)

which yields

v2
i =

(
λ2 − 2 +

2aE

aJ

)
v2

E . (9.102)

As for β, we invoke conservation of angular momentum:

µ(vi cos β)aJ = µ(λvE)aE ⇒ vi cos β = λ
aE

aJ

vE . (9.103)

The angle γ is determined from

vJ = vi cos β + u cos γ . (9.104)

Putting all this together, we obtain

vi = vE

√
λ2 − 2 + 2x (9.105)

u = vE

√
λ2 − 2 + 3x− 2λx3/2 (9.106)

cos γ =

√
x− λx√

λ2 − 2 + 3x− 2λx3/2
, (9.107)
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where
x ≡ aE

aJ

= 0.1923 . (9.108)

We next consider the scattering of the probe by the planet Jupiter. In the
Jovian frame, we may write

r(φ) =
κRJ (1 + εJ)

1 + εJ cosφ
, (9.109)

where perijove occurs at
r(0) = κRJ . (9.110)

Here, κ is a dimensionless quantity, which is simply perijove in units of the
Jovian radius. Clearly we require κ > 1 or else the probe crashes into Jupiter!
The probe’s energy in this frame is simply E = 1

2
mu2, which means the probe

enters into a hyperbolic orbit about Jupiter. Next, from

E =
k

2

ε2 − 1

`2/µk
(9.111)

`2

µk
= (1 + ε)κRJ (9.112)

we find

εJ = 1 + κ

(
RJ

aE

)(
M�

MJ

)(
u

vE

)2

. (9.113)

The opening angle of the Keplerian hyperbola is then φc = cos−1
(
ε−1

J

)
, and the

angle χ is related to φc through

χ = π − 2φc = π − 2 cos−1

(
1

εJ

)
. (9.114)

Therefore, we may finally write

vf =

√
x v2

E + u2 + 2u vE

√
x cos(2φc − γ) (9.115)

cos δ =
x v2

E + v2
f − u2

2 vf vE

√
x

. (9.116)

9.5.3 III. Jupiter to Neptune

Immediately after undergoing gravitational scattering off Jupiter, the energy
and angular momentum of the probe are

E = 1
2
mv2

f −
GM�m

aJ

(9.117)
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Figure 9.12: Total time for Earth-Neptune mission as a function of dimensionless
velocity at perihelion, λ = vp/vE. Six different values of κ, the value of perijove in
units of the Jovian radius, are shown: κ = 1.0 (thick blue), κ = 5.0 (red), κ = 20
(green), κ = 50 (blue), κ = 100 (magenta), and κ = ∞ (thick black).

and
` = µ vf aJ cos δ . (9.118)

We write the geometric equation for the probe’s orbit as

r(φ) =
d

1 + ε cos(φ− φJ − α)
, (9.119)

where

d =
`2

µk
=

(
vf aJ cos δ

vE aE

)2

aE . (9.120)

Setting E = (µk2/2`2)(ε2 − 1), we obtain the eccentricity

ε =

√√√√1 +

(
v2

f

v2
E

− 2aE

aJ

)
d

aE

. (9.121)
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Note that the orbit is hyperbolic – the probe will escape the Sun – if vf > vE·
√

2x.
The condition that this orbit intersect Jupiter at φ = φJ yields

cosα =
1

ε

(
d

aJ

− 1

)
, (9.122)

which determines the angle α. Interception of Neptune occurs at

d

1 + ε cos(φN − φJ − α)
= aN ⇒ φN = φJ + α+ cos−1 1

ε

(
d

aN

− 1

)
. (9.123)

We then have

τJN = τE ·
(
d

aE

)3
φN∫

φJ

dφ

2π

1[
1 + ε cos(φ− φJ − α)

]2 . (9.124)

The total time to Neptune is then the sum,

τEN = τEJ + τJN . (9.125)

In Fig. 9.12, we plot the mission time τEN versus the velocity at perihelion,
vp = λvE, for various values of κ. The value κ = ∞ corresponds to the case of
no Jovian encounter at all.
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Chapter 10

Small Oscillations

10.1 Coupled Coordinates

We assume, for a set of n generalized coordinates {q1, . . . , qn}, that the kinetic
energy is a quadratic function of the velocities,

T = 1
2
Tσσ′(q1, . . . , qn) q̇σ q̇σ′ , (10.1)

where the sum on σ and σ′ from 1 to n is implied. For example, expressed in
terms of polar coordinates (r, θ, φ), the matrix Tij is

Tσσ′ = m

1 0 0
0 r2 0
0 0 r2 sin2θ

 =⇒ T = 1
2
m
(
ṙ2 + r2θ̇2 + r2 sin2θ φ̇2

)
. (10.2)

The potential U(q1, . . . , qn) is assumed to be a function of the generalized coor-
dinates alone: U = U(q). A more general formulation of the problem of small
oscillations is given in the appendix, section 10.8.

The generalized momenta are

pσ =
∂L

∂q̇σ
= Tσσ′ q̇σ′ , (10.3)

and the generalized forces are

Fσ =
∂L

∂qσ
=

1

2

∂Tσ′σ′′

∂qσ
q̇σ′ q̇σ′′ −

∂U

∂qσ
. (10.4)

The Euler-Lagrange equations are then ṗσ = Fσ, or

Tσσ′ q̈σ′ +

(
∂Tσσ′

∂qσ′′
− 1

2

∂Tσ′σ′′

∂qσ

)
q̇σ′ q̇σ′′ = − ∂U

∂qσ
(10.5)

which is a set of coupled nonlinear second order ODEs.
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10.2 Expansion about Static Equilibrium

Small oscillation theory begins with the identification of a static equilibrium
{q̄1, . . . , q̄n}, which satisfies the n nonlinear equations

∂U

∂qσ

∣∣∣∣
q=q̄

= 0 . (10.6)

Once an equilibrium is found (note that there may be more than one static
equilibrium), we expand about this equilibrium, writing

qσ ≡ q̄σ + ησ . (10.7)

The coordinates {η1, . . . , ηn} represent the displacements relative to equilibrium.

We next expand the Lagrangian to quadratic order in the generalized dis-
placements, yielding

L = 1
2
Tσσ′ η̇σ η̇σ′ − 1

2
Vσσ′ ησησ′ , (10.8)

where

Tσσ′ =
∂2T

∂q̇σ ∂q̇σ′

∣∣∣∣∣
q=q̄

, Vσσ′ =
∂2U

∂qσ ∂qσ′

∣∣∣∣∣
q=q̄

. (10.9)

Writing ηt for the row-vector (η1, . . . , ηn), we may suppress indices and write

L = 1
2
η̇t T η̇ − 1

2
ηt V η , (10.10)

where T and V are the constant matrices of eqn. 10.9.

10.3 Method of Small Oscillations

The idea behind the method of small oscillations is to effect a coordinate trans-
formation from the generalized displacements η to a new set of coordinates ξ,
which render the Lagrangian particularly simple. All that is required is a linear
transformation,

ησ = Aσi ξi , (10.11)

where both σ and i run from 1 to n. The n×n matrix Aσi is known as the modal
matrix. With the substitution η = A ξ (hence ηt = ξt At, where At

iσ = Aσ is
the matrix transpose), we have

L = 1
2
ξ̇t At T A ξ̇ − 1

2
ξt At V A ξ . (10.12)
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We now choose the matrix A such that

At T A = 1 (10.13)

At V A = diag
(
ω2

1 , . . . , ω
2
n

)
. (10.14)

With this choice of A, the Lagrangian decouples:

L = 1
2

n∑
i=1

(
ξ̇2
i − ω2

i ξ
2
i

)
, (10.15)

with the solution
ξi(t) = Ci cos(ωi t) +Di sin(ωi t) , (10.16)

where {C1, . . . , Cn} and {D1, . . . , Dn} are 2n constants of integration, and where
no sum is implied on i. Note that

ξ = A−1η = AtTη . (10.17)

In terms of the original generalized displacements, the solution is

ησ(t) =
n∑

i=1

Aσi

{
Ci cos(ωit) +Di sin(ωit)

}
, (10.18)

and the constants of integration are linearly related to the initial generalized
displacements and generalized velocities:

Ci = At
iσ Tσσ′ ησ′(0) (10.19)

Di = ω−1
i At

iσ Tσσ′ η̇σ′(0) , (10.20)

again with no implied sum on i on the RHS of the second equation, and where
we have used A−1 = At T, from eqn. 10.13. (The implied sums in eqn. 10.20
are over σ and σ′.)

Note that the normal coordinates have unusual dimensions: [ξ] =
√
M · L,

where L is length and M is mass.

10.3.1 Can you really just choose an A so that both these
wonderful things happen in 10.13 and 10.14?

Yes.
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10.3.2 Er...care to elaborate?

Both T and V are symmetric matrices. Aside from that, there is no special
relation between them. In particular, they need not commute, hence they do not
necessarily share any eigenvectors. Nevertheless, they may be simultaneously
diagonalized as per 10.13 and 10.14. Here’s why:

• Since T is symmetric, it can be diagonalized by an orthogonal transformation.
That is, there exists a matrix O1 ∈ O(n) such that

Ot
1 TO1 = Td , (10.21)

where Td is diagonal.

• We may safely assume that T is positive definite. Otherwise the kinetic energy
can become arbitrarily negative, which is unphysical. Therefore, one may form
the matrix T

−1/2
d which is the diagonal matrix whose entries are the inverse

square roots of the corresponding entries of Td. Consider the linear transfor-
mation O1 T

−1/2
d . Its effect on T is

T
−1/2
d Ot

1 TO1 T
−1/2
d = 1 . (10.22)

• Since O1 and Td are wholly derived from T, the only thing we know about

Ṽ ≡ T
−1/2
d Ot

1 VO1 T
−1/2
d (10.23)

is that it is explicitly a symmetric matrix. Therefore, it may be diagonalized by
some orthogonal matrix O2 ∈ O(n). As T has already been transformed to the
identity, the additional orthogonal transformation has no effect there. Thus, we
have shown that there exist orthogonal matrices O1 and O2 such that

Ot
2 T

−1/2
d Ot

1 TO1 T
−1/2
d O2 = 1 (10.24)

Ot
2 T

−1/2
d Ot

1 VO1 T
−1/2
d O2 = diag (ω2

1, . . . , ω
2
n) . (10.25)

All that remains is to identify the modal matrix A = O1 T
−1/2
d O2.

Note that it is not possible to simultaneously diagonalize three symmetric ma-
trices in general.
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10.3.3 Finding the Modal Matrix

While the above proof allows one to construct A by finding the two orthogonal
matrices O1 and O2, such a procedure is extremely cumbersome. It would be
much more convenient if A could be determined in one fell swoop. Fortunately,
this is possible.

We start with the equations of motion, T η̈ + V η = 0. In component
notation, we have

Tσσ′ η̈σ′ + Vσσ′ ησ′ = 0 . (10.26)

We now assume that η(t) oscillates with a single frequency ω, i.e. ησ(t) =
ψσ e

−iωt. This results in a set of linear algebraic equations for the components
ψσ: (

ω2 Tσσ′ − Vσσ′

)
ψσ′ = 0 . (10.27)

These are n equations in n unknowns: one for each value of σ = 1, . . . , n.
Because the equations are homogeneous and linear, there is always a trivial
solution ψ = 0. In fact one might think this is the only solution, since(

ω2 T− V
)
ψ = 0

?
=⇒ ψ =

(
ω2 T− V

)−1
0 = 0 . (10.28)

However, this fails when the matrix ω2 T− V is defective1, i.e. when

det
(
ω2 T− V

)
= 0 . (10.29)

Since T and V are of rank n, the above determinant yields an nth order polyno-
mial in ω2, whose n roots are the desired squared eigenfrequencies {ω2

1 , . . . , ω
2
n}.

