Today’s Lecture

Lecture 12: Chapter 7
Work, Energy, Power



Concepts of Work, Energy and Power
are useful for Solving Complex Motion

Complex trajectories, such as a ball rolling
down a bumpy hill, will have a complicated
solution in the Kinematic trajectory method.

Using Work and
Energy allows us to
relate the final velocity
to the initial velocity
without needing to
evaluate all of the
kinematics in between.




What is Work?

We in general define work as an amount of change in energy

This can be energy
imparted to an object
to make it begin
moving or change its
movement.

The man does work on the car by pushing on it to
make it roll (no friction). The energy is transferred
to the motion of the car.

This can also be energy
imparted to sustain a
movement against a
dissipative resistant
force such as friction.

The woman does work on the suitcase by pulling on
it to continue its roll. The energy is transferred into
heat caused by friction.



What is Work?

For an object moving in one dimension, the work, W, done on the object by
a constant force Is:

W — FxAX,

Where F, is the component of the force in the direction of the object’s
motion and A4x is the object’s displacement.

Since the woman is moving horizontally only the x component of the
force, F,, contributes to the work.



Work Can Be Positive
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When there is a component of a force acting in the same direction as the
motion of an object the work is positive.

Work Can Be Zero or Negative
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A force acting 90° to the direction of motion does no work. A force that
opposes the motion (friction) does negative work.



Moving a Mass in One Dimension
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When we push an object against friction, a
force Is required to maintain or increase its
velocity. The work done is

W — FxAX

The work has been converted into heat energy via friction and any change
In energy. For example the work against friction to move a block of mass
m=2kg a distance 2 meters with a coefficient of kinetic friction g, = .2 is:

Fy = uN = pemg = 2(2)(9.8) = 3.92N
W = FxAX = (3.92N)(2m) = 7.84Nm

The SI unit of work is the Joule where 1J =1 N-m.



Example: Raising an Object

When an object is raised at
constant speed, the applied
force is exactly countering
against the gravity.

The work in this case is m
therefore the magnitude of the v W =mgAx
applied force to hold the object I}' ‘N m§

against gravity times the
distance it moved.

THAT’S EASY!
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Note: Work to hold an object still m
agianst gravity is zero (Ax=0)




Work is The Scalar Product Between
Force and Displacement

Generalizing the result from the previous example

i e —>
W =F - Ar = FArcos®, where F is a constant vector

We discussed scalar products at the beginning of the course. In *ij”’
notation:

W =F-AF =(FAx)+(F,Ay) + (FAZ)  Scalars!

Work does not have a direction, but it can be negative or positive. This
relates to whether work was done by or to an object respectively.

Note: the work done in one direction can be negative while the total is
positive. It is (typically) the total that matters.



Example: Pulling a Glider

From our work with vector mechanics we know that the x and y directions
are separable in force. But, Work is a scalar, and therefore the parts from

different directions are simply summed to get the total. ie

W =F-AF

The work to raise the glider to an altitude (at a constant Fy) is Wv — 5 vAy

The work done against drag during this time is WDrag — e Ar
The total work done is then |W =W, ~+ W,
\
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Work to hold a glider against gravity at a a constant altitude is

zero, work to pull against the drag force is still nonzero.



Work for a Spatially Varying Force

. With a varying force, consider summing the work

| | | done over small displacements as shown in (a). The

| ‘ | | work done for each displacement Ax is AW,. To
] find the total work we sum AW,

N N
W =) AW; = > F(xi)AX
i=1 i=1

l JJ This is an approximation. Taking the limit as Ax
AL approaches zero we obtain:

N—)OO

W = |lim Z F(Xi)AX = _[Xz F(x)dx
i=1 X1

AX—(Q 4

e This is the integral form of the work done in
one-dimension by a varying force.



Work for a Spatially Varying Force in 3D

What about a force that varies
In direction? Or what if the
path is curved? For this more
general case

AW; = |_:) e AT

Again we sum AW, and in the limit of small Ar; :

N—o0

) — [P
W = Alruirﬂoizl:F(?i) N j?l F(P) - dT

This is the integral form of the work done by a varying force in three
dimensions. This integral is taken over a specific path. This type of integral

is called a line integral and in general is path dependent!



Example — Line Integral

Consider the line integral for the
- work along path a and path b from

: the origin to the point (1,1) for the
force: _, R R
b \ F =yl +2X]
0 e Along path a the work is:
Figlu.re 4.2 Thl:ee different paths. a, b. and ¢, from the 1 1
it s Wo = [ Fd? = [ Fux,0)dx+ [ Fy(L,y)dy
(@) 0 0
Wy =0+2=2
SN D=
Along path b Wo = | ) F-dP = j(o,o) +dT = I(OO)(Fx(X,X)dX + Fy(y,y)dy)

the work Is:

1 1
3
Wy = 2 = =
b .Oxdx+ joydy 5

For this particular force the work done is Path Dependent! We shall see that
there are forces for which the work done is Path Independent.



