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Lecture 14:Lecture 14: Chapter 8,Chapter 8,
Energy DiagramsEnergy Diagrams
Conservation of EnergyConservation of Energy

Chapter 10,Chapter 10,
System of ParticlesSystem of Particles



Example: Force and Potential EnergyExample: Force and Potential Energy
(a) Derive an expression for the potential 
energy of an object subject to a force, F = ax- 
bx3, where a = 5 N/m and b = 2 N/m3 

assuming that U(0) = 0. (b) Derive the turning 
points when E = -1J. 

Ux − U0  −
0

x
Fxdx  −

0

x
ax − bx3dx

Ux  − 1
2 ax2  1

4 bx4

First we note that the force vanishes at: x  0 and x   a/b

This potential is double welled 
with a local maximum at x = 0. 
The minimum value of the 
potential is:

U a/b  − 1
2 a a

b  1
4 b a2

b2  − 1
4

a2

b
U 5/2  − 25

8  −3.125J

The potential energy is found from the integral:



Example: Force and Potential EnergyExample: Force and Potential Energy
Derive an expression for the potential energy 
of a particle subject to a force, F = ax-bx3, 
where a = 5 N/m and b = 2 N/m3 assuming 
that U(0) = 0. Derive the turning points when 
E = -1J.

Since 0 > E > Umin the particle is bound in one 
of the two wells with a velocity given by: 

The maximum velocity occurs when U = Umin . The turning points occur 
when v = 0 or E = U. Solving the quartic yields:

Ux  − 1
2 ax2  1

4 bx4

E  K  U  1
2 mv2  U → v  2E − U/m

− 1  − 5
2 x2  1

2 x4 → x  . 662,  2.14



Example: Force and Potential EnergyExample: Force and Potential Energy
Derive an expression for the potential energy 
of a particle subject to a force, F = ax-bx3, 
where a = 5 N/m and b = 2 N/m3 assuming 
that U(0) = 0. Derive the turning points when 
E = -1J.

Ux  − 1
2 ax2  1

4 bx4

The turning points for x > 0 are the ones shown in the 
figure. What about the turning points for x < 0 ?

The particle oscillates between these two points!
What if E > 0?

The turning points are: x  . 662,  2.14



Conservation of EnergyConservation of Energy
From the Work-Energy Theorem the work done on an object is equal to 
the change in its kinetic energy:    

W  m  dv
dt  d r   Fnet  d r  ΔK  1

2 mvf
2 − 1

2 mvi
2

If we consider separately the work done by conservative forces, Wc , and 
non-conservative forces, Wnc :     ΔK  Wc  Wnc

ΔK  ΔU  Wnc

Potential energy was defined as the negative of the work done by 
conservative forces: DU = - Wc .  Hence: 

In the absence of nonIn the absence of non--conservative forces, the total mechanical energy is conservative forces, the total mechanical energy is 
conserved!conserved!

ΔK  ΔU  0 → 1
2 mvi

2  Ui  1
2 mvf

2  Uf  E



Example 1: Conservation of EnergyExample 1: Conservation of Energy
What is the minimum height, h, for 
which the block can start from rest 
and make it around the loop?    

From the conservation of energy the 
velocity of the block at the top of the 
loop is:     

We have already determined 
from Newton’s 2nd that at the top 
of the loop:

E  mgh  1
2 mv2  2mgR

mg  N  mv2/R, N  0 → v2  gR

If v is less than this the block will fall off the loop before it reaches the top!
Solving for h:

gh  1
2 v2  2gR  1

2 gR  2gR  5
2 gR

h  5
2 R



Example 2: Conservation of EnergyExample 2: Conservation of Energy
Consider the Atwood machine with masses, 
m1 = 7kg and m2 = 4kg.  (a) Find the velocity 
of m1 just as it hits the floor. (b) Find the 
maximum height reached by m2 . (c) Find the 
fraction of the total mechanical energy lost 
when m1 hits the floor.    

(a) From the conservation of energy, the velocity 
of both masses just as m1 hits the floor is:   

Does this make sense? Remember, for the Atwood machine
a = (m1 – m2 )g/ (m1 + m2 )

E  m1gh  m2gh  1
2 m1  m2v2

v2  m1 − m2
m1  m2

2gh → v  3
11 98  5.17m/s



Example 2: Conservation of EnergyExample 2: Conservation of Energy
Consider the Atwood machine with masses, 
m1 = 7kg and m2 = 4kg.  (a) Find the velocity 
of m1 just as it hits the floor. (b) Find the 
maximum height reached by m2 . (c) Find the 
fraction of the total mechanical energy lost 
when m1 hits the floor.    

(b) Energy is not conserved for the system after 
m1 hits the floor. However, energy is conserved 
for m2 . Hence the max height for m2 is:

Does this make sense? What happens when m1 = m2 or m1 >> m2 ?