Once the n eigenfrequencies are obtained, the modal matrix is constructed
as follows. Solve the equations

n∑
σ′=1

(
ω2

i Tσσ′ − Vσσ′

)
ψ

(i)
σ′ = 0 (10.30)

which are a set of (n−1) linearly independent equations among the n components
of the eigenvector ψ(i). That is, there are n equations (σ = 1, . . . , n), but one
linear dependency since det (ω2

i T−V) = 0. The eigenvectors may be chosen to
satisfy a generalized orthogonality relationship,

ψ(i)
σ Tσσ′ ψ

(j)
σ′ = δσσ′ . (10.31)

1The label defective has a distastefully negative connotation. In modern parlance, we should
instead refer to such a matrix as determinantally challenged .
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To see this, let us duplicate eqn. 10.30, replacing i with j, and multiply both
equations as follows:

ψ(j)
σ ×

(
ω2

i Tσσ′ − Vσσ′

)
ψ

(i)
σ′ = 0 (10.32)

ψ(i)
σ ×

(
ω2

j Tσσ′ − Vσσ′

)
ψ

(j)
σ′ = 0 . (10.33)

Using the symmetry of T and V, upon subtracting these equations we obtain

(ω2
i − ω2

j )
n∑

σ,σ′=1

ψ(i)
σ Tσσ′ ψ

(j)
σ′ = 0 , (10.34)

where the sums on i and j have been made explicit. This establishes that
eigenvectors ψ(i) and ψ(j) corresponding to distinct eigenvalues ω2

i 6= ω2
j are

orthogonal: (ψ(i))t Tψ(j) = 0. For degenerate eigenvalues, the eigenvectors are
not a priori orthogonal, but they may be orthogonalized via application of the
Gram-Schmidt procedure. The remaining degrees of freedom - one for each
eigenvector – are fixed by imposing the condition of normalization:

ψ(i)
σ → ψ(i)

σ

/√
ψ

(i)
µ Tµµ′ ψ

(i)
µ′ =⇒ ψ(i)

σ Tσσ′ ψ
(j)
σ′ = δij . (10.35)

The modal matrix is just the matrix of eigenvectors: Aσi = ψ
(i)
σ .

With the eigenvectors ψ
(i)
σ thusly normalized, we have

0 = ψ(i)
σ

(
ω2

j Tσσ′ − Vσσ′
)
ψ

(j)
σ′

= ω2
j δij − ψ(i)

σ Vσσ′ ψ
(j)
σ′ , (10.36)

with no sum on j. This establishes the result

At V A = diag
(
ω2

1 , . . . , ω
2
n

)
. (10.37)

10.4 Example: Masses and Springs

Two blocks and three springs are configured as in Fig. 11.13. All motion is
horizontal. When the blocks are at rest, all springs are unstretched.

(a) Choose as generalized coordinates the displacement of each block from its equi-
librium position, and write the Lagrangian.

(b) Find the T and V matrices.
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Figure 10.1: A system of masses and springs.

(c) Suppose

m1 = 2m , m2 = m , k1 = 4k , k2 = k , k3 = 2k ,

Find the frequencies of small oscillations.

(d) Find the normal modes of oscillation.

(e) At time t = 0, mass #1 is displaced by a distance b relative to its equilibrium
position. I.e. x1(0) = b. The other initial conditions are x2(0) = 0, ẋ1(0) = 0,
and ẋ2(0) = 0. Find t∗, the next time at which x2 vanishes.

Solution

(a) The Lagrangian is

L = 1
2
m1 x

2
1 + 1

2
m2 x

2
2 − 1

2
k1 x

2
1 − 1

2
k2 (x2 − x1)

2 − 1
2
k3 x

2
2

(b) The T and V matrices are

Tij =
∂2T

∂ẋi ∂ẋj

=

(
m1 0

0 m2

)
, Vij =

∂2U

∂xi ∂xj

=

(
k1 + k2 −k2

−k2 k2 + k3

)

(c) We have m1 = 2m, m2 = m, k1 = 4k, k2 = k, and k3 = 2k. Let us write
ω2 ≡ λω2

0, where ω0 ≡
√
k/m. Then

ω2T− V = k

(
2λ− 5 1

1 λ− 3

)
.
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The determinant is

det (ω2T− V) = (2λ2 − 11λ+ 14) k2

= (2λ− 7) (λ− 2) k2 .

There are two roots: λ− = 2 and λ+ = 7
2
, corresponding to the eigenfrequencies

ω− =

√
2k

m
, ω+ =

√
7k

2m

(d) The normal modes are determined from (ω2
aT − V) ~ψ(a) = 0. Plugging in

λ = 2 we have for the normal mode ~ψ(−)(
−1 1
1 −1

)(
ψ(−)

1

ψ(−)

2

)
= 0 ⇒ ~ψ(−) = C−

(
1
1

)
Plugging in λ = 7

2
we have for the normal mode ~ψ(+)(

2 1
1 1

2

)(
ψ(+)

1

ψ(+)

2

)
= 0 ⇒ ~ψ(+) = C+

(
1
−2

)
The standard normalization ψ

(a)
i Tij ψ

(b)
j = δab gives

C− =
1√
3m

, C2 =
1√
6m

. (10.38)

(e) The general solution is(
x1

x2

)
= A

(
1
1

)
cos(ω−t) +B

(
1
−2

)
cos(ω+t) + C

(
1
1

)
sin(ω−t) +D

(
1
−2

)
sin(ω+t) .

The initial conditions x1(0) = b, x2(0) = ẋ1(0) = ẋ2(0) = 0 yield

A = 2
3
b , B = 1

3
b , C = 0 , D = 0 .

Thus,

x1(t) = 1
3
b ·
(
2 cos(ω−t) + cos(ω+t)

)
x2(t) = 2

3
b ·
(

cos(ω−t)− cos(ω+t)
)
.

Setting x2(t
∗) = 0, we find

cos(ω−t
∗) = cos(ω+t

∗) ⇒ π − ω−t = ω+t− π ⇒ t∗ =
2π

ω− + ω+
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Figure 10.2: The double pendulum.

10.5 Example: Double Pendulum

As a second example, consider the double pendulum, with m1 = m2 = m and
`1 = `2 = `. The kinetic and potential energies are

T = m`2θ̇2
1 +m`2 cos(θ1 − θ1) θ̇1θ̇2 + 1

2
m`2θ̇2

2 (10.39)

V = −2mg` cos θ1 −mg` cos θ2 , (10.40)

leading to

T =

(
2m`2 m`2

m`2 m`2

)
, V =

(
2mg` 0

0 mg`

)
. (10.41)

Then

ω2T− V = m`2
(

2ω2 − 2ω2
0 ω2

ω2 ω2 − ω2
0

)
, (10.42)

with ω0 =
√
g/`. Setting the determinant to zero gives

2(ω2 − ω2
0)

2 − ω4 = 0 ⇒ ω2 = (2±
√

2)ω2
0 . (10.43)

We find the unnormalized eigenvectors by setting (ω2
i T−V )ψ(i) = 0. This gives

ψ+ = C+

(
1

−
√

2

)
, ψ− = C−

(
1

+
√

2

)
, (10.44)

where C± are constants. One can check Tσσ′ ψ
(i)
σ ψ

(j)
σ′ vanishes for i 6= j. We

then normalize by demanding Tσσ′ ψ
(i)
σ ψ

(i)
σ′ = 1 (no sum on i), which determines
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the coefficients C± = 1
2

√
(2±

√
2)/m`2. Thus, the modal matrix is

A =

ψ+
1 ψ−1

ψ+
2 ψ−2

 =
1

2
√
m`2


√

2 +
√

2
√

2−
√

2

−
√

4 + 2
√

2 +
√

4− 2
√

2

 . (10.45)

10.6 Zero Modes

Recall Noether’s theorem, which says that for every continuous one-parameter
family of coordinate transformations,

qσ −→ q̃σ(q, ζ) , q̃σ(q, ζ = 0) = qσ , (10.46)

which leaves the Lagrangian invariant, i.e. dL/dζ = 0, there is an associated
conserved quantity,

Λ =
∑

σ

∂L

∂q̇σ

∂q̃σ
∂ζ

∣∣∣∣∣
ζ=0

satisfies
dΛ

dt
= 0 . (10.47)

For small oscillations, we write qσ = q̄σ + ησ, hence

Λk =
∑

σ

Ckσ η̇σ , (10.48)

where k labels the one-parameter families (in the event there is more than one
continuous symmetry), and where

Ckσ =
∑
σ′

Tσσ′
∂q̃σ′

∂ζk

∣∣∣∣∣
ζ=0

. (10.49)

Therefore, we can define the (unnormalized) normal mode

ξk =
∑

σ

Ckσ ησ , (10.50)

which satisfies ξ̈k = 0. Thus, in systems with continuous symmetries, to each
such continuous symmetry there is an associated zero mode of the small oscil-
lations problem, i.e. a mode with ω2

k = 0.
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Figure 10.3: Coupled oscillations of three masses on a frictionless hoop of radius R.
All three springs have the same force constant k, but the masses are all distinct.

10.6.1 Example of Zero Mode Oscillations

The simplest example of a zero mode would be a pair of masses m1 and m2

moving frictionlessly along a line and connected by a spring of force constant k.
We know from our study of central forces that the Lagrangian may be written

L = 1
2
m1ẋ

2
1 + 1

2
m2ẋ

2
2 − 1

2
k(x1 − x2)

2

= 1
2
MẊ2 + 1

2
µẋ2 − 1

2
kx2 , (10.51)

whereX = (m1x1+m2x2)/(m1+m2) is the center of mass position, x = x1−x2 is
the relative coordinate,M = m1+m2 is the total mass, and µ = m1m2/(m1+m2)
is the reduced mass. The relative coordinate obeys ẍ = −ω2

0 x, where the
oscillation frequency is ω0 =

√
k/µ. The center of mass coordinate obeys Ẍ = 0,

i.e. its oscillation frequency is zero. The center of mass motion is a zero mode.

Another example is furnished by the system depicted in fig. 10.3, where
three distinct masses m1, m2, and m3 move around a frictionless hoop of radius
R. The masses are connected to their neighbors by identical springs of force
constant k. We choose as generalized coordinates the angles φσ (σ = 1, 2, 3),
with the convention that

φ1 ≤ φ2 ≤ φ3 ≤ 2π + φ1 . (10.52)

Let Rχ be the equilibrium length for each of the springs. Then the potential
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energy is

U = 1
2
kR2

{
(φ2 − φ1 − χ)2 + (φ3 − φ2 − χ)2 + (2π + φ1 − φ3 − χ)2

}
= 1

2
kR2

{
(φ2 − φ1)

2 + (φ3 − φ2)
2 + (2π + φ1 − φ3)

2 + 3χ2 − 4πχ
}
. (10.53)

Note that the equilibrium angle χ enters only in an additive constant to the
potential energy. Thus, for the calculation of the equations of motion, it is
irrelevant. It doesn’t matter whether or not the equilibrium configuration is
unstretched (χ = 2π/3) or not (χ 6= 2π/3).