Work-Kinetic Energy Theorem

The kinetic energy for a single particle of mass m traveling at speed v is

defined as:
K = %mv2 = %mV-V

The time derivative of this expression is easily evaluated as

dK av _ dv dr
G MWV g =M VS Fret - dt

Now we can multiply this expression by dt to find dK = F e - dT
Integrating this expression along the path of the particle we find

s
AK=I E.-dF =W
7,

This is a statement of the Work-KE theorem,
“The change in a particle’s Kinetic energy between two points
IS equal to the work done by the net force along the path
between the two points.”



Kinetic Energy and Work

From the Work-Kinetic Energy theorem:

T2 W L2 12
j?l I_:)net ’d? = W = 7mV2_ 7mV1

It is only the component of the net force that is parallel to the displacement
(or vice versa) that contributes to the work done and consequently the
change in kinetic energy.

_F In this figure it is only the horizontal
~ component of the force that contributes
I \ Fcos 0 b _
' ' When pulling a suitcase on rollers why
¢ doesn’t the suitcase speed up?

Frictional forces do work as well only they

AT l oppose the displacement and are < 0.
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In Uniform Circular Motion No Work
is Being Done.

When a mass is in uniform circular F” ~
motion. The centripetal force is always ‘XP}
perpendicular to the direction of

motion. Thus:

—

F-dl =0
and no work is done by F 5s

Any tangential acceleration will relate to a tangential force F ;
which does do work.

W = f ﬁr - d? = () Example: friction



Example: Kinetic Energy and Work

It is time to pass. In order to pass a slower car a 1400kg car accelerates
from 70 to 95 km/h. (a) How much work was done on the car? (b) If the
car then brakes to a stop, how much work is done on the car?

From the work-kinetic energy theorem we know

T2 o
"Fret -d7 =W = %mv%— %mv%
1

(a) The change in Kinetic energy after the acceleration period is

1 95><103>2_ 7O><103>2:|_
AK = 5 1400[ — — — 223kW

(b) The change in kinetic energy after the de-acceleration period is

1 C(70x108\*] _
AK = 21400[0 L ) ]_ 487KW

Do these signs make sense? What provides the force to do the work?



Example: Kinetic Energy and Work
Rough Sliding

Movers are pushing a 78kg trunk across 2.25m

of rough floor with a coefficient of kinetic friction
of p, = .295. If they push with a force of 220 N
S e what is the speed of the trunk at the end of the

= 225m * rough stretch if the initial speed was .71m/s?

For this example we know the net force
Fret = F— ugmg = 220 —.295(78)9.8 = —5.50N

; 2 _,
1

The change in kinetic energy is equal to the work. Solving for v, we find

W = %mv% - %mv% > Vo = JVZ+2Wim = [.712 - 2(12.37)/78 =.43m/s

Could we have found this velocity another way?  Kinematics anyone?



Example: Kinetic Energy and Work
Rough Sliding Again

Workers push a 180kg trunk slowly across a level floor. For a 10m section
the coefficient of kinetic friction increases from 0.17 to 0.79 via the relation:

g = 0.17 +.0062x?2

Since there is no change in the kinetic energy of the trunk the work done
by the workers is equal and opposite to the friction. The work they do is

10 10
W = |~ pemgdx = | "(0.17 +.0062x%)180 x 9.8dx
0 0

W = (1.7 +6.2/3)1764 = 6.64kJ

In the absence of friction the increase in velocity of the trunk would be

v =J2Wim = [2(6.64 x 103)/180 = 8.6m/s



Example: Work to Stretch a Spring

r=() A

Distance, A

o e e e — ——
|

From Hook’s Law a spring exerts a force
proportional to its displacement from equilibrium:

F = —kx

This is the force by the spring on the hand stretching
it. From Newton’s 3", the force exerted by the hand
Is kx. The work done by the hand is the integral:

T A PN
W—jokxdx—zkx

What would the work be if the hand
compressed the spring?



Example: Kinetic Energy and Springs

A spring with spring constant k is compressed a distance A and while being
attached to an object of mass m. The spring Is then released. What is the speed
of the object when the spring returns to its original equilibrium position?

The work done by the spring on the object is W =% k A%, From
the Work-Kinetic Energy Theorem:

_12_ _,_/
—2kA Vv A

The details of using the force of the spring to find the acceleration
and then using kinematics to find the velocity are not required. The
Work-Kinetic Energy Theorem solves the problem with minimal
effort.



Example: Work and the Gravitational Force

f—ﬂ\ How much work does the force of gravity
A«m, s ) do on a car as it drives from the top of the
G, \My hill, (y=h) to the bottom (y=0)?

h GH )

The force of gravity is B, = —mg7.

[er)

The path integral for the work done by gravity,

W = J-Zl_fg .d7 = —IzmgT .dT = —J.Omgdy
1 1 h
W = —-mg(0 — h) = mgh
Note that the details of the path didn’t matter for this problem,

only the change in height, h, was relevant.

Does the sign make sense for this result?



Example: Work and the Gravitational Force

Assuming that the car started from rest,

e
Am ‘ \H how fast is the car traveling when it
& | ‘3 2 ) reaches the bottom of the hill (ignoring
| -~ \; friction)?
i a

e i The work done by gravity as the rolls
down the hill was found to be:

W = mgh

[er)

From the work-energy theorem: W = mgh = %mvz -V = ‘/29h

Again the work-energy theorem solves this problem with minimal effort!
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