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Lecture 12:Lecture 12: Chapter 7 Chapter 7 
Work, Energy, PowerWork, Energy, Power







What is Work?What is Work?

For an object moving in one dimension, the work, W, done on the object by 
a constant force is:

W  FxΔx,

Where Fx is the component of the force in the direction of the object’s 
motion and Dx is the object’s displacement.

Since the woman is moving horizontally only the x component of the 
force, Fx , contributes to the work. 



Work Can Be PositiveWork Can Be Positive

When there is a component of a force acting in the same direction as the 
motion of an object the work is positive.

A force acting 90o to the direction of motion does no work. A force that 
opposes the motion (friction) does negative work. 

Work Can Be Zero or NegativeWork Can Be Zero or Negative



Moving a Mass in One DimensionMoving a Mass in One Dimension

When we push an object against friction, a 
force is required to maintain or increase its 
velocity.  The work done is

The SI unit of work is the Joule where 1J = 1 N-m.

The work has been converted into heat energy via friction and any change 
in energy. For example the work against friction to move a block of mass 
m=2kg a distance 2 meters with a coefficient of kinetic friction mk = .2 is:

W  FxΔx

Fx  kN  kmg . 229.8  3.92N
W  FxΔx  3.92N2m  7.84Nm





 FΔrcos, where F is a constant vector
 FΔrcos, where F is a constant vector





Work for a Spatially Varying Force Work for a Spatially Varying Force 

With a varying force, consider summing the work 
done over small displacements as shown in (a). The 
work done for each displacement Dx is DWi . To 
find the total work we sum DWi .  

This is an approximation. Taking the limit as Dx 
approaches zero we obtain: 

W ∑
i1

N

ΔWi ∑
i1

N

Fxi Δx

W  lim
Δx→0
∑
i1

N→

Fxi Δx  
x1

x2
Fxdx

This is the integral form of the work done in 
one-dimension by a varying force.



Work for a Spatially Varying Force in 3D Work for a Spatially Varying Force in 3D 

What about a force that varies 
in direction? Or what if the 
path is curved? For this more 
general case 

This is the integral form of the work done by a varying force in three 
dimensions. This integral is taken over a specific path. This type of integral 
is called a line integral and in general is path dependent! 

Again we sum DWi and in the limit of small Dri :

ΔWi  F  Δ r i

W  lim
Δri→0
∑
i1

N→

F r i   Δ r i  
r 1

r 2
F r   d r



Example Example –– Line IntegralLine Integral
Consider the line integral for the 
work along path a and path b from 
the origin to the point (1,1) for the 
force:

Along path b
the work is: 

Along path a the work is:

F  y

i  2x


j

For this particular force the work done is Path Dependent! We shall see that
there are forces for which the work done is Path Independent.

Wb  
b

F  d r  
0,0

1,1
F  d r  

0,0

1,1
Fxx,xdx  Fyy,ydy

Wb  
0

1
xdx  2 

0

1
ydy  3

2

Wa  
a

F  d r  
0

1
Fxx, 0dx  

0

1
Fy1,ydy

Wa  0  2  2



WorkWork--Kinetic Energy TheoremKinetic Energy Theorem

The kinetic energy for a single particle of mass m traveling at speed v is 
defined as:

The time derivative of this expression is easily evaluated as 

Now we can multiply this expression by dt to find                            
Integrating this expression along the path of the particle we find

This is a statement of the Work-KE theorem,
“The change in a particle’s kinetic energy between two points 

is equal to the work done by the net force along the path
between the two points.”

dK  Fnet  d r

K  1
2 mv2  1

2 mv  v

dK
dt  mv  dv

dt  m dv
dt  v  Fnet  d r

dt

ΔK  
r 1

r 2
Fnet  d r  W



Kinetic Energy and WorkKinetic Energy and Work
From the Work-Kinetic Energy theorem:

It is only the component of the net force that is parallel to the displacement
(or vice versa) that contributes to the work done and consequently the 
change in kinetic energy. 

