
TodayToday’’s Lectures Lecture

Lecture 15: Chapter 8,
Review of Energy Diagrams
Review of Work-Energy Thm

Chapter 10,
System of Particles



Energy Diagram Energy Diagram -- Typical Diatomic Molecule Typical Diatomic Molecule 

If E > 0, then the atoms cannot 
approach closer than r = a. The atoms 
can approach arbitrarily large
separations – the molecule is not 
bound.

If E < 0, then the atoms are trapped
between the turning points at b and d. 
The atoms form a bound system. 

The equilibrium separation occurs at
r = c where dU/dr = 0.

What is the force between the 
atoms at r = c ?



Energy Diagram Energy Diagram -- Typical Diatomic Molecule Typical Diatomic Molecule 

Near the bottom of the potential well,
r = rc the potential energy is given 
approximately by: 

U  U0  ar − rc2, U0  −7.6  10−19J,
a  2.86  10−16J/nm2, rc . 0741nm.

What range of atomic separations is 
allowed if the total energy is 
E = -7.17x10-19 J?

Kinetic energy vanishes at the turning points, E = U there. Solving for r – rc : 

Hence:

r − rc   E − U0/a   . 44  10−19/2.86  10−16  1.24  10−2nm

rmin . 0741 −. 0124 . 0617nm
rmax . 0741 . 0124 . 0865nm



Energy Conservation on a TrackEnergy Conservation on a Track

If a ball is released from a height h 
on a frictionless track find the 
expression for the ratio of the time 
spent on either side during the 
oscillatory motion.  
From the conservation of energy 
the ball will rise to the same height 
on either side. However the 
accelerations will be different! 

The velocities at the bottom are the same, while their 
respective accelerations (uniform) are ai = g sinqi

 

. Hence:

vbot  ait i →
t1
t2

 a2
a1


g sin2
g sin1

 sin2
sin1

As expected the side with the steeper angle has the shorter time. 
Kinematics could also solved this problem, albeit more complicated.



Skier and Two PeaksSkier and Two Peaks

If a skier starts from rest at the top of the left-hand peak, what 
is the maximum value of the coefficient of kinetic friction, mk , 
that would allow the skier to reach the second peak?  

From the work-energy theorem:

The kinetic energy is zero at both peaks. This means that the loss in potential 
energy (height) is dissipated into friction. With the use of some trigonometry:

ΔK  ΔU  Wnc

− mgΔh  −kmgcos1d1 − kmgcos2d2

Δh  kd1 cos1  d2 cos2  kh1 cot1  h2 cot2



Skier and Two PeaksSkier and Two Peaks

If a skier starts from rest at the top of the left-hand peak, what 
is the maximum value of the coefficient of kinetic friction, mk , 
that would allow the skier to reach the second peak?  

Solving for mk :

To reiterate, we could have found the acceleration down the slopes and used 
kinematics to find this result. However, the work-energy theorem greatly 
facilitated obtaining the solution.

k  Δh
h1 cot1  h2 cot2

 110
950cot27∘  840cot35∘ . 036



Chapter 10Chapter 10

System of ParticlesSystem of Particles



Center of MassCenter of Mass
Mathematically we define the center of mass 
as the average of the mass weighted vector 
displacement of the individual particles. 
Defining the total mass as M.

For continuous media
both sums become integrals: 

M  m1  m2  m3     ∑
i1

N

mi

Allows us to define the center of mass as:

Rcm  1
M m1 r 1  m2 r 2  m3 r 3      1

M ∑
i1

N

mi r i

M   dm, and Rcm  1
M  r dm



Example: Center of Mass for a Quarter PlateExample: Center of Mass for a Quarter Plate
A uniform flat disk of radius R and 
thickness l << R is cut into four 
quadrants. What is the radial location 
from the center of the original circle for 
the center of mass of the quadrants?

Rcm  1
M  r dmThe center of mass is given by the integral:

First we need to determine dm. For a uniform disk dm = r
 

dV = r
 

ldA, 
where r

 
= M/V = M/(p

 
R2l/4) = 4M/(pR2l). In general for polar 

coordinates the area element and the position vector are:

dA  rdrd, and r  x  y  z  r cos

i  r sin


j  z


k



Example: Center of Mass for a Quarter PlateExample: Center of Mass for a Quarter Plate
A uniform flat disk of radius R and 
thickness l << R is cut into four 
quadrants. What is the radial location 
from the center of the original circle for 
the center of mass of the quadrants?

