
TodayToday’’s Lectures Lecture

Lecture 13: Chapter 7 
Work, Energy, Power

Energy Diagrams
Chapter 8
Conservation of Energy





Power and VelocityPower and Velocity
When deriving the work-kinetic energy theorem we showed that 

The rate of work output is the instantaneous power, 

Example: Cycling PowerExample: Cycling Power
The combined mass of the cyclist and her bike is 79kg. (a) What power
must she provide to maintain a speed of 25km/h against an aerodynamic
drag force of 30N? 

Since the aerodynamic drag is (always) antiparallel to the 
velocity, cosq

 
= 1 and the power requirement is simply

dW
dt  F  d r

dt  F  v

P  dW
dt  F  v

P  30 25  103

3600  208W

The SI unit for power is Watt = 1 Joule / sec



Power and VelocityPower and Velocity
Cycling PowerCycling Power

The combined mass of the cyclist and her bike is 79kg. (b) What power
must she provide to maintain a speed of 25km/h if in addition to the 
aerodynamic drag she climbs a 5o incline?

To climb the hill the cyclist must also overcome the vertical force of gravity.
The total power output is now 

This is almost one horsepower!

P  208W  mgv sin

P  208  799.8 25  103

3600 sin5∘  664W





Average Power to Lift a GliderAverage Power to Lift a Glider
A glider is lifted to a height of 1600m in 2 minutes at a constant speed. 
What is the required power from the engine if the drag coefficient is 
CrA = 2.4 kg/m and the average velocity is 100 mph = 44.7m/s? The total 
mass of the glider + plane is 1400kg. 

The average power required from the plane is DW/Dt. Separating this into 
the power to overcome aerodynamic drag plus gravity gives:

Is this path dependent?

〈P  ΔW
Δt 

Fdrag  Δ r  FliftΔy
Δt

Fdrag is parallel to the displacement (velocity) and Flift = mtot g. What 
about Dr?

Δr  〈vΔt  44.7  120  5364m.

You Betcha!



Average Power to Lift a GliderAverage Power to Lift a Glider
A glider is lifted to a height of 1600m in 2 minutes at a constant speed. 
What is the required power from the engine if the drag coefficient is 
CrA = 2.4 kg/m and the average velocity is 100 mph = 44.7m/s? The total 
mass of the glider + plane is 1400kg. 

The average drag force is:

Note the dependence on v3.  

Substituting in these results on the expression for the average power:

〈Fdrag   1
2 CAv2  1

2 2.444.72  2398N

〈P  2398〈vΔt  14009.81600
Δt

〈P  2398〈v  14009.8〈vy   2.40  10344.7  13.7  103  13.3
〈P  107kW  182kW  289.5kW

Since 1hp = .746kW this is 388hp!  







Incline Plane Incline Plane -- AgainAgain

From the Work-Energy Theorem

ΔK  
r 1

r 2
Fnet  d r  W

Find the velocity of a block sliding down 
an inclined plane with a coefficient of 
kinetic friction mk . 

The work done by gravity is: Wg  mgd sin  mgh

The work done by friction:

The change in the kinetic energy:

Wf  −fd  −kmgdcos  −kmgx

ΔK  1
2 mv2  mgd sin − kmgdcos

v2  2dsin − k cosg  2ad



Incline Plane Incline Plane -- AgainAgain

The velocity at the bottom of the incline is 
what we obtain from kinematics. 

Find the velocity of a block sliding down 
an inclined plane with a coefficient of 
kinetic friction mk . 

However the work done by gravity depends only on the change in height!
The work done by friction depends on the path, in this case the
horizontal distance traveled! 

The work done by friction is path dependent!

Wf  −fd  −kmgdcos  −kmgx

v2  2dsin − k cosg  2ad



Conservative and Conservative and NonconservativeNonconservative ForcesForces
If the work done between points A and B 
is path independent then we can state:  

The work done by the force F going 
from A to B and back to A, WABA ,  is:

If the total work done by a force over a closed path vanishes,

WAB  
A

B
F  d r

1
 

A

B
F  d r

2

WABA  
A

B
F  d r

1
− 

A

B
F  d r

2
 

A

B
F  d r

1
 

B

A
F  d r

2
 0

WABA   F  d r  0!

the force is said to be conservativeconservative!!
Work done by frictional forces is proportional to –dr in both directions,

ergo – nonconservativenonconservative!!



Potential EnergyPotential Energy
The negative of the work done by a 
conservative force along any arbitrary path 
between two points is defined to be the 
change in the potential energypotential energy (associated 
with that force) between those two points. 

ΔU  −
A

B
F  d r

The difference in potential energy depends only on the location of the 
endpoints! Also the zero of U is arbitrary. It is usually chosen for convenience.