The kinetic energy is simple:

T = 1
2
R2
(
m1 φ̇

2
1 +m2 φ̇

2
2 +m3 φ̇

2
3

)
. (10.54)

The T and V matrices are then

T =

m1R
2 0 0

0 m2R
2 0

0 0 m3R
2

 , V =

2kR2 −kR2 −kR2

−kR2 2kR2 −kR2

−kR2 −kR2 2kR2

 . (10.55)

We then have

ω2 T− V = kR2


ω2

Ω2
1
− 2 1 1

1 ω2

Ω2
2
− 2 1

1 1 ω2

Ω2
3
− 2

 . (10.56)

We compute the determinant to find the characteristic polynomial:

P (ω) = det(ω2 T− V) (10.57)

=
ω6

Ω2
1 Ω

2
2 Ω

2
3

− 2

(
1

Ω2
1 Ω

2
2

+
1

Ω2
2 Ω

2
3

+
1

Ω2
1 Ω

2
3

)
ω4 + 3

(
1

Ω2
1

+
1

Ω2
2

+
1

Ω2
3

)
ω2 ,

where Ω2
i ≡ k/mi. The equation P (ω) = 0 yields a cubic equation in ω2,

but clearly ω2 is a factor, and when we divide this out we obtain a quadratic
equation. One root obviously is ω2

1 = 0. The other two roots are solutions to
the quadratic equation:

ω2
2,3 = Ω2

1 +Ω2
2 +Ω2

3 ±
√

1
2

(
Ω2

1 −Ω2
2

)2
+ 1

2

(
Ω2

2 −Ω2
3

)2
+ 1

2

(
Ω2

1 −Ω2
3

)2
. (10.58)

To find the eigenvectors and the modal matrix, we set
ω2

j

Ω2
1
− 2 1 1

1
ω2

j

Ω2
2
− 2 1

1 1
ω2

j

Ω2
3
− 2


ψ

(j)
1

ψ
(j)
2

ψ
(j)
3

 = 0 , (10.59)
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Writing down the three coupled equations for the components of ψ(j), we find(
ω2

j

Ω2
1

− 3

)
ψ

(j)
1 =

(
ω2

j

Ω2
2

− 3

)
ψ

(j)
2 =

(
ω2

j

Ω2
3

− 3

)
ψ

(j)
3 . (10.60)

We therefore conclude

ψ(j) = Cj


(

ω2
j

Ω2
1
− 3
)−1(

ω2
j

Ω2
2
− 3
)−1(

ω2
j

Ω2
3
− 3
)−1

 . (10.61)

The normalization condition ψ
(i)
σ Tσσ′ ψ

(j)
σ′ = δij then fixes the constants Cj:[

m1

(
ω2

j

Ω2
1

− 3

)−2

+ m2

(
ω2

j

Ω2
2

− 3

)−2

+ m3

(
ω2

j

Ω2
3

− 3

)−2
] ∣∣Cj

∣∣2 = 1 . (10.62)

The Lagrangian is invariant under the one-parameter family of transforma-
tions

φσ −→ φσ + ζ (10.63)

for all σ = 1, 2, 3. The associated conserved quantity is

Λ =
∑

σ

∂L

∂φ̇σ

∂φ̃σ

∂ζ

= R2
(
m1 φ̇1 +m2 φ̇2 +m3 φ̇3

)
, (10.64)

which is, of course, the total angular momentum relative to the center of the
ring. Thus, from Λ̇ = 0 we identify the zero mode as ξ1, where

ξ1 = C
(
m1φ 1 +m2 φ2 +m3φ 3

)
, (10.65)

where C is a constant. Recall the relation ησ = Aσi ξi between the generalized
displacements ησ and the normal coordinates ξi. We can invert this relation to
obtain

ξi = A−1
iσ ησ = At

iσ Tσσ′ ησ′ . (10.66)

Here we have used the result At T A = 1 to write

A−1 = At T . (10.67)

This is a convenient result, because it means that if we ever need to express
the normal coordinates in terms of the generalized displacements, we don’t have
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to invert any matrices – we just need to do one matrix multiplication. In our
case here, the T matrix is diagonal, so the multiplication is trivial. From eqns.
10.65 and 10.66, we conclude that the matrix At T must have a first row which
is proportional to (m1,m2,m3). Since these are the very diagonal entries of T,
we conclude that At itself must have a first row which is proportional to (1, 1, 1),
which means that the first column of A is proportional to (1, 1, 1). But this is

confirmed by eqn. 10.60 when we take j = 1, since ω2
j=1 = 0: ψ

(1)
1 = ψ

(1)
2 = ψ

(1)
3 .

10.7 Chain of Mass Points

Next consider an infinite chain of identical masses, connected by identical springs
of spring constant k and equilibrium length a. The Lagrangian is

L = 1
2
m
∑

n

ẋ2
n − 1

2
k
∑

n

(xn+1 − xn − a)2

= 1
2
m
∑

n

u̇2
n − 1

2
k
∑

n

(un+1 − un)2 , (10.68)

where un ≡ xn − na − b is the displacement from equilibrium of the nth mass.
The constant b is arbitrary. The Euler-Lagrange equations are

d

dt

(
∂L

∂u̇n

)
= mün =

∂L

∂un

= k(un+1 − un)− k(un − un−1)

= k(un+1 + un−1 − 2un) . (10.69)

Now let us assume that the system is placed on a large ring of circumference
Na, where N � 1. Then un+N = un and we may shift to Fourier coefficients,

un =
1√
N

∑
q

eiqan ûq (10.70)

ûq =
1√
N

∑
n

e−iqan un , (10.71)
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where qj = 2πj/Na, and both sums are over the set j, n ∈ {1, . . . , N}. Expressed

in terms of the {ûq}, the equations of motion become

¨̂uq =
1√
N

∑
n

e−iqna ün

=
k

m

1√
N

∑
n

e−iqan (un+1 + un−1 − 2un)

=
k

m

1√
N

∑
n

e−iqan (e−iqa + e+iqa − 2)un

= −2k

m
sin2

(
1
2
qa
)
ûq (10.72)

Thus, the {ûq} are the normal modes of the system (up to a normalization
constant), and the eigenfrequencies are

ωq =
2k

m

∣∣ sin (1
2
qa
)∣∣ . (10.73)

This means that the modal matrix is

Anq =
1√
Nm

eiqan , (10.74)

where we’ve included the 1√
m

factor for a proper normalization. (The normal

modes themselves are then ξq = A†
qnTnn′un′ =

√
mûq. For complex A, the

normalizations are A†TA = 1 and A†VA = diag(ω2
1, . . . , ω

2
N).

Note that

Tnn′ = mδn,n′ (10.75)

Vnn′ = 2k δn,n′ − k δn,n′+1 − k δn,n′−1 (10.76)

and that

(A†TA)qq′ =
N∑

n=1

N∑
n′=1

A∗
nqTnn′An′q′

=
1

Nm

N∑
n=1

N∑
n′=1

e−iqanmδnn′ e
iq′an′

=
1

N

N∑
n=1

ei(q′−q)an = δqq′ , (10.77)
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and

(A†VA)qq′ =
N∑

n=1

N∑
n′=1

A∗
nqTnn′An′q′

=
1

Nm

N∑
n=1

N∑
n′=1

e−iqan
(
2k δn,n′ − k δn,n′+1 − k δn,n′−1

)
eiq′an′

=
k

m

1

N

N∑
n=1

ei(q′−q)an
(
2− e−iq′a − eiq′a

)
=

4k

m
sin2

(
1
2
qa
)
δqq′ = ω2

q δqq′ (10.78)

Since x̂q+G = x̂q, where G = 2π
a

, we may choose any set of q values such that
no two are separated by an integer multiple of G. The set of points {jG} with
j ∈ Z is called the reciprocal lattice. For a linear chain, the reciprocal lattice is
itself a linear chain2. One natural set to choose is q ∈

[
− π

a
, π

a

]
. This is known

as the first Brillouin zone of the reciprocal lattice.

Finally, we can write the Lagrangian itself in terms of the {uq}. One easily
finds

L = 1
2
m
∑

q

˙̂u
∗
q

˙̂uq − k
∑

q

(1− cos qa) û∗q ûq , (10.79)

where the sum is over q in the first Brillouin zone. Note that

û−q = û−q+G = û∗q . (10.80)

This means that we can restrict the sum to half the Brillouin zone:

L = 1
2
m
∑

q∈[0, π
a
]

{
˙̂u
∗
q

˙̂uq −
4k

m
sin2

(
1
2
qa
)
û∗q ûq

}
. (10.81)

Now ûq and û∗q may be regarded as linearly independent, as one regards complex
variables z and z∗. The Euler-Lagrange equation for û∗q gives

d

dt

(
∂L

∂ ˙̂u
∗
q

)
=

∂L

∂û∗q
⇒ ¨̂uq = −ω2

q ûq . (10.82)

Extremizing with respect to ûq gives the complex conjugate equation.

2For higher dimensional Bravais lattices, the reciprocal lattice is often different than the real
space (“direct”) lattice. For example, the reciprocal lattice of a face-centered cubic structure is a
body-centered cubic lattice.
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10.7.1 Continuum Limit

Let us take N →∞, a→ 0, with L0 = Na fixed. We’ll write

un(t) −→ u(x = na, t) (10.83)

in which case

T = 1
2
m
∑

n

u̇2
n −→ 1

2
m

∫
dx

a

(
∂u

∂t

)2

(10.84)

V = 1
2
k
∑

n

(un+1 − un)2 −→ 1
2
k

∫
dx

a

(
u(x+ a)− u(x)

a

)2

a2 (10.85)

Recognizing the spatial derivative above, we finally obtain

L =

∫
dxL(u, ∂tu, ∂xu)

L = 1
2
µ

(
∂u

∂t

)2

− 1
2
τ

(
∂u

∂x

)2

, (10.86)

where µ = m/a is the linear mass density and τ = ka is the tension3. The
quantity L is the Lagrangian density ; it depends on the field u(x, t) as well as
its partial derivatives ∂tu and ∂xu

4. The action is

S
[
u(x, t)

]
=

tb∫
ta

dt

xb∫
xa

dxL(u, ∂tu, ∂xu) , (10.87)

where {xa, xb} are the limits on the x coordinate. Setting δS = 0 gives the
Euler-Lagrange equations

∂L
∂u

− ∂

∂t

(
∂L

∂ (∂tu)

)
− ∂

∂x

(
∂L

∂ (∂xu)

)
= 0 . (10.88)

For our system, this yields the Helmholtz equation,

1

c2
∂2u

∂t2
=
∂2u

∂x2
, (10.89)

where c =
√
τ/µ is the velocity of wave propagation. This is a linear equation,

solutions of which are of the form

u(x, t) = C eiqx e−iωt , (10.90)

3For a proper limit, we demand µ and τ be neither infinite nor infinitesimal.
4L may also depend explicitly on x and t.
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where
ω = cq . (10.91)

Note that in the continuum limit a→ 0, the dispersion relation derived for the
chain becomes

ω2
q =

4k

m
sin2

(
1
2
qa
)
−→ ka2

m
q2 = c2 q2 , (10.92)

and so the results agree.

10.8 Appendix I : General Formulation

In the development in section 10.1, we assumed that the kinetic energy T is a
homogeneous function of degree 2, and the potential energy U a homogeneous
function of degree 0, in the generalized velocities q̇σ. However, we’ve encoun-
tered situations where this is not so: problems with time-dependent holonomic
constraints, such as the mass point on a rotating hoop, and problems involving
charged particles moving in magnetic fields. The general Lagrangian is of the
form

L = 1
2
T2 σσ′(q) q̇σ q̇σ′ + T1 σ(q) q̇σ + T0(q)− U1 σ(q) q̇σ − U0(q) , (10.93)

where the subscript 0, 1, or 2 labels the degree of homogeneity of each term in
the generalized velocities. The generalized momenta are then

pσ =
∂L

∂q̇σ
= T2 σσ′ q̇σ′ + T1 σ − U1 σ (10.94)

and the generalized forces are

Fσ =
∂L

∂qσ
=
∂(T0 − U0)

∂qσ
+
∂(T1 σ′ − U1 σ′)

∂qσ
q̇σ′ +

1

2

∂T2 σ′σ′′

∂qσ
q̇σ′ q̇σ′′ , (10.95)

and the equations of motion are again ṗσ = Fσ. Once we solve

In equilibrium, we seek a time-independent solution of the form qσ(t) = q̄σ.
This entails

∂

∂qσ

∣∣∣∣∣
q=q̄

(
U0(q)− T0(q)

)
= 0 , (10.96)

which give us n equations in the n unknowns (q1, . . . , qn). We then write qσ =
q̄σ + ησ and expand in the notionally small quantities ησ. It is important to
understand that we assume η and all of its time derivatives as well are small.
Thus, we can expand L to quadratic order in (η, η̇) to obtain

L = 1
2
Tσσ′ η̇σ η̇σ′ − 1

2
Bσσ′ ησ η̇σ′ − 1

2
Vσσ′ ησ ησ′ , (10.97)
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where

Tσσ′ = T2 σσ′(q̄) , Vσσ′ =
∂2
(
U0 − T0

)
∂qσ ∂qσ′

∣∣∣∣∣
q=q̄

, Bσσ′ = 2
∂
(
U1 σ′ − T1 σ′

)
∂qσ

∣∣∣∣∣
q=q̄

.