The center of mass integral becomes:

From symmetry (or the integral over z) Zcm is simply l/2. The integrals for 
Xcm and Ycm are: 

Why are Why are 
they equal?they equal?

Rcm  1
M 0

R 
0

/2 
0

l
r cos


i  r sin


j  z


k rdrddz

Rcm  1
V 0

R 
0

/2 
0

l
r cos


i  r sin


j  z


k rdrddz

Xcm  l
V 0

R
r2dr 

0

/2
cosd  1

3
R3l
V  1

3
R3l

R2l/4
 4

3 R

Ycm  l
V 0

R
r2dr 

0

/2
sind  1

3
R3l
V  1

3
R3l

R2l/4
 4

3 R



Example: Center of Mass for a Quarter PlateExample: Center of Mass for a Quarter Plate
A uniform flat disk of radius R and 
thickness L << R is cut into four 
quadrants. What is the radial location 
from the center of the original circle for 
the center of mass of the quadrants?

The center of mass for the quadrant is: 

Rcm  Xcm
2  Ycm

2 
4 2
3 R ≃. 6R Does this make sense?

Rcm  4
3 R


i  4

3 R

j  1

2 L

k

The radial location for the quadrants center of mass is: 



Example: A Cube with Varying DensityExample: A Cube with Varying Density
A solid cube of side a has a density that varies 

linearly from zero to ro at the top. 
(a) What is the mass of the cube?
(b) What is the vertical coordinate of its CM?

(a) The density varies as r
 

= ro y/a. The 
volume element is of the cube is 
dV = A dy = a2 dy. The mass is:

Does this make sense?

(b) The integral for the center of mass is: 

M   dm   dV  
0

a
o

y
a a2dy  oa 

0

a
ydy  oa a2

2  1
2 oV

ycm  1
M  ydm  oa

M 0

a
y2dy  2a

V
1
3 a3  2

3 a



Motion of the Center of MassMotion of the Center of Mass
The total momentum of a system of particles is equal to the momentum 
of the center of mass. In the absence of any net external forcenet external force this 
momentum is conservedconserved. 

To see this consider the time derivative of the center of mass: 

Even though individual particles may be moving relative to the center of 
mass, the center of mass maintains a uniform velocity.

d
dt Rcm  v cm  1

M ∑
i1

N

mi
d
dt r i  1

M ∑
i1

N

mi v i

Pcm ∑
i1

N

mi
d
dt r i  M v cm ∑

i1

N

mi v i



Example: Motion of the Center of MassExample: Motion of the Center of Mass
A 70kg man is standing 1.8m from the 

shoreward end of a 150kg boat that is 
4.2m long. The boat is 1.1m from the 
shore. The man walks to the shore end 
of the boat from which he leaps to shore. 
Assume that boat’s CM is at its center.

(a) How far does the man have to leap?
(b) Where is the boat at the instant you   

reach the shore?

(a) In the absence of external forces the CM of the system remains unchanged. 
Measuring distances from the shore to the front of the boat:  

Mxcm i  mm1.1  1.8  mb1.1  2.1  702.9  1503.2  683

Mxcm f  mmx  mbx  2.1  315  220x  683 → x  1.67m



Example: Motion of the Center of MassExample: Motion of the Center of Mass
A 70kg man is standing 1.8m from the 

shoreward end of a 150kg boat that is 
4.2m long. The boat is 1.1m from the 
shore. The man walks to the shore end 
of the boat from which he leaps to shore. 
Assume that boat’s CM is at its center.

(a) How far does the man have to leap?
(b) Where is the boat at the instant you   

reach the shore?

(b) Again the absence of external forces the CM of the system remains 
unchanged. Measuring distances from the shore to the front of the boat:  

The boat will continue to drift away from shore after the mans lands. Yet the 
man is stationary! What gives?What gives?

Mxcm i  683, Mxcm f  mbx  2.1  315  150x  683 → x  2.45m



Example: Motion of the Center of Mass Example: Motion of the Center of Mass 

Two objects are moving in the x direction 
connected by a compressed spring in the y 
direction. Derive an expression for the velocities 
of the objects after the spring is released. 

In the absence of external forces the motion of 
the center of mass remains unchanged. Also the 
mechanical energy of the system is conserved.

This is three equations with four unknowns, v1x , v1y , v2x , v2y . 
However the x components of the velocities remain constant. 
The y components of the velocities can be solved with the 2 
independent equations that are left.

