
TodayToday’’s Lectures Lecture

Lecture 10:Chapter 6, 
Using Newton’s Laws
Lots of Examples



First Example: SkierFirst Example: Skier
A skier with mass m = 65kg slides down
A slope with an incline angle of q

 
= 32o.

Find (a) skier’s acceleration and (b) the 
magnitude of the force that the snow (slope)
exerts on the skier.

We now have a choice of coordinate system.
Do we choose the x axis to be horizontal or
parallel to the slope?

Since the acceleration is parallel to the slope and there is no acceleration
perpendicular to the slope, it is more convenient to choose our x axis to be
parallel to the slope and subsequently the y axis perpendicular to the slope.

For this problem we choose to ignore any effects of friction and our 
Free-Body consists of only two forces, the force of gravity, Fg , and the 
normal force, N, of the snow on the skier. 



First Example: SkierFirst Example: Skier
A skier with mass m = 65kg slides down
A slope with an incline angle of q

 
= 32o.

Find (a) skier’s acceleration and (b) the 
magnitude of the force that the snow (slope)
exerts on the skier.

With this choice of coordinates the 
Free-Body diagram takes on the form
shown in the figure.

With the use of a little trigonometry the two EOM’s (x and y directions) are

Fg  sin  mg sin  max

and 

N − Fg cos  N − mgcos  may



First Example: SkierFirst Example: Skier
A skier with mass m = 65kg slides down
A slope with an incline angle of q

 
= 32o.

Find (a) skier’s acceleration and (b) the 
magnitude of the force that the snow (slope)
exerts on the skier.

Recognizing that there is no 
acceleration in the y directon,
ay = 0, the two EOM’s,

yield the solutions:

Like a falling body, the acceleration down the hill is independent of mass!

Fg  sin  mg sin  max and

(a) ax  g sin  9.8sin32∘  5.19m/s2

(b) N  mgcos  659.8 cos 32∘  540N

N − Fg cos  N − mgcos  0



First Example: SkierFirst Example: Skier
It is worthwhile to reemphasize that there
is only one vector equation here, namely:

We could have solved this problem with a coordinate system in which
the x axis is horizontal and the y axis vertical.

Now the gravitational force simplifies but both
The normal force and acceleration have 
components in both directions: 

Our original choice of coordinates clearly 
simplified the problem, Nx and ay were zero!

N  Fg  ma

Nx  Nsin  max  macos
Ny − mg  may  −ma sin



Second Example: Equilibrium in 2Second Example: Equilibrium in 2--DD
For this case there is no acceleration 
and Newton’s second law for the
forces at the knot reads:

Free-body diagram 
at the knot:

There are two equations and three unknown tensions.
Did we miss something?

Of course, the free body diagram of the stoplight itself.
T3 = mg

T 1  T 2  T 3  ma  0

T2x − T1x  T2 cos 53∘ − T1 cos 37∘  0
T2y  T1y − T3  T2 sin53∘  T1 sin37∘ − T3  0



Third Example: AtwoodThird Example: Atwood’’s Machines Machine

Forces acting on the objects:
– Tension (same for both   

objects, one string)
– Gravitational force

Each object has the same 
acceleration since they are 
connected



Third Example: AtwoodThird Example: Atwood’’s Machines Machine

Applying Newton’s 2nd for each 
object (often called the equations of 
motion or EOM) yields (note signs in 
each equation):

To solve this system of equations we start
by summing them to eliminate T,

Does this result make physical sense?

m2g − T  m2a and T − m1g  m1a

m2 − m1g  m2  m1a → a  m2 − m1
m2  m1

g



Third Example: AtwoodThird Example: Atwood’’s Machines Machine

Now that we have found the acceleration
The tension can be found from Newton’s
2nd (or the EOM) for either mass.

Do these results make physical sense?

Inserting our result for the acceleration
we find that the tension is given by

Again, do these results make physical sense?

T  m2g − a or T  m1g  a

T  2 m1m2
m2  m1

g



Fourth Example: Incline With FrictionFourth Example: Incline With Friction
A child slides down a 20o slope with a 
coefficient of kinetic friction mk = .085.
(a) What is the child’s acceleration?

From the Free-Body diagram, the vector equation
for the sled is:

From the Free-Body diagram we see that
the component equations are:

Substituting for the normal force in the x component equation 
followed by dividing by m yields:

Fg  Fk  N  ma

Fg sin − Fk  mg sin − k N  ma
N − mg cos  0

a  gsin − k cos  9.8sin20∘ −. 085cos 20∘  2.57m/s2



Fourth Example: Incline With FrictionFourth Example: Incline With Friction
A child slides down a 20o slope with a 
coefficient of kinetic friction mk = .085.
(b) At what angle will the child velocity 
remain constant?

From the results for a general angle we saw

The acceleration vanishes when

What happens when the angle of the incline, q, is less than tan-1(mk )?

What happens when the angle of the incline, q, approaches p/2?

a  gsin − k cos

sin  k cos → k  sin
cos  tan



Fifth Example: Problem 16Fifth Example: Problem 16

Neglecting friction and assuming that the 
cord is inextensible, find the expressions
for the accelerations of the blocks.