(10.98)
Note that the T and V matrices are symmetric. The Bσσ′ term is new.

Now we can always write B = 1
2
(Bs + Ba) as a sum over symmetric and

antisymmetric parts, with Bs = B + Bt and Ba = B− Bt. Since,

Bs
σσ′ ησ η̇σ′ =

d

dt

(
1
2
Bs

σσ′ ησ ησ′

)
, (10.99)

any symmetric part to B contributes a total time derivative to L, and thus
has no effect on the equations of motion. Therefore, we can project B onto its
antisymmetric part, writing

Bσσ′ =

(
∂
(
U1 σ′ − T1 σ′

)
∂qσ

−
∂
(
U1 σ − T1 σ

)
∂qσ′

)
q=q̄

. (10.100)

We now have

pσ =
∂L

∂η̇σ

= Tσσ′ η̇σ′ +
1
2
Bσσ′ ησ′ , (10.101)

and

Fσ =
∂L

∂ησ

= −1
2
Bσσ′ η̇σ′ − Vσσ′ ησ′ . (10.102)

The equations of motion, ṗσ = Fσ, then yield

Tσσ′ η̈σ′ + Bσσ′ η̇σ′ + Vσσ′ ησ′ = 0 . (10.103)

Let us write η(t) = η e−iωt. We then have(
ω2 T + iωB− V

)
η = 0 . (10.104)

To solve eqn. 10.104, we set P (ω) = 0, where P (ω) = det
[
Q(ω)

]
, with

Q(ω) ≡ ω2 T + iωB− V . (10.105)

Since T, B, and V are real-valued matrices, and since det(M) = det(M t) for any
matrix M , we can use Bt = −B to obtain P (−ω) = P (ω) and P (ω∗) =

[
P (ω)

]∗
.

This establishes that if P (ω) = 0, i.e. if ω is an eigenfrequency, then P (−ω) = 0
and P (ω∗) = 0, i.e. −ω and ω∗ are also eigenfrequencies (and hence −ω∗ as
well).
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10.9 Appendix II : Additional Examples

10.9.1 Right Triatomic Molecule

A molecule consists of three identical atoms located at the vertices of a 45◦ right
triangle. Each pair of atoms interacts by an effective spring potential, with all
spring constants equal to k. Consider only planar motion of this molecule.

(a) Find three ‘zero modes’ for this system (i.e. normal modes whose asso-
ciated eigenfrequencies vanish).

(b) Find the remaining three normal modes.

Solution

It is useful to choose the following coordinates:

(X1, Y1) = (x1 , y1) (10.106)

(X2, Y2) = (a+ x2 , y2) (10.107)

(X3, Y3) = (x3 , a+ y3) . (10.108)

The three separations are then

d12 =

√
(a+ x2 − x1)

2 + (y2 − y1)
2

= a+ x2 − x1 + . . . (10.109)

d23 =

√
(−a+ x3 − x2)

2 + (a+ y3 − y2)
2

=
√

2 a− 1√
2

(
x3 − x2

)
+ 1√

2

(
y3 − y2

)
+ . . . (10.110)

d13 =

√
(x3 − x1)

2 + (a+ y3 − y1)
2

= a+ y3 − y1 + . . . . (10.111)
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The potential is then

U = 1
2
k
(
d12 − a

)2
+ 1

2
k
(
d23 −

√
2 a
)2

+ 1
2
k
(
d13 − a

)2
(10.112)

= 1
2
k
(
x2 − x1

)2
+ 1

4
k
(
x3 − x2

)2
+ 1

4
k
(
y3 − y2

)2
− 1

2
k
(
x3 − x2

)(
y3 − y2

)
+ 1

2
k
(
y3 − y1

)2
(10.113)

Defining the row vector

ηt ≡
(
x1 , y1 , x2 , y2 , x3 , y3

)
, (10.114)

we have that U is a quadratic form:

U = 1
2
ησVσσ′ησ′ = 1

2
ηt V η, (10.115)

with

V = Vσσ′ =
∂2U

∂qσ ∂qσ′

∣∣∣∣
eq.

= k



1 0 −1 0 0 0

0 1 0 0 0 −1

−1 0 3
2

−1
2
−1

2
1
2

0 0 −1
2

1
2

1
2

−1
2

0 0 −1
2

1
2

1
2

−1
2

0 −1 1
2

−1
2
−1

2
3
2


(10.116)

The kinetic energy is simply

T = 1
2
m
(
ẋ2

1 + ẏ2
1 + ẋ2

2 + ẏ2
2 + ẋ2

3 + ẏ2
3

)
, (10.117)

which entails
Tσσ′ = mδσσ′ . (10.118)

(b) The three zero modes correspond to x-translation, y-translation, and
rotation. Their eigenvectors, respectively, are

ψ1 =
1√
3m


1
0
1
0
1
0

 , ψ2 =
1√
3m


0
1
0
1
0
1

 , ψ3 =
1

2
√

3m


1
−1
1
2
−2
−1

 . (10.119)
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Figure 10.4: Normal modes of the 45◦ right triangle. The yellow circle is the location
of the CM of the triangle.

To find the unnormalized rotation vector, we find the CM of the triangle, located
at
(

a
3
, a

3

)
, and sketch orthogonal displacements ẑ× (Ri−RCM) at the position

of mass point i.

(c) The remaining modes may be determined by symmetry, and are given
by

ψ4 =
1

2
√
m


−1
−1
0
1
1
0

 , ψ5 =
1

2
√
m


1
−1
−1
0
0
1

 , ψ6 =
1

2
√

3m


−1
−1
2
−1
−1
2

 , (10.120)

with

ω1 =

√
k

m
, ω2 =

√
2k

m
, ω3 =

√
3k

m
. (10.121)

Since T = m · 1 is a multiple of the unit matrix, the orthogonormality
relation ψa

i Tij ψ
b
j = δab entails that the eigenvectors are mutually orthogonal in

the usual dot product sense, with ψa · ψb = m−1 δab. One can check that the
eigenvectors listed here satisfy this condition.
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The simplest of the set {ψ4,ψ5,ψ6} to find is the uniform dilation ψ6,
sometimes called the ‘breathing’ mode. This must keep the triangle in the same
shape, which means that the deviations at each mass point are proportional to
the distance to the CM. Next, it is simplest to find ψ4, in which the long and
short sides of the triangle oscillate out of phase. Finally, the mode ψ5 must be
orthogonal to all the remaining modes. No heavy lifting (e.g. Mathematica) is
required!

10.9.2 Triple Pendulum

Consider a triple pendulum consisting of three identical masses m and three
identical rigid massless rods of length `, as depicted in Fig. 10.5.

(a) Find the T and V matrices.

(b) Find the equation for the eigenfrequencies.

(c) Numerically solve the eigenvalue equation for ratios ω2
a/ω

2
0, where ω0 =√

g/`. Find the three normal modes.

Solution

The Cartesian coordinates for the three masses are

x1 = ` sin θ1 y1 = −` cos θ1

x2 = ` sin θ1 + ` sin θ2 y2 = −` cos θ1 − ` cos θ2

x3 = ` sin θ1 + ` sin θ2 + ` sin θ3 y3 = −` cos θ1 − ` cos θ2 − ` cos θ3 .

By inspection, we can write down the kinetic energy:

T = 1
2
m
(
ẋ2

1 + ẏ2
1 + ẋ2

2 + ẏ2
2 + ẋ3

3 + ẏ2
3

)
= 1

2
m`2

{
3 θ̇2

1 + 2 θ̇2
2 + θ̇2

3 + 4 cos(θ1 − θ2) θ̇1 θ̇2

+ 2 cos(θ1 − θ3) θ̇1 θ̇3 + 2 cos(θ2 − θ3) θ̇2 θ̇3

}
The potential energy is

U = −mg`
{

3 cos θ1 + 2 cos θ2 + cos θ3

}
,
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Figure 10.5: The triple pendulum.

and the Lagrangian is L = T − U :

L = 1
2
m`2

{
3 θ̇2

1 + 2 θ̇2
2 + θ̇2

3 + 4 cos(θ1 − θ2) θ̇1 θ̇2 + 2 cos(θ1 − θ3) θ̇1 θ̇3

+ 2 cos(θ2 − θ3) θ̇2 θ̇3

}
+mg`

{
3 cos θ1 + 2 cos θ2 + cos θ3

}
.

The Cartesian coordinates for the three masses are

x1 = ` sin θ1 y1 = −` cos θ1

x2 = ` sin θ1 + ` sin θ2 y2 = −` cos θ1 − ` cos θ2

x3 = ` sin θ1 + ` sin θ2 + ` sin θ3 y3 = −` cos θ1 − ` cos θ2 − ` cos θ3 .

By inspection, we can write down the kinetic energy:

T = 1
2
m
(
ẋ2

1 + ẏ2
1 + ẋ2

2 + ẏ2
2 + ẋ3

3 + ẏ2
3

)
= 1

2
m`2

{
3 θ̇2

1 + 2 θ̇2
2 + θ̇2

3 + 4 cos(θ1 − θ2) θ̇1 θ̇2

+ 2 cos(θ1 − θ3) θ̇1 θ̇3 + 2 cos(θ2 − θ3) θ̇2 θ̇3

}
The potential energy is

U = −mg`
{

3 cos θ1 + 2 cos θ2 + cos θ3

}
,
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and the Lagrangian is L = T − U :

L = 1
2
m`2

{
3 θ̇2

1 + 2 θ̇2
2 + θ̇2

3 + 4 cos(θ1 − θ2) θ̇1 θ̇2 + 2 cos(θ1 − θ3) θ̇1 θ̇3

+ 2 cos(θ2 − θ3) θ̇2 θ̇3

}
+mg`

{
3 cos θ1 + 2 cos θ2 + cos θ3

}
.

Write down expressions for the conjugate momenta. The momenta are given
by

π1 =
∂L

∂θ̇1

= m`2
{

3 θ̇1 + 2 θ̇2 cos(θ1 − θ2) + θ̇3 cos(θ1 − θ3)
}

π2 =
∂L

∂θ̇2

= m`2
{

2 θ̇2 + 2 θ̇1 cos(θ1 − θ2) + θ̇3 cos(θ2 − θ3)
}

π3 =
∂L

∂θ̇2

= m`2
{
θ̇3 + θ̇1 cos(θ1 − θ3) + θ̇2 cos(θ2 − θ3)

}
.

The only conserved quantity is the total energy, E = T + U .

(a) As for the T and V matrices, we have

Tσσ′ =
∂2T

∂θσ ∂θσ′

∣∣∣∣
θ=0

= m`2

3 2 1
2 2 1
1 1 1


and

Vσσ′ =
∂2U

∂θσ ∂θσ′

∣∣∣∣
θ=0

= mg`

3 0 0
0 2 0
0 0 1

 .

(b) The eigenfrequencies are roots of the equation det (ω2 T−V) = 0. Defin-
ing ω0 ≡

√
g/`, we have

ω2 T− V = m`2

3(ω2 − ω2
0) 2ω2 ω2

2ω2 2(ω2 − ω2
0) ω2

ω2 ω2 (ω2 − ω2
0)


and hence

det (ω2T− V) = 3(ω2 − ω2
0) ·
[
2(ω2 − ω2

0)
2 − ω4

]
− 2ω2 ·

[
2ω2(ω2 − ω2

0)− ω4
]

+ ω2 ·
[
2ω4 − 2ω2(ω2 − ω2

0)
]

= 6 (ω2 − ω2
0)

3 − 9ω4 (ω2 − ω2
0) + 4ω6

= ω6 − 9ω2
0 ω

4 + 18ω4
0 ω

2 − 6ω6
0 .
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(c) The equation for the eigenfrequencies is

λ3 − 9λ2 + 18λ− 6 = 0 , (10.122)

where ω2 = λω2
0. This is a cubic equation in λ. Numerically solving for the

roots, one finds

ω2
1 = 0.415774ω2

0 , ω2
2 = 2.29428ω2

0 , ω2
3 = 6.28995ω2

0 . (10.123)

I find the (unnormalized) eigenvectors to be

ψ1 =

 1
1.2921
1.6312

 , ψ2 =

 1
0.35286
−2.3981

 , ψ3 =

 1
−1.6450
0.76690

 . (10.124)

10.9.3 Equilateral Linear Triatomic Molecule

Consider the vibrations of an equilateral triangle of mass points, depicted in
figure 10.6 . The system is confined to the (x, y) plane, and in equilibrium all
the strings are unstretched and of length a.