Ei  m2gh  1
2 m2v2  m2gh  1

2 m2
m1 − m2
m1  m2

2gh

Ef  m2gy  1  m1 − m2
m1  m2

m2gh  2m1
m1  m2

m2gh

y  2m1
m1  m2

h  14
11 5  6.36m



Example 2: Conservation of EnergyExample 2: Conservation of Energy
Consider the Atwood machine with masses, 
m1 = 7kg and m2 = 4kg.  (a) Find the velocity 
of m1 just as it hits the floor. (b) Find the 
maximum height reached by m2 . (c) Find the 
fraction of the total mechanical energy lost 
when m1 hits the floor.    

(c) Initially the total mechanical energy is Ei = m1 gh. 
When m1 hits the floor the total energy of the system 
is reduced by the kinetic energy of m1 . Hence:

Does this make sense? What happens when m1 = m2 or m1 >> m2 ?

K1  1
2 m1v2  1

2 m1
m1 − m2
m1  m2

2gh  m1 − m2
m1  m2

m1gh
K1
Ei

 m1 − m2
m1  m2

 3/11  27.2%

E_{i}



Example 3: Conservation of EnergyExample 3: Conservation of Energy
The Pendulum is one of the fundamental 
problems in mechanics. It can be used to 
understand many more complex problems in 
oscillatory motion. We will consider the simplest 
example.     

Given an initial velocity, vo , what is the maximum 
angle, q, of the swinging pendulum?

Does this make sense? What happens when vo
2 = 2gl ?

From the conservation of energy we know that Ei = Ef :

Ei  1
2 mvo

2  Ef  mgΔy  mgℓ1 − cos

1 − cos  1
2

vo
2

gℓ → cos  1 − 1
2

vo
2

gℓ
  cos−11 − vo

2/2gℓ



Example 3: Conservation of EnergyExample 3: Conservation of Energy
Tarzan runs and grabs a 12m vine to swing up to 
Jane who is on a tree branch 3m above the 
ground. (a) How fast must he run to reach Jane 
as he comes to a full stop?

From the conservation of energy:

Note that this is independent of the length of the vine. Does that make sense?

Ei  1
2 mv2  Ef  mgh

v  2gh  69.8  7.67m/s

How far must Jane be from the initial position of the rope for Tarzan to land 
safely?  

  cos−11 − vo
2/2gℓ  cos−11 − 2gh/2gℓ  cos−11 − h/ℓ

x  ℓ sin  ℓ 1 − cos2  ℓ 1 − 1 − h/ℓ2  12 1 −. 752  7.9m

Note that she had to lie somewhere on the circular arc of the vine.



Example 3: Conservation of EnergyExample 3: Conservation of Energy
The Pendulum is one of the fundamental 
problems in mechanics. It can be used to 
understand many more complex problems in 
oscillatory motion. We will consider the simplest 
example.     

The conservation of energy for the pendulum is:

Compare this expression to the analogous expression for a spring.

Now consider the case for
oscillations when qmax << 1.

E  1
2 mv2  mgΔy  1

2 mv2  mgℓ1 − cos

E  1
2 mv2  mgℓ 1 − 1 − 2

2  1
2 mv2  1

2 mgℓ2

E  1
2 mℓ2




2
 1

2 mgℓ2  1
2 mℓ2




2
 1

2 mℓ2 g
ℓ 

2

E  1
2 mv2  1

2 kx2  1
2 m x2

 1
2 m k

m x2
Later, how do the Later, how do the 
period of oscillationsperiod of oscillations
compare?compare?



Example 4: Vertical SpringExample 4: Vertical Spring
A mass m is dropped from a height h above the 
top of a spring with spring constant k. What is 
the maximum compression of the spring?     

If zero for the gravitational potential energy is 
chosen to be the height at the top of the spring, then 
the conservation of energy for this problem is:

Now it a simple problem of solving the quadratic equation:

Note that it is important to note that the mass does not come to rest until 
the spring obtains maximum compression!

What is the physical 
significance of the 
other root?

E  mgh  −mgx  1
2 kx2

1
2 kx2 − mgx − mgh  0 → x  mg

k 1  1  2kh/mg





Example 4: Example 4: NonconservativeNonconservative ForcesForces
Three masses are attached to pulleys as shown. 
Mass m1 slides on a surface with a coefficient of 
kinetic friction mk . Find the velocity, v, after 
starting from rest of the objects after traveling a 
distance Dy. 

From the Work-KE Theorem:

After m3 falls a 
distance Dy:  

Solving for v is straighforward:

ΔK  W  Wc  Wnc → ΔK  ΔU  Wnc

1
2 m1  m2  m3v2  m2gΔy − m3gΔy  −k m1gΔy

v  m3 − m2 − k m1
m1  m2  m3

2gΔy



Example 4: Example 4: NonconservativeNonconservative ForcesForces
Three masses are attached to pulleys as shown. 
Mass m1 slides on a surface with a coefficient of 
kinetic friction mk . Find the velocity, v, after 
starting from rest of the objects after traveling a 
distance Dy. 