The change in gravitational
potential energy: ΔUg  −

0

y
−mg


j  d r  mg 

0

y
dy  mgy

The change in a spring’s
potential energy:

ΔUk  −
0

x
−kx


i  d r  k 

0

x
xdx  1

2 kx2



Conservation of EnergyConservation of Energy
From the Work-Energy Theorem the work done on an object is equal to 
the change in its kinetic energy:    

W  m  dv
dt  d r   Fnet  d r  ΔK  1

2 mvf
2 − 1

2 mvi
2

If we consider separately the work done by conservative forces, Wc , and 
non-conservative forces, Wnc :     ΔK  Wc  Wnc

ΔK  ΔU  Wnc

Potential energy was defined as the negative of the work done by 
conservative forces: DU = - Wc .  Hence: 

In the absence of nonIn the absence of non--conservative forces, the total mechanical energy is conservative forces, the total mechanical energy is 
conserved!conserved!

ΔK  ΔU  0 → 1
2 mvi

2  Ui  1
2 mvf

2  Uf  E



Conservation of Energy in a Gravitational FieldConservation of Energy in a Gravitational Field

A ball rolls (slides) down a bumpy but 
frictionless hill of height 10m with an 
initial velocity of v = 1m/s. Determine its 
final velocity.

Since gravity is a conservative force:

ΔK  ΔU  0
Ki  Ui  Kf  Uf

1
2 mvi

2  mgh  1
2 mvf

2  0Solving for vf :

vf  vi
2  2gh  1  29.810  14m/s

It is important to note that this result did NOT depend on the path, just 
the change in height! 



Conservation of Energy with a SpringConservation of Energy with a Spring

A 1kg mass is compressed .2m against a 
spring on a flat frictionless surface. The 
spring constant is k = 15N/m. Determine 
the velocity of the mass after it is 
released from the spring.

Since the force of the spring is a conservative force:

The velocity is:

Note that this is the same result that we obtained from the work-energy 
theorem. In either case this result easily obtained even though the force 
was function of distance!

Ki  Ui  Kf  Uf

0  1
2 kx2  1

2 mv2  0

v  k
m x

v  15
1 .2 . 77m/s



Potential Energy CurvesPotential Energy Curves
For a conservative system the energy is conserved.
In one-dimension this is expressed as: 

Since the kinetic energy is positive definite the 
regions where E < U(x) are forbidden. This means
for a particle with energy E1 (figure (a)) there are no
forbidden regions on the plot shown. 

For a particle with energy E2 , the particle is trapped 
between the two points shown in figure (b). If the particle
is in the region beyond the peak at C then it can never
reach the region between the two points in (b). 

A particle with energy E3 is trapped between A and B. 
It may be trapped between the peaks at B and C or 
again beyond peak C.    

E  1
2 mv2  Ux



Potential Energy CurvesPotential Energy Curves
For a conservative system the energy is conserved.
In one-dimension this is expressed as: 

The figures shown can be thought of as a roller 
coaster track. The analogy is not an accident. For
a roller coaster U(x) is mgh where h is the height
above ground. Hence the graph of U(x) has the 
same shape as a graph of h versus x, which is 
just a picture of the track!    

In figures (b) and (c) the bold points are turning 
points. The object has lost all kinetic energy at 
those points and begins to fall back “downhill”.

E  1
2 mv2  Ux



Example: Potential Energy CurvesExample: Potential Energy Curves

A 1kg ball with an initial velocity 
of 6m/s rolls (slides) down the 
hilly path shown. Does the ball 
make it to the end of the path? 

The question that we have to ask is whether or not the initial kinetic energy 
is greater than the potential energy required to crest the highest hill. 

The ball doesn’t 
quite make it!

E  1
2 mvo

2 ?
 mgh2 → vo

2 ?
 2gh2

vo
2  36J/kg , 2gh2  29. 82  39.2J/kg



Example: Potential Energy CurvesExample: Potential Energy Curves
A 1kg ball with an initial velocity 
of 7m/s rolls (slides) down the hilly 
path shown. (a) What is its velocity 
at the first crest? (b) At the second 
crest? (c) At the bottom?

From the conservation of energy:

(a)
(b)
(c)

Clearly this approach is convenient!

E  1
2 mvo

2  1
2 mv2  mgh

v1
2  vo

2 − 2gh1 → v1  5.4m/s
v2

2  vo
2 − 2gh2 → v2  3.1m/s

vbot
2  vo

2 − 2ghbot → vbot  9.4m/s





Force and Potential EnergyForce and Potential Energy
Again think of the potential energy
plot as a picture of a roller coaster.
The force

Fx  − dU
dx

tends to push the object downhill as
shown in the plot at x=x1 and x=x2 .

Note that at the points x3 and x4 where dU/dx = 0, U is a minimum or 
a maximum. The object is in equilibrium as the net force vanishes at those
points. However x3 is a point of stable equilibrium (why?) and x4 is a
point of unstable equilibrium (why?).

For example consider the potential energy for a spring:

Ux  1
2 kx2 → F  − dU

dx  −kx
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