In this figure it is only the horizontal 
component of the force that contributes 
to the work.  
When pulling a suitcase on rollers why 
doesn’t the suitcase speed up?
Frictional forces do work as well only they
oppose the displacement and are < 0.


r 1

r 2
Fnet  d r  W  1

2 mv2
2 − 1

2 mv1
2





Example: Kinetic Energy and WorkExample: Kinetic Energy and Work
It is time to pass. In order to pass a slower car a 1400kg car accelerates 
from 70 to 95 km/h. (a) How much work was done on the car? (b) If the
car then brakes to a stop, how much work is done on the car? 

From the work-kinetic energy theorem we know

(a) The change in kinetic energy after the acceleration period is 

(b) The change in kinetic energy after the de-acceleration period is 

Do these signs make sense? What provides the force to do the work?  


r 1

r 2
Fnet  d r  W  1

2 mv2
2 − 1

2 mv1
2

ΔK  1
2 1400 95  103

3600
2
− 70  103

3600
2

 223kW

ΔK  1
2 1400 0 − 70  103

3600
2

 −487kW



Example: Kinetic Energy and WorkExample: Kinetic Energy and Work
Rough SlidingRough Sliding

Movers are pushing a 78kg trunk across 2.25m
of rough floor with a coefficient of kinetic friction
of mk = .295. If they push with a force of 220 N
what is the speed of the trunk at the end of the 
rough stretch if the initial speed was .71m/s?

For this example we know the net force

The work done is 

The change in kinetic energy is equal to the work. Solving for v2 we find

Could we have found this velocity another way? Kinematics anyone?

Fnet  F − kmg  220 −. 295789. 8  −5. 50N

W  
1

2
Fnet  d r  FnetΔx  −5.502.25  −12. 37J

W  1
2 mv2

2 − 1
2 mv1

2 → v2  v1
2  2W/m  . 712 − 212.37/78 . 43m/s



Workers push a 180kg trunk slowly across a level floor. For a 10m section
the coefficient of kinetic friction increases from 0.17 to 0.79 via the relation: 

Since there is no change in the kinetic energy of the trunk the work done
by the workers is equal and opposite to the friction. The work they do is

In the absence of friction the increase in velocity of the trunk would be 

Example: Kinetic Energy and WorkExample: Kinetic Energy and Work
Rough Sliding AgainRough Sliding Again

k  0.17 . 0062x2

W  
0

10
kmgdx  

0

10
0.17 . 0062x2180  9.8dx

W  1.7  6.2/31764  6. 64kJ

v  2W/m  26.64  103/180  8.6m/s



From Hook’s Law a spring exerts a force 
proportional to its displacement from equilibrium: 

This is the force by the springby the spring on the hand stretching 
it. From Newton’s 3rd, the force exerted by the handby the hand 
is kx.  The work done by the hand is the integral:

What would the work be if the hand 
compressed the spring?

Example: Work to Stretch a SpringExample: Work to Stretch a Spring

F  −kx

W  
0

x
kx ′dx ′  1

2 kx2



A spring with spring constant k is compressed a distance A and while being 
attached to an object of mass m. The spring is then released. What is the speed 
of the object when the spring returns to its original equilibrium position?

Example: Kinetic Energy and SpringsExample: Kinetic Energy and Springs

The work done by the spring on the object is W = ½ k A2.  From 
the Work-Kinetic Energy Theorem:

W  1
2 kA2  1

2 mv2 → v  k
m A

The details of using the force of the spring to find the acceleration 
and then using kinematics to find the velocity are not required. The 
Work-Kinetic Energy Theorem solves the problem with minimal 
effort. 



Example: Work and the Gravitational ForceExample: Work and the Gravitational Force

How much work does the force of gravity
do on a car as it drives from the top of the
hill, (y=h) to the bottom (y=0)?

The force of gravity is  

The path integral for the work done by gravity,

Fg  −mg

j .

Note that the details of the path didn’t matter for this problem,
only the change in height, h, was relevant. 

Does the sign make sense for this result?

W  
1

2
Fg  d r  −

1

2
mg

j  d r  −

h

0
mgdy

W  −mg0 − h  mgh



Example: Work and the Gravitational ForceExample: Work and the Gravitational Force

Assuming that the car started from rest, 
how fast is the car traveling when it 
reaches the bottom of the hill (ignoring 
friction)? 

From the work-energy theorem: 

Again the work-energy theorem solves this problem with minimal effort!

The work done by gravity as the rolls 
down the hill was found to be:  

W  mgh

W  mgh  1
2 mv2 → v  2gh
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