The vector EOM’s for both masses are

Before we write down the component equations it is useful to consider the 
constraints. First for m2 only horizontal motion is possible and for m1 only
vertical motion is possible. Next, since the length of the cord is unchanged
any change in the horizontal position of m2 results in ½ of that change in the
vertical position of m1 . This means that a1 = a2 /2. Now we can write the 
Component equations as:

N  T  Fg2  m2 a 2 and 2T  Fg1  m1 a 1

T  m2a and m1g − 2T  m1a/2



Fifth Example: Problem 16Fifth Example: Problem 16

Neglecting friction and assuming that the 
cord is inextensible, find the expressions
for the accelerations of the blocks.

The component EOM’s for both masses are

Substituting for 2T in the equation for m1 yields:

Solving for the acceleration of m2 and m1 we find

T  m2a and m1g − 2T  m1a/2

m1g − 2m2a  m1a/2 → 1
2 m1  4m2a  m1g

a 
2m1g

m1  4m2
and a/2 

m1g
m1  4m2



Sixth Example: Problem 22Sixth Example: Problem 22
Find the expression for the force F that must
be applied to the wedge so that block will not
slide along the frictionless wedge.
For this problem we need to consider our 
choice of coordinate system. If the block is
not going slide along the wedge then both 
its horizontal and vertical accelerations must 
match that of the wedge. This means that the
coordinate system should match that of the 
wedge.

In the coordinates of the wedge the free body 
diagram for the block is given in the figure. The
two component EOM for the block:



Nsin  m1a, and Ncos − m1g  0

The x component EOM for the wedge

F − Nsin  m2a



Sixth Example: Problem 22Sixth Example: Problem 22

The three equations are:

To solve for the acceleration, we divide the first equation by the second
and find a = gtan(q). From the third equation we know that 

Hence the required force is 

Does these results make physical sense?



Find the expression for the force F that must
be applied to the wedge so that block will not
slide along the frictionless wedge.

Nsin  m1a
Ncos  m1g

F − Nsin  m2a

F  m1  m2a

F  m1  m2g tan



Seventh Example: Block on BlockSeventh Example: Block on Block
Assume a frictionless surface between block 
B and the table, and a coefficient of static
friction ms between block A and block B.
What is the maximum force that you can pull 
on block B before block A slides off ?

Again we need to consider the constraints to this problem before we
consider a Free-Body diagram and the resulting EOM’s. The maximum
frictional force exerted on block A is ms N and it is this force that allows block
A to be accelerated along with block B. Newton’s third law tells us that this 
frictional force retards the acceleration of block B. Hence our vector EOM’s are:

When the frictional force is maximum the component form of these EOM’s are:

F − Ff  mB a and Ff  mA a

F − sN  F − smAg  mBa and sN  smAg  mAa



Seventh Example: Block on BlockSeventh Example: Block on Block

First we note that solving for F yields F = (mA + mB )a which is 
exactly what we would expect. Since the acceleration is given by
a = ms g , the maximum force is 

Something interesting (??) happens when the force pulling block B increases
beyond this limit. At that point the frictional force is reduced to mk N and block 
A will slide backward at an accelerating rate relative to block B. Also the 
acceleration of block B will increase.

Assume a frictionless surface between block 
B and the table, and a coefficient of static
friction ms between block A and block B.
What is the maximum force that you can pull 
on block B before block A slides off ?

F − sN  F − smAg  mBa and sN  smAg  mAa

F  mA  mBsg



Seventh Example: Block on BlockSeventh Example: Block on Block
When the force pulling block B increases beyond
this limit, the frictional force is reduced to mk N.
Block A then slides backward at an accelerating 
rate relative to block B. Also the acceleration of 
block B will increase. (a) Find the new acceleration
of block B and compare it to the acceleration at the
moment block A begins to slide. (b) How long will 
it take for block A to slide back a distance l after it 
begins to slide?

(a) The EOM for block B at threshold is:

Solving for the acceleration of block B we find
and we see that its acceleration has increased!

(b) The EOM for block A at threshold is: 

F − k mAg  mBaB → mA  mBsg − k mAg  mBaB

aB  sg  mA
mB s − k g  sg

k mAg  mAaA → aA  k g



Seventh Example: Block on BlockSeventh Example: Block on Block

The relative acceleration between the blocks is:

To find the time, it is now a simple matter of 
substituting this acceleration into: 

When the force pulling block B increases beyond
this limit, the frictional force is reduced to mk N.
Block A then slides backward at an accelerating 
rate relative to block B. Also the acceleration of 
block B will increase. (a) Find the new acceleration
of block B and compare it to the acceleration at the
moment block A begins to slide. (b) How long will 
it take for block A to slide back a distance l after it 
begins to slide?

aB  sg  mA
mB s − k g  sg k mAg  mAaA → aA  k g

a  aB − aA  sg  mA
mB s − k g − k g

a  s − k 
mA  mB

mB
g

t  2l/a
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