A free-body diagram for each object yields 
three equations of motion:

Summing these equations and solving for a:

From our work with kinetmatics:

m3g − T1  m3a, T1 − T2 − m2g  m2a, T2 − k m1g  m1a

a  m3 − m2 − k m1
m1  m2  m3

g

v2  2aΔy  m3 − m2 − k m1
m1  m2  m3

2gΔy

Same!Same!



Chapter 10Chapter 10
System of ParticlesSystem of Particles

When considering multiple particles we summed the kinetic and 
potential energies of all the masses and set it equal to the work 
dissipated by friction. This conceptually leads to treating a 
general system of particles using conservation laws (and 
Newton’s EOM).  

To accomplish this we first define a center of mass. 



Center of MassCenter of Mass
Mathematically we define the center of mass 
as the average of the mass weighted vector 
displacement of the individual particles. 
Defining the total mass as M.

For continuous media both 
sums become integrals: 

M  m1  m2  m3     ∑
i1

N

mi

This allows us to define the center of mass as:

Rcm  1
M m1 r 1  m2 r 2  m3 r 3      1

M ∑
i1

N

mi r i

M   dm, and Rcm  1
M  r dm



Example: Center of Mass Example: Center of Mass –– Uniform Solid ConeUniform Solid Cone

From symmetry considerations the center of
mass must lie on the z axis. All that is left is to
perform the integral to determine Zcm . 

At a height z (radius r) the volume element is:

Since r(z) satisfies the relationship r = Rz/h the integral for Zcm becomes:

Zcm  1
M  zdm  1

M  zdV  1
V  zdV

dV  Azdz  r2zdz

Zcm  1
V  zdV  1

V  zr2zdz

Zcm  1
V  z R2

h2 z2dz  R2

h2R2h/3


0

h
z3dz

Zcm  3
h3

h4

4  3
4 h (from the vertex)



Motion of the Center of MassMotion of the Center of Mass
The total momentum of a system of particles is equal to the momentum 
of the center of mass. In the absence of any net external forcenet external force this 
momentum is conservedconserved. 

To see this consider the time derivative of the center of mass: 

Even though individual particles may be moving relative to the center of 
mass, the center of mass maintains a uniform velocity.

d
dt Rcm  v cm  1

M ∑
i1

N

mi
d
dt r i  1

M ∑
i1

N

mi v i

Pcm ∑
i1

N

mi
d
dt r i  M v cm ∑

i1

N

mi v i



External Forces and the Center of MassExternal Forces and the Center of Mass
The sum of all the net forces on each of the particles determines the 
acceleration of the center of mass. 

d
dt Pcm ∑

i1

N

mi
d
dt v i ∑

i1

N

mi a i ∑
i1

N

Fi−net

However, we need to consider the sum of the forces on each of the particles. 
Some of the forces on the ith particle are due to external forces (e.g. external 
gravitational field). There are also forces between the particles themselves 
(at least a gravitational attraction). This could make the problem virtually 
intractable, but Newton’s 3rd comes to the rescue. It is the basis for 
recognizing that the sum of the internal forces over all of the particles the sum of the internal forces over all of the particles 
cancel!cancel! It is only the sum of all the external forces that induce an 
acceleration of the center of mass.

d
dt Pcm ∑

i1

N

Fi−ext



Example: Motion of the Center of Mass Example: Motion of the Center of Mass 

Two objects are moving in the x direction 
connected by a compressed spring in the y 
direction. Derive an expression for the velocities 
of the objects after the spring is released. 

In the absence of external forces the motion of 
the center of mass remains unchanged. Also the 
mechanical energy of the system is conserved.

This is three equations with four unknowns, v1x , v1y , v2x , v2y . 
However the x components of the velocities remain constant. 
The y components of the velocities can be solved with the 2 
independent equations that are left.

Pcm  m1  m2 v o  m1 v 1  m2 v 2

E  1
2 m1  m2vo

2  1
2 kΔy2  1

2 m1v1
2  1

2 m2v2
2



Example: Motion of the Center of Mass Example: Motion of the Center of Mass 
Two objects are moving in the x direction 
connected by a compressed spring in the y 
direction. Derive an expression for the velocities 
of the objects after the spring is released. 

Conservation of the y momentum:

Solving for the y velocity
components:

The conservation of energy:

m1v1y  m2v2y  0

1
2 m1  m2vo

2  1
2 kΔy2  1

2 m1vo
2  v1y

2   1
2 m2vo

2  v2y
2 

kΔy2  m1v1y
2  m2v2y

2

kΔy2  m1v1y
2  m2

m1
2

m2
2 v1y

2  m1 1  m1
m2

v1y
2

v1y
2  m2

m1
k

m1  m2
Δy2, v2y

2 
m1

2

m2
2 v1y

2
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