Figure 10.6: An equilateral triangle of identical mass points and springs.

(a) Choose as generalized coordinates the Cartesian displacements (xi, yi) with
respect to equilibrium. Write down the exact potential energy.

(b) Find the T and V matrices.

(c) There are three normal modes of oscillation for which the corresponding
eigenfrequencies all vanish: ωa = 0. Write down these modes explicitly, and
provide a physical interpretation for why ωa = 0. Since this triplet is degenerate,
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there is no unique answer – any linear combination will also serve as a valid ‘zero
mode’. However, if you think physically, a natural set should emerge.

(d) The three remaining modes all have finite oscillation frequencies. They cor-
respond to distortions of the triangular shape. One such mode is the “breathing
mode” in which the triangle uniformly expands and contracts. Write down
the eigenvector associated with this normal mode and compute its associated
oscillation frequency.

(e) The fifth and sixth modes are degenerate. They must be orthogonal (with
respect to the inner product defined by T) to all the other modes. See if you
can figure out what these modes are, and compute their oscillation frequencies.
As in (a), any linear combination of these modes will also be an eigenmode.

(f) Write down your full expression for the modal matrix Aai, and check that
it is correct by using Mathematica.

Solution

Choosing as generalized coordinates the Cartesian displacements relative to
equilibrium, we have the following:

#1 :
(
x1, y1

)
#2 :

(
a+ x2, y2

)
#3 :

(
1
2
a+ x3,

√
3

2
a+ y3

)
.

Let dij be the separation of particles i and j. The potential energy of the spring
connecting them is then 1

2
k (dij − a)2.

d2
12 =

(
a+ x2 − x1

)2
+
(
y2 − y1

)2
d2

23 =
(
− 1

2
a+ x3 − x2

)2
+
(√

3
2
a+ y3 − y2

)2
d2

13 =
(

1
2
a+ x3 − x1

)2
+
(√

3
2
a+ y3 − y1

)2
.

The full potential energy is

U = 1
2
k
(
d12 − a

)2
+ 1

2
k
(
d23 − a

)2
+ 1

2
k
(
d13 − a

)2
. (10.125)

This is a cumbersome expression, involving square roots.

To find T and V, we need to write T and V as quadratic forms, neglecting
higher order terms. Therefore, we must expand dij − a to linear order in the
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Figure 10.7: Zero modes of the mass-spring triangle.

generalized coordinates. This results in the following:

d12 = a+
(
x2 − x1

)
+ . . .

d23 = a− 1
2

(
x3 − x2

)
+

√
3

2

(
y3 − y2

)
+ . . .

d13 = a+ 1
2

(
x3 − x1

)
+

√
3

2

(
y3 − y1

)
+ . . . .

Thus,

U = 1
2
k
(
x2 − x1

)2
+ 1

8
k
(
x2 − x3 −

√
3 y2 +

√
3 y3

)2
+ 1

8
k
(
x3 − x1 +

√
3 y3 −

√
3 y1

)2
+ higher order terms .

Defining (
q1, q2, q3, q4, q5, q6

)
=
(
x1, y1, x2, y2, x3, y3

)
,

we may now read off

Vσσ′ =
∂2U

∂qσ ∂qσ′

∣∣∣∣
q̄

= k


5/4

√
3/4 −1 0 −1/4 −√3/4

√
3/4 3/4 0 0 −√3/4 −3/4

−1 0 5/4 −√3/4 −1/4
√

3/4

0 0 −√3/4 3/4
√

3/4 −3/4

−1/4 −√3/4 −1/4
√

3/4 1/2 0

−√3/4 −3/4
√

3/4 −3/4 0 3/2


The T matrix is trivial. From

T = 1
2
m
(
ẋ2

1 + ẏ2
1 + ẋ2

2 + ẏ2
2 + ẋ2

3 + ẏ2
3

)
.
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Figure 10.8: Finite oscillation frequency modes of the mass-spring triangle.

we obtain

Tij =
∂2T

∂q̇i ∂q̇j
= mδij ,

and T = m · 1 is a multiple of the unit matrix.

The zero modes are depicted graphically in figure 10.7. Explicitly, we have

ξx =
1√
3m


1

0

1

0

1

0

 , ξy =
1√
3m


0

1

0

1

0

1

 , ξrot =
1√
3m


1/2

−√3/2

1/2
√

3/2

−1

0

 .

That these are indeed zero modes may be verified by direct multiplication:
V ξx.y = V ξrot = 0.

The three modes with finite oscillation frequency are depicted graphically
in figure 10.8. Explicitly, we have

ξA =
1√
3m


−1/2

−
√

3/2

−1/2
√

3/2

1

0

 , ξB =
1√
3m


−
√

3/2

1/2
√

3/2

1/2

0

−1

 , ξdil =
1√
3m


−
√

3/2

−1/2
√

3/2

−1/2

0

1

 .
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The oscillation frequencies of these modes are easily checked by multiplying
the eigenvectors by the matrix V. Since T = m · 1 is diagonal, we have V ξa =
mω2

a ξa. One finds

ωA = ωB =

√
3k

2m
, ωdil =

√
3k

m
.

Mathematica? I don’t need no stinking Mathematica.

Figure 10.9: John Henry, statue by Charles O. Cooper (1972). “Now the man that
invented the steam drill, he thought he was mighty fine. But John Henry drove fifteen
feet, and the steam drill only made nine.” - from The Ballad of John Henry.
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Chapter 11

Collisions

11.1 Elastic Collisions

A collision or ‘scattering event’ is said to be elastic if it results in no change in
the internal state of any of the particles involved. Thus, no internal energy is
liberated or captured in an elastic process.

Consider the elastic scattering of two particles. Recall the relation between
laboratory coordinates {r1, r2} and the CM and relative coordinates {R, r}:

R =
m1r1 +m2r2

m1 +m2

r1 = R+
m2

m1 +m2

r (11.1)

r = r1 − r2 r2 = R− m1

m1 +m2

r (11.2)

If external forces are negligible, the CM momentum P = MṘ is constant, and
therefore the frame of reference whose origin is tied to the CM position is an
inertial frame of reference. In this frame,

vCM

1 =
m2 v

m1 +m2

, vCM

2 = − m1 v

m1 +m2

, (11.3)

where v = v1 − v2 = vCM
1 − vCM

2 is the relative velocity, which is the same in
both L and CM frames. Note that the CM momenta satisfy

pCM

1 = m1v
CM

1 = µv (11.4)

pCM

2 = m2v
CM

2 = −µv , (11.5)
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Figure 11.1: The scattering of two hard spheres of radii a and b The scattering angle
is χ.

where µ = m1m2/(m1 +m2) is the reduced mass. Thus, pCM
1 +pCM

2 = 0 and the
total momentum in the CM frame is zero. We may then write

pCM

1 ≡ p0n̂ , pCM

2 ≡ −p0n̂ ⇒ ECM =
p2

0

2m1

+
p2

0

2m2

=
p2

0

2µ
. (11.6)

The energy is evaluated when the particles are asymptotically far from each
other, in which case the potential energy is assumed to be negligible. After the
collision, energy and momentum conservation require

p′1
CM ≡ p0n̂

′ , p′2
CM ≡ −p0n̂

′ ⇒ E ′CM
= ECM =

p2
0

2µ
. (11.7)

The angle between n and n′ is the scattering angle χ:

n · n′ ≡ cosχ . (11.8)

The value of χ depends on the details of the scattering process, i.e. on the
interaction potential U(r). As an example, consider the scattering of two hard
spheres, depicted in Fig. 11.1.

The potential is

U(r) =

{
∞ if r ≤ a+ b

0 if r > a+ b .
(11.9)

Clearly the scattering angle is χ = π − 2φ0, where φ0 is the angle between the
initial momentum of either sphere and a line containing their two centers at the
moment of contact.
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Figure 11.2: Scattering of two particles of masses m1 and m2. The scattering angle
χ is the angle between n̂ and n̂′.

There is a simple geometric interpretation of these results, depicted in Fig.
11.2. We have

p1 = m1V + p0n̂ p′1 = m1V + p0n̂
′ (11.10)

p2 = m2V − p0n̂ p′2 = m2V − p0n̂
′ . (11.11)

So draw a circle of radius p0 whose center is the origin. The vectors p0n̂ and
p0n̂

′ must both lie along this circle. We define the angle ψ between V and n:

V̂ · n = cosψ . (11.12)

It is now an exercise in geometry, using the law of cosines, to determine every-
thing of interest in terms of the quantities V , v, ψ, and χ. For example, the
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Figure 11.3: Scattering when particle 2 is initially at rest.

momenta are

p1 =

√
m2

1 V
2 + µ2v2 + 2m1µV v cosψ (11.13)

p′1 =

√
m2

1 V
2 + µ2v2 + 2m1µV v cos(χ− ψ) (11.14)

p2 =

√
m2

2 V
2 + µ2v2 − 2m2µV v cosψ (11.15)

p′2 =

√
m2

2 V
2 + µ2v2 − 2m2µV v cos(χ− ψ) , (11.16)

and the scattering angles are

θ1 = tan−1

(
µv sinψ

µv cosψ +m1V

)
+ tan−1

(
µv sin(χ− ψ)

µv cos(χ− ψ) +m1V

)
(11.17)

θ2 = tan−1

(
µv sinψ

µv cosψ −m2V

)
+ tan−1

(
µv sin(χ− ψ)

µv cos(χ− ψ)−m2V

)
. (11.18)

If particle 2, say, is initially at rest, the situation is somewhat simpler. In
this case, V = m1V /(m1 +m2) and m2V = µv, which means the point B lies
on the circle in Fig. 11.3 (m1 6= m2) and Fig. 11.4 (m1 = m2). Let ϑ1,2 be the
angles between the directions of motion after the collision and the direction V
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of impact. The scattering angle χ is the angle through which particle 1 turns
in the CM frame. Clearly

tanϑ1 =
sinχ

m1

m2
+ cosχ

, ϑ2 = 1
2
(π − χ) . (11.19)

We can also find the speeds v′1 and v′2 in terms of v and χ, from

p′1
2

= p2
0 +

(
m1

m2
p0

)2 − 2 m1

m2
p2

0 cos(π − χ) (11.20)

and
p2

2 = 2 p2
0 (1− cosχ) . (11.21)

These equations yield

v′1 =

√
m2

1 +m2
2 + 2m1m2 cosχ

m1 +m2

v , v′2 =
2m1v

m1 +m2

sin(1
2
χ) . (11.22)

The angle ϑmax from Fig. 11.3(b) is given by sinϑmax = m2

m1
. Note that when

m1 = m2 we have ϑ1 + ϑ2 = π. A sketch of the orbits in the cases of both
repulsive and attractive scattering, in both the laboratory and CM frames, in
shown in Fig. 11.5.

11.1.1 Central Force Scattering

Consider a single particle of mass µ movng in a central potential U(r), or a two
body central force problem in which µ is the reduced mass. Recall that

dr

dt
=
dφ

dt
· dr
dφ

=
`

µr2
· dr
dφ

, (11.23)

Figure 11.4: Scattering of identical mass particles when particle 2 is initially at rest.
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Figure 11.5: Repulsive (A,C) and attractive (B,D) scattering in the lab (A,B) and
CM (C,D) frames, assuming particle 2 starts from rest in the lab frame.

and therefore

E = 1
2
µṙ2 +

`2

2µr2
+ U(r)

=
`2

2µr4

(
dr

dφ

)2

+
`2

2µr2
+ U(r) . (11.24)

Solving for dr
dφ

, we obtain

dr

dφ
= ±

√
2µr4

`2
(
E − U(r)

)
− r2 , (11.25)

Consulting Fig. 11.6, we have that

φ0 =
`√
2µ

∞∫
rp

dr

r2
√
E − Ueff(r)

, (11.26)

where rp is the radial distance at periapsis, and where

Ueff(r) =
`2

2µr2
+ U(r) (11.27)
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Figure 11.6: Scattering in the CM frame. O is the force center and P is the point of
periapsis. The impact parameter is b, and χ is the scattering angle. φ0 is the angle
through which the relative coordinate moves between periapsis and infinity.

is the effective potential, as before. From Fig. 11.6, we conclude that the
scattering angle is

χ =
∣∣π − 2φ0

∣∣ . (11.28)

It is convenient to define the impact parameter b as the distance of the
asymptotic trajectory from a parallel line containing the force center. The
geometry is shown again in Fig. 11.6. Note that the energy and angular mo-
mentum, which are conserved, can be evaluated at infinity using the impact
parameter:

E = 1
2
µv2

∞ , ` = µv∞b . (11.29)

Substituting for `(b), we have

φ0(E, b) =

∞∫
rp

dr

r2

b√
1− b2

r2 − U(r)
E

, (11.30)

In physical applications, we are often interested in the deflection of a beam
of incident particles by a scattering center. We define the differential scattering
cross section dσ by

dσ =
# of particles scattered into solid angle dΩ per unit time

incident flux
. (11.31)
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Figure 11.7: Geometry of hard sphere scattering.

Now for particles of a given energy E there is a unique relationship between the
scattering angle χ and the impact parameter b, as we have just derived in eqn.
11.30. The differential solid angle is given by dΩ = 2π sinχdχ, hence

dσ

dΩ
=

b

sinχ

∣∣∣∣ dbdχ
∣∣∣∣ =

∣∣∣∣d (1
2
b2)

d cosχ

∣∣∣∣ . (11.32)

Note that dσ
dΩ

has dimensions of area. The integral of dσ
dΩ

over all solid angle is
the total scattering cross section,

σT = 2π

π∫
0

dχ sinχ
dσ

dΩ
. (11.33)

Let’s now work through some examples.

Example #1 : Hard Sphere Scattering – Consider a point particle scat-
tering off a hard sphere of radius a, or two hard spheres of radii a1 and a2

scattering off each other, with a ≡ a1 + a2. From the geometry of Fig. 11.7, we
have b = a sinφ0 and φ0 = 1

2
(π − χ), so

b2 = a2 sin2
(

1
2
π − 1

2
χ) = 1

2
a2 (1 + cosχ) . (11.34)

We therefore have
dσ

dΩ
=
d (1

2
b2)

d cosχ
= 1

4
a2 (11.35)

and σT = πa2. The total scattering cross section is simply the area of a sphere
of radius a projected onto a plane perpendicular to the incident flux.

Example #2 : Rutherford Scattering – Consider scattering by the Kepler
potential U(r) = −k

r
. We assume that the orbits are unbound, i.e. they are
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Keplerian hyperbolae with E > 0, described by the equation

r(φ) =
a (ε2 − 1)

±1 + ε cosφ
⇒ cosφ0 = ± 1

ε
. (11.36)

Recall that the eccentricity is given by

ε2 = 1 +
2E`2

µk2
= 1 +

(
µbv∞
k

)2

. (11.37)

We then have (
µbv∞
k

)2

= ε2 − 1

= sec2φ0 − 1 = tan2φ0 = ctn2
(

1
2
χ
)
. (11.38)

Therefore

b(χ) =
k

µv2
∞

ctn
(

1
2
χ
)

(11.39)

We finally obtain

dσ

dΩ
=
d (1

2
b2)

d cosχ
=

1

2

(
k

µv2
∞

)2 d ctn2
(

1
2
χ
)

d cosχ

=
1

2

(
k

µv2
∞

)2
d

d cosχ

(
1 + cosχ

1− cosχ

)
=

(
k

2µv2
∞

)2

csc4
(

1
2
χ
)
, (11.40)

which is the same as
dσ

dΩ
=

(
k

4E

)2

csc4
(

1
2
χ
)
. (11.41)

Since dσ
dΩ
∝ χ−4 as χ → 0, the total cross section σT diverges! This is a

consequence of the long-ranged nature of the Kepler/Coulomb potential. In
electron-atom scattering, the Coulomb potential of the nucleus is screened by
the electrons of the atom, and the 1/r behavior is cut off at large distances.

11.1.2 Transformation to Laboratory Coordinates

We previously derived the relation

tanϑ =
sinχ

γ + cosχ
, (11.42)
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where ϑ ≡ ϑ1 is the scattering angle for particle 1 in the laboratory frame, and
γ = m1

m2
is the ratio of the masses. We now derive the differential scattering cross

section in the laboratory frame. To do so, we note that particle conservation
requires (

dσ

dΩ

)
L

· 2π sinϑ dϑ =

(
dσ

dΩ

)
CM

· 2π sinχdχ , (11.43)

which says (
dσ

dΩ

)
L

=

(
dσ

dΩ

)
CM

· d cosχ

d cosϑ
. (11.44)

From

cosϑ =
1√

1 + tan2ϑ

=
γ + cosχ√

1 + γ2 + 2γ cosχ
, (11.45)

we derive
d cosϑ

d cosχ
=

1 + γ cosχ(
1 + γ2 + 2γ cosχ

)3/2
(11.46)

and, accordingly,(
dσ

dΩ

)
L

=

(
1 + γ2 + 2γ cosχ

)3/2

1 + γ cosχ
·
(
dσ

dΩ

)
CM

. (11.47)
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PHYSICS 110A : CLASSICAL MECHANICS
MIDTERM EXAM #1

[1] A particle of mass m moves in the one-dimensional potential

U(x) = U0

x2

a2
e−x/a . (11.48)

(a) Sketch U(x). Identify the location(s) of any local minima and/or maxima,
and be sure that your sketch shows the proper behavior as x→ ±∞.

(b) Sketch a representative set of phase curves. Identify and classify any and
all fixed points. Find the energy of each and every separatrix.

(c) Sketch all the phase curves for motions with total energy E = 2
5
U0. Do the

same for E = U0. (Recall that e = 2.71828 . . . .)

(d) Derive and expression for the period T of the motion when |x| � a.

Solution:

(a) Clearly U(x) diverges to +∞ for x → −∞, and U(x) → 0 for x → +∞.
Setting U ′(x) = 0, we obtain the equation

U ′(x) =
U0

a2

(
2x− x2

a

)
e−x/a = 0 , (11.49)

with (finite x) solutions at x = 0 and x = 2a. Clearly x = 0 is a local minimum
and x = 2a a local maximum. Note U(0) = 0 and U(2a) = 4 e−2 U0 ≈ 0.541U0.

(b) Local minima of a potential U(x) give rise to centers in the (x, v) plane, while
local maxima give rise to saddles. In Fig. 11.9 we sketch the phase curves. There
is a center at (0, 0) and a saddle at (2a, 0). There is one separatrix, at energy
E = U(2a) = 4 e−2 U0 ≈ 0.541U0.

(c) Even without a calculator, it is easy to verify that 4 e−2 > 2
5
. One simple

way is to multiply both sides by 5
2
e2 to obtain 10 > e2, which is true since

e2 < (2.71828 . . .)2 < 10. Thus, the energy E = 2
5
U0 lies below the local

maximum value of U(2a), which means that there are two phase curves with
E = 2

5
U0.

It is also quite obvious that the second energy value given, E = U0, lies above
U(2a), which means that there is a single phase curve for this energy. One
finds bound motions only for x < 2 and 0 ≤ E < U(2a). The phase curves
corresponding to total energy E = 2

5
U0 and E = U0 are shown in Fig. 11.9.
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Figure 11.8: The potential U(x). Distances are here measured in units of a, and the
potential in units of U0.

Figure 11.9: Phase curves for the potential U(x). The red curves show phase curves
for E = 2

5
U0 (interior, disconnected red curves, |v| < 1) and E = U0 (outlying red

curve). The separatrix is the dark blue curve which forms a saddle at (x, v) = (2, 0),
and corresponds to an energy E = 4 e−2 U0.

(d) Expanding U(x) in a Taylor series about x = 0, we have

U(x) =
U0

a2

{
x2 − x3

a
+

x4

2a2
+ . . .

}
. (11.50)

The leading order term is sufficient for |x| � a. The potential energy is then
equivalent to that of a spring, with spring constant k = 2U0/a

2. The period is

T = 2π

√
m

k
= 2π

√
ma2

2U0

. (11.51)
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[2] A forced, damped oscillator obeys the equation

ẍ+ 2β ẋ+ ω2
0 x = f0 cos(ω0t) . (11.52)

You may assume the oscillator is underdamped.

(a) Write down the most general solution of this differential equation.

(b) Your solution should involve two constants. Derive two equations relating
these constants to the initial position x(0) and the initial velocity ẋ(0). You do
not have to solve these equations.

(c) Suppose ω0 = 5.0 s−1, β = 4.0 s−1, and f0 = 8 cm s−2. Suppose further you
are told that x(0) = 0 and x(T ) = 0, where T = π

6
s. Derive an expression for

the initial velocity ẋ(0).

Solution: (a) The general solution with forcing f(t) = f0 cos(Ωt) is

x(t) = xh(t) + A(Ω) f0 cos
(
Ωt− δ(Ω)

)
, (11.53)

with

A(Ω) =
[
(ω2

0 −Ω2)2 + 4β2Ω2
]−1/2

, δ(Ω) = tan−1

(
2βΩ

ω2
0 −Ω2

)
(11.54)

and
xh(t) = C e−βt cos(νt) +D e−βt sin(νt) , (11.55)

with ν =
√
ω2

0 − β2.

In our case, Ω = ω0, in which case A = (2βω0)
−1 and δ = 1

2
π. Thus, the most

general solution is

x(t) = C e−βt cos(νt) +D e−βt sin(νt) +
f0

2βω0

sin(ω0t) . (11.56)

(b) We determine the constants C and D by the boundary conditions on x(0)
and ẋ(0):

x(0) = C , ẋ(0) = −βC + νD +
f0

2β
. (11.57)

Thus,

C = x(0) , D =
β

ν
x(0) +

1

ν
ẋ(0)− f0

2βν
. (11.58)
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(c) From x(0) = 0 we obtain C = 0. The constant D is then determined by the
condition at time t = T = 1

6
π.

Note that ν =
√
ω2

0 − β2 = 3.0 s−1. Thus, with T = 1
6
π, we have νT = 1

2
π, and

x(T ) = D e−βT +
f0

2βω0

sin(ω0T ) . (11.59)

This determines D:

D = − f0

2βω0

eβT sin(ω0T ) . (11.60)

We now can write

ẋ(0) = νD +
f0

2β
(11.61)

=
f0

2β

(
1− ν

ω0

eβT sin(ω0T )

)
(11.62)

=
(
1− 3

10
e2π/3

)
cm/s . (11.63)

Numerically, the value is ẋ(0) ≈ 0.145 cm/s .
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PHYSICS 110A : CLASSICAL MECHANICS
MIDTERM EXAM #2

[1] Two blocks connected by a spring of spring constant k are free to slide
frictionlessly along a horizontal surface, as shown in Fig. 11.10. The unstretched
length of the spring is a.

Figure 11.10: Two masses connected by a spring sliding horizontally along a friction-
less surface.

(a) Identify a set of generalized coordinates and write the Lagrangian.
[15 points]

Solution : As generalized coordinates I chooseX and u, whereX is the position
of the right edge of the block of mass M , and X + u + a is the position of the
left edge of the block of mass m, where a is the unstretched length of the spring.
Thus, the extension of the spring is u. The Lagrangian is then

L = 1
2
MẊ2 + 1

2
m(Ẋ + u̇)2 − 1

2
ku2

= 1
2
(M +m)Ẋ2 + 1

2
mu̇2 +mẊu̇− 1

2
ku2 . (11.64)

(b) Find the equations of motion.
[15 points]

Solution : The canonical momenta are

pX ≡
∂L

∂Ẋ
= (M +m)Ẋ +mu̇ , pu ≡

∂L

∂u̇
= m(Ẋ + u̇) . (11.65)

The corresponding equations of motion are then

ṗX = FX =
∂L

∂X
⇒ (M +m)Ẍ +mü = 0 (11.66)

ṗu = Fu =
∂L

∂u
⇒ m(Ẍ + ü) = −ku . (11.67)

(c) Find all conserved quantities.
[10 points]

Solution : There are two conserved quantities. One is pX itself, as is evident
from the fact that L is cyclic in X. This is the conserved ‘charge’ Λ associated
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with the continuous symmetry X → X + ζ. i.e. Λ = pX . The other conserved
quantity is the Hamiltonian H, since L is cyclic in t. Furthermore, because the
kinetic energy is homogeneous of degree two in the generalized velocities, we
have that H = E, with

E = T + U = 1
2
(M +m)Ẋ2 + 1

2
mu̇2 +mẊu̇+ 1

2
ku2 . (11.68)

It is possible to eliminate Ẋ, using the conservation of Λ:

Ẋ =
Λ−mu̇

M +m
. (11.69)

This allows us to write

E =
Λ2

2(M +m)
+

Mmu̇2

2(M +m)
+ 1

2
ku2 . (11.70)

(d) Find a complete solution to the equations of motion. As there are two
degrees of freedom, your solution should involve 4 constants of integration. You
need not match initial conditions, and you need not choose the quantities in
part (c) to be among the constants.
[10 points]

Solution : Using conservation of Λ, we may write Ẍ in terms of ẍ, in which
case

Mm

M +m
ü = −ku ⇒ u(t) = A cos(Ωt) +B sin(Ωt) , (11.71)

where

Ω =

√
(M +m)k

Mm
. (11.72)

For the X motion, we integrate eqn. 11.69 above, obtaining

X(t) = X0 +
Λt

M +m
− m

M +m

(
A cos(Ωt)− A+B sin(Ωt)

)
. (11.73)

There are thus four constants: X0, Λ, A, and B. Note that conservation of
energy says

E =
Λ2

2(M +m)
+ 1

2
k(A2 +B2) . (11.74)

Alternate solution : We could choose X as the position of the left block and
x as the position of the right block. In this case,

L = 1
2
MẊ2 + 1

2
mẋ2 − 1

2
k(x−X − b)2 . (11.75)
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Here, b includes the unstretched length a of the spring, but may also include the
size of the blocks if, say, X and x are measured relative to the blocks’ midpoints.
The canonical momenta are

pX =
∂L

∂Ẋ
= MẊ , px =

∂L

∂ẋ
= mẋ . (11.76)

The equations of motion are then

ṗX = FX =
∂L

∂X
⇒ MẌ = k(x−X − b) (11.77)

ṗx = Fx =
∂L

∂x
⇒ mẍ = −k(x−X − b) . (11.78)

The one-parameter family which leaves L invariant is X → X + ζ and x →
x + ζ, i.e. simultaneous and identical displacement of both of the generalized
coordinates. Then

Λ = MẊ +mẋ , (11.79)

which is simply the x-component of the total momentum. Again, the energy is
conserved:

E = 1
2
MẊ2 + 1

2
mẋ2 + 1

2
k (x−X − b)2 . (11.80)

We can combine the equations of motion to yield

Mm
d2

dt2
(
x−X − b

)
= −k (M +m)

(
x−X − b

)
, (11.81)

which yields
x(t)−X(t) = b+ A cos(Ωt) +B sin(Ωt) , (11.82)

From the conservation of Λ, we have

MX(t) +mx(t) = Λt+ C , (11.83)

were C is another constant. Thus, we have the motion of the system in terms
of four constants: A, B, Λ, and C:

X(t) = − m
M+m

(
b+ A cos(Ωt) +B sin(Ωt)

)
+

Λt+ C

M +m
(11.84)

x(t) = M
M+m

(
b+ A cos(Ωt) +B sin(Ωt)

)
+

Λt+ C

M +m
. (11.85)
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[2] A uniformly dense ladder of mass m and length 2` leans against a block
of mass M , as shown in Fig. 11.11. Choose as generalized coordinates the
horizontal position X of the right end of the block, the angle θ the ladder makes
with respect to the floor, and the coordinates (x, y) of the ladder’s center-of-
mass. These four generalized coordinates are not all independent, but instead
are related by a certain set of constraints.

Recall that the kinetic energy of the ladder can be written as a sum TCM +Trot,
where TCM = 1

2
m(ẋ2 + ẏ2) is the kinetic energy of the center-of-mass motion,

and Trot = 1
2
Iθ̇2, where I is the moment of inertial. For a uniformly dense ladder

of length 2`, I = 1
3
m`2.

Figure 11.11: A ladder of length 2` leaning against a massive block. All surfaces are
frictionless..

(a) Write down the Lagrangian for this system in terms of the coordinates X,
θ, x, y, and their time derivatives.
[10 points]

Solution : We have L = T − U , hence

L = 1
2
MẊ2 + 1

2
m(ẋ2 + ẏ2) + 1

2
Iθ̇2 −mgy . (11.86)

(b) Write down all the equations of constraint.
[10 points]

Solution : There are two constraints, corresponding to contact between the
ladder and the block, and contact between the ladder and the horizontal surface:

G1(X, θ, x, y) = x− ` cos θ −X = 0 (11.87)

G2(X, θ, x, y) = y − ` sin θ = 0 . (11.88)

(c) Write down all the equations of motion.
[10 points]
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Solution : Two Lagrange multipliers, λ1 and λ2, are introduced to effect the
constraints. We have for each generalized coordinate qσ,

d

dt

(
∂L

∂q̇σ

)
− ∂L

∂qσ
=

k∑
j=1

λj

∂Gj

∂qσ
≡ Qσ , (11.89)

where there are k = 2 constraints. We therefore have

MẌ = −λ1 (11.90)

mẍ = +λ1 (11.91)

mÿ = −mg + λ2 (11.92)

Iθ̈ = ` sin θ λ1 − ` cos θ λ2 . (11.93)

These four equations of motion are supplemented by the two constraint equa-
tions, yielding six equations in the six unknowns {X, θ, x, y, λ1, λ2}.

(d) Find all conserved quantities.
[10 points]

Solution : The Lagrangian and all the constraints are invariant under the
transformation

X → X + ζ , x→ x+ ζ , y → y , θ → θ . (11.94)

The associated conserved ‘charge’ is

Λ =
∂L

∂q̇σ

∂q̃σ
∂ζ

∣∣∣∣
ζ=0

= MẊ +mẋ . (11.95)

Using the first constraint to eliminate x in terms of X and θ, we may write this
as

Λ = (M +m)Ẋ −m` sin θ θ̇ . (11.96)

The second conserved quantity is the total energy E. This follows because the
Lagrangian and all the constraints are independent of t, and because the kinetic
energy is homogeneous of degree two in the generalized velocities. Thus,

E = 1
2
MẊ2 + 1

2
m(ẋ2 + ẏ2) + 1

2
Iθ̇2 +mgy (11.97)

=
Λ2

2(M +m)
+ 1

2

(
I +m`2 − m

M+m
m`2 sin2 θ

)
θ̇2 +mg` sin θ , (11.98)

where the second line is obtained by using the constraint equations to eliminate
x and y in terms of X and θ.
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(e) What is the condition that the ladder detaches from the block? You do not
have to solve for the angle of detachment! Express the detachment condition in
terms of any quantities you find convenient.
[10 points]

Solution : The condition for detachment from the block is simply λ1 = 0, i.e.
the normal force vanishes.

Further analysis : It is instructive to work this out in detail (though this level
of analysis was not required for the exam). If we eliminate x and y in terms of
X and θ, we find

x = X + ` cos θ y = ` sin θ (11.99)

ẋ = Ẋ − ` sin θ θ̇ ẏ = ` cos θ θ̇ (11.100)

ẍ = Ẍ − ` sin θ θ̈ − ` cos θ θ̇2 ÿ = ` cos θ θ̈ − ` sin θ θ̇2 . (11.101)

We can now write

λ1 = mẍ = mẌ −m` sin θ θ̈ −m` cos θ θ̇2 = −MẌ , (11.102)

which gives
(M +m)Ẍ = m`

(
sin θ θ̈ + cos θ θ̇2

)
, (11.103)

and hence

Qx = λ1 = − Mm

m+m
`
(
sin θ θ̈ + cos θ θ̇2

)
. (11.104)

We also have

Qy = λ2 = mg +mÿ

= mg +m`
(
cos θ θ̈ − sin θ θ̇2

)
. (11.105)

We now need an equation relating θ̈ and θ̇. This comes from the last of the
equations of motion:

Iθ̈ = ` sin θ λ1 − ` cos θλ2

= − Mm
M+m

`2
(
sin2θ θ̈ + sin θ cos θ θ̇2

)
−mg` cos θ −m`2

(
cos2θ θ̈ − sin θ cos θ θ̇2

)
= −mg` cos θ −m`2

(
1− m

M+m
sin2θ

)
θ̈ + m

M+m
m`2 sin θ cos θ θ̇2 . (11.106)

Collecting terms proportional to θ̈, we obtain(
I +m`2 − m

M+m
sin2θ

)
θ̈ = m

M+m
m`2 sin θ cos θ θ̇2 −mg` cos θ . (11.107)
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Figure 11.12: Plot of θ∗ versus θ0 for the ladder-block problem (eqn. 11.111). Allowed
solutions, shown in blue, have α ≥ 1, and thus θ∗ ≤ θ0. Unphysical solutions, with
α < 1, are shown in magenta. The line θ∗ = θ0 is shown in red.

We are now ready to demand Qx = λ1 = 0, which entails

θ̈ = −cos θ

sin θ
θ̇2 . (11.108)

Substituting this into eqn. 11.107, we obtain(
I +m`2

)
θ̇2 = mg` sin θ . (11.109)

Finally, we substitute this into eqn. 11.98 to obtain an equation for the detach-
ment angle, θ∗

E − Λ2

2(M +m)
=

(
3− m

M +m
· m`2

I +m`2
sin2θ∗

)
· 1

2
mg` sin θ∗ . (11.110)

If our initial conditions are that the system starts from rest1 with an angle of

1‘Rest’ means that the initial velocities are Ẋ = 0 and θ̇ = 0, and hence Λ = 0 as well.
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inclination θ0, then the detachment condition becomes

sin θ0 = 3
2
sin θ∗ − 1

2

(
m

M+m

)(
m`2

I+m`2

)
sin3θ∗

= 3
2
sin θ∗ − 1

2
α−1 sin3θ∗ , (11.111)

where

α ≡
(

1 +
M

m

)(
1 +

I

m`2

)
. (11.112)

Note that α ≥ 1, and that when M/m = ∞2, we recover θ∗ = sin−1
(

2
3
sin θ0

)
.

For finite α, the ladder detaches at a larger value of θ∗. A sketch of θ∗ versus θ0

is provided in Fig. 11.12. Note that, provided α ≥ 1, detachment always occurs
for some unique value θ∗ for each θ0.

2I must satisfy I ≤ m`2.
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PHYSICS 110A : CLASSICAL MECHANICS
FINAL EXAM

[1] Two blocks and three springs are configured as in Fig. 11.13. All motion is
horizontal. When the blocks are at rest, all springs are unstretched.

Figure 11.13: A system of masses and springs.

(a) Choose as generalized coordinates the displacement of each block from its equi-
librium position, and write the Lagrangian.
[5 points]

(b) Find the T and V matrices.
[5 points]

(c) Suppose

m1 = 2m , m2 = m , k1 = 4k , k2 = k , k3 = 2k ,

Find the frequencies of small oscillations.
[5 points]

(d) Find the normal modes of oscillation.
[5 points]

(e) At time t = 0, mass #1 is displaced by a distance b relative to its equilibrium
position. I.e. x1(0) = b. The other initial conditions are x2(0) = 0, ẋ1(0) = 0,
and ẋ2(0) = 0. Find t∗, the next time at which x2 vanishes.
[5 points]

Solution

(a) The Lagrangian is

L = 1
2
m1 x

2
1 + 1

2
m2 x

2
2 − 1

2
k1 x

2
1 − 1

2
k2 (x2 − x1)

2 − 1
2
k3 x

2
2
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(b) The T and V matrices are

Tij =
∂2T

∂ẋi ∂ẋj

=

(
m1 0

0 m2

)
, Vij =

∂2U

∂xi ∂xj

=

(
k1 + k2 −k2

−k2 k2 + k3

)

(c) We have m1 = 2m, m2 = m, k1 = 4k, k2 = k, and k3 = 2k. Let us write
ω2 ≡ λω2

0, where ω0 ≡
√
k/m. Then

ω2T− V = k

(
2λ− 5 1

1 λ− 3

)
.

The determinant is

det (ω2T− V) = (2λ2 − 11λ+ 14) k2

= (2λ− 7) (λ− 2) k2 .

There are two roots: λ− = 2 and λ+ = 7
2
, corresponding to the eigenfrequencies

ω− =

√
2k

m
, ω+ =

√
7k

2m

(d) The normal modes are determined from (ω2
aT − V) ~ψ(a) = 0. Plugging in

λ = 2 we have for the normal mode ~ψ(−)

(
−1 1
1 −1

)(
ψ(−)

1

ψ(−)

2

)
= 0 ⇒ ~ψ(−) = C−

(
1
1

)
Plugging in λ = 7

2
we have for the normal mode ~ψ(+)

(
2 1
1 1

2

)(
ψ(+)

1

ψ(+)

2

)
= 0 ⇒ ~ψ(+) = C+

(
1
−2

)
The standard normalization ψ

(a)
i Tij ψ

(b)
j = δab gives

C− =
1√
3m

, C2 =
1√
6m

. (11.113)

(e) The general solution is(
x1

x2

)
= A

(
1
1

)
cos(ω−t) +B

(
1
−2

)
cos(ω+t) + C

(
1
1

)
sin(ω−t) +D

(
1
−2

)
sin(ω+t) .
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The initial conditions x1(0) = b, x2(0) = ẋ1(0) = ẋ2(0) = 0 yield

A = 2
3
b , B = 1

3
b , C = 0 , D = 0 .

Thus,

x1(t) = 1
3
b ·
(
2 cos(ω−t) + cos(ω+t)

)
x2(t) = 2

3
b ·
(

cos(ω−t)− cos(ω+t)
)
.

Setting x2(t
∗) = 0, we find

cos(ω−t
∗) = cos(ω+t

∗) ⇒ π − ω−t = ω+t− π ⇒ t∗ =
2π

ω− + ω+

[2] Two point particles of masses m1 and m2 interact via the central potential

U(r) = U0 ln

(
r2

r2 + b2

)
,

where b is a constant with dimensions of length.

(a) For what values of the relative angular momentum ` does a circular orbit exist?
Find the radius r0 of the circular orbit. Is it stable or unstable?
[7 points]

(c) For the case where a circular orbit exists, sketch the phase curves for the radial
motion in the (r, ṙ) half-plane. Identify the energy ranges for bound and un-
bound orbits.
[5 points]

(c) Suppose the orbit is nearly circular, with r = r0 + η, where |η| � r0. Find the
equation for the shape η(φ) of the perturbation.
[8 points]

(d) What is the angle ∆φ through which periapsis changes each cycle? For which
value(s) of ` does the perturbed orbit not precess?
[5 points]
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Solution

(a) The effective potential is

Ueff(r) =
`2

2µr2
+ U(r)

=
`2

2µr2
+ U0 ln

(
r2

r2 + b2

)
.

where µ = m1m2/(m1 +m1) is the reduced mass. For a circular orbit, we must
have U ′

eff(r) = 0, or
l2

µr3
= U ′(r) =

2rU0b
2

r2 (r2 + b2)
.

The solution is

r2
0 =

b2`2

2µb2U0 − `2

Since r2
0 > 0, the condition on ` is

` < `c ≡
√

2µb2U0

For large r, we have

Ueff(r) =

(
`2

2µ
− U0 b

2

)
· 1

r2
+O(r−4) .

Thus, for ` < `c the effective potential is negative for sufficiently large values
of r. Thus, over the range ` < `c, we must have Ueff,min < 0, which must be a
global minimum, since Ueff(0

+) = ∞ and Ueff(∞) = 0. Therefore, the circular
orbit is stable whenever it exists.

(b) Let ` = ε `c. The effective potential is then

Ueff(r) = U0 f(r/b) ,

where the dimensionless effective potential is

f(s) =
ε2

s2
− ln(1 + s−2) .

The phase curves are plotted in Fig. 11.14.
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Figure 11.14: Phase curves for the scaled effective potential f(s) = ε s−2− ln(1+s−2),
with ε = 1√

2
. Here, ε = `/`c. The dimensionless time variable is τ = t ·

√
U0/mb2.

(c) The energy is

E = 1
2
µṙ2 + Ueff(r)

=
`2

2µr4

(
dr

dφ

)2

+ Ueff(r) ,

where we’ve used ṙ = φ̇ r′ along with ` = µr2φ̇. Writing r = r0 + η and
differentiating E with respect to φ, we find

η′′ = −β2η , β2 =
µr4

0

`2
U ′′

eff(r0) .

For our potential, we have

β2 = 2− `2

µb2U0

= 2

(
1− `2

`2c

)
The solution is

η(φ) = A cos(βφ+ δ) (11.114)
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where A and δ are constants.

(d) The change of periapsis per cycle is

∆φ = 2π
(
β−1 − 1

)
If β > 1 then ∆φ < 0 and periapsis advances each cycle (i.e.it comes sooner
with every cycle). If β < 1 then ∆φ > 0 and periapsis recedes . For β = 1, which
means ` =

√
µb2U0, there is no precession and ∆φ = 0.

[3] A particle of charge e moves in three dimensions in the presence of a uniform
magnetic field B = B0 ẑ and a uniform electric field E = E0 x̂. The potential
energy is

U(r, ṙ) = −eE0 x−
e

c
B0 x ẏ ,

where we have chosen the gauge A = B0 x ŷ.

(a) Find the canonical momenta px, py, and pz.
[7 points]

(b) Identify all conserved quantities.
[8 points]

(c) Find a complete, general solution for the motion of the system
{
x(t), y(t), x(t)

}
.

[10 points]

Solution

(a) The Lagrangian is

L = 1
2
m(ẋ2 + ẏ2 + ż2) +

e

c
B0 x ẏ + eE0 x .

The canonical momenta are

px =
∂L

∂ẋ
= mẋ

py =
∂L

∂ẏ
= mẏ +

e

c
B0 x
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px =
∂L

∂ż
= mż

(b) There are three conserved quantities. First is the momentum py, since

Fy = ∂L
∂y

= 0. Second is the momentum pz, since Fy = ∂L
∂z

= 0. The third

conserved quantity is the Hamiltonian, since ∂L
∂t

= 0. We have

H = px ẋ+ py ẏ + pz ż − L

⇒ H = 1
2
m(ẋ2 + ẏ2 + ż2)− eE0 x

(c) The equations of motion are

ẍ− ωc ẏ =
e

m
E0

ÿ + ωc ẋ = 0

z̈ = 0 .

The second equation can be integrated once to yield ẏ = ωc(x0 − x), where x0

is a constant. Substituting this into the first equation gives

ẍ+ ω2
c x = ω2

c x0 +
e

m
E0 .

This is the equation of a constantly forced harmonic oscillator. We can therefore
write the general solution as

x(t) = x0 +
eE0

mω2
c

+ A cos
(
ωct+ δ

)

y(t) = y0 −
eE0

mωc

t− A sin
(
ωct+ δ

)

z(t) = z0 + ż0 t

Note that there are six constants,
{
A, δ, x0, y0, z0, ż0

}
, are are required for

the general solution of three coupled second order ODEs.
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[4] An N = 1 dynamical system obeys the equation

du

dt
= ru+ 2bu2 − u3 ,

where r is a control parameter, and where b > 0 is a constant.

(a) Find and classify all bifurcations for this system.
[7 points]

(b) Sketch the fixed points u∗ versus r.
[6 points]

Now let b = 3. At time t = 0, the initial value of u is u(0) = 1. The control
parameter r is then increased very slowly from r = −20 to r = +20, and then
decreased very slowly back down to r = −20.

(c) What is the value of u when r = −5 on the increasing part of the cycle?
[3 points]

(d) What is the value of u when r = +16 on the increasing part of the cycle?
[3 points]

(e) What is the value of u when r = +16 on the decreasing part of the cycle?
[3 points]

(f) What is the value of u when r = −5 on the decreasing part of the cycle?
[3 points]

Solution

(a) Setting u̇ = 0 we obtain

(u2 − 2bu− r)u = 0 .

The roots are
u = 0 , u = b±

√
b2 + r .

The roots at u = u± = b±
√
b2 + r are only present when r > −b2. At r = −b2

there is a saddle-node bifurcation. The fixed point u = u− crosses the fixed
point at u = 0 at r = 0, at which the two fixed points exchange stability. This
corresponds to a transcritical bifurcation. In Fig. 11.15 we plot u̇/b3 versus u/b
for several representative values of r/b2. Note that, defining ũ = u/b, r̃ = r/b2,
and t̃ = b2t that our N = 1 system may be written

dũ

dt̃
=
(
r̃ + 2ũ− ũ2

)
ũ ,
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Figure 11.15: Plot of dimensionless ‘velocity’ u̇/b3 versus dimensionless ‘coordinate’
u/b for several values of the dimensionless control parameter r̃ = r/b2.

which shows that it is only the dimensionless combination r̃ = r/b2 which enters
into the location and classification of the bifurcations.

(b) A sketch of the fixed points u∗ versus r is shown in Fig. 11.16. Note the
two bifurcations at r = −b2 (saddle-node) and r = 0 (transcritical).

(c) For r = −20 < −b2 = −9, the initial condition u(0) = 1 flows directly toward
the stable fixed point at u = 0. Since the approach to the FP is asymptotic, u
remains slightly positive even after a long time. When r = −5, the FP at u = 0
is still stable. Answer: u = 0.

(d) As soon as r becomes positive, the FP at u∗ = 0 becomes unstable, and u
flows to the upper branch u+. When r = 16, we have u = 3 +

√
32 + 16 = 8.

Answer: u = 8.

(e) Coming back down from larger r, the upper FP branch remains stable, thus,
u = 8 at r = 16 on the way down as well. Answer: u = 8.
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Figure 11.16: Fixed points and their stability versus control parameter for the N = 1
system u̇ = ru + 2bu2 − u3. Solid lines indicate stable fixed points; dashed lines
indicate unstable fixed points. There is a saddle-node bifurcation at r = −b2 and a
transcritical bifurcation at r = 0. The hysteresis loop in the upper half plane u > 0
is shown. For u < 0 variations of the control parameter r are reversible and there is
no hysteresis.

(f) Now when r first becomes negative on the way down, the upper branch u+

remains stable. Indeed it remains stable all the way down to r = −b2, the
location of the saddle-node bifurcation, at which point the solution u = u+

simply vanishes and the flow is toward u = 0 again. Thus, for r = −5 on
the way down, the system remains on the upper branch, in which case u =
3 +

√
32 − 5 = 5. Answer: u = 5.
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