Pcm  m1  m2 v o  m1 v 1  m2 v 2

E  1
2 m1  m2vo

2  1
2 kΔy2  1

2 m1v1
2  1

2 m2v2
2



Example: Motion of the Center of Mass Example: Motion of the Center of Mass 
Two objects are moving in the x direction 
connected by a compressed spring in the y 
direction. Derive an expression for the velocities 
of the objects after the spring is released. 

Conservation of the y momentum:

Solving for the y velocity
components:

The conservation of energy:

m1v1y  m2v2y  0

1
2 m1  m2vo

2  1
2 kΔy2  1

2 m1vo
2  v1y

2   1
2 m2vo

2  v2y
2 

kΔy2  m1v1y
2  m2v2y

2

kΔy2  m1v1y
2  m2

m1
2

m2
2 v1y

2  m1 1  m1
m2

v1y
2

v1y
2  m2

m1
k

m1  m2
Δy2, v2y

2 
m1

2

m2
2 v1y

2



Radioactive DecayRadioactive Decay

A lithium-5 nucleus with a velocity v = 
1.6x106 m/s decays into a proton and an a

 particle. The a particle has a speed v = 
1.4x106 m/s with an angle 33o to the original 
direction. Where and how fast is that proton 
going? 

The momentum of the CM is conserved. Since the lithium can be consider a 
point particle, we merely have to conserve momentum (both components).

Solving for vpx
we find:

x : mLivLi  mvx  mpvpx

y : 0  mvy − mpvpy

vpx 
mLivLi − mvx

mp
 mLivLi − mv cos 33∘

mp

vpx 
51.6  106 − 41.4  106 cos 33∘

1  3.3  106m/s



Radioactive DecayRadioactive Decay

A lithium-5 nucleus with a velocity v = 
1.6x106 m/s decays into a proton and an a

 particle. The a particle has a speed v = 
1.4x106 m/s with an angle 33o to the original 
direction. Where and how fast is that proton 
going? 

Solving for vpy : 

The speed of the proton: vp  3.32  3.052 106  4.5  106m/s

The direction of the 
proton:

  tan−1 3.05
3.3 . 746rad  43∘

vpy 
mvy

mp
 mv sin33∘

mp

vpy 
41. 4  106 sin33∘

1  3.05  106m/s



External Forces and the Center of MassExternal Forces and the Center of Mass
The sum of all the net forces on each of the particles determines the 
acceleration of the center of mass. 

d
dt Pcm ∑

i1

N

mi
d
dt v i ∑

i1

N

mi a i ∑
i1

N

Fi−net

However, we need to consider the sum of the forces on each of the particles. 
Some of the forces on the ith particle are due to external forces (e.g. external 
gravitational field). There are also forces between the particles themselves 
(at least a gravitational attraction). This could make the problem virtually 
intractable, but Newton’s 3rd comes to the rescue. It is the basis for 
recognizing that the sum of the internal forces over all of the particles the sum of the internal forces over all of the particles 
cancel!cancel! It is only the sum of all the external forces that induce an 
acceleration of the center of mass.

d
dt Pcm ∑

i1

N

Fi−ext



External Forces and the Center of MassExternal Forces and the Center of Mass
A fire hose delivers water at a rate 45kg/s. 
The water hits the window with a horizontal 
velocity of v = 32m/s. What is the horizontal 
force on the window?

If the system is the water, then the rate of momentum loss means there is an 
external force acting on the water. This is the normal force of the window on 
the water. From Newton’s third the water is exerting an equal and opposite 
force of 1400N on the window.

The rate of change in the  momentum of 
the water stream is:

dP
dt  −45kg  32m/s/s  −1400kg  m/s2



Kinetic Energy of a Many Particle SystemKinetic Energy of a Many Particle System
The total kinetic energy of a system of particles is simply the sum of the 
energies of the constituent particles:

The velocity of a particle can be written as the vector sum of center of mass 
velocity and a velocity relative to the center of mass velocity:

K ∑
i1

N
1
2 mivi

2

v i  V  u i

The total kinetic energy can now be written as:

K ∑
i1

N
1
2 mi V  u i  V  u i ∑

i1

N
1
2 miV2 ∑

i1

N

mi V  u i ∑
i1

N
1
2 miui

2

K  1
2 MV2  V ∑

i1

N

mi u i ∑
i1

N
1
2 miui

2



Kinetic Energy of a Many Particle SystemKinetic Energy of a Many Particle System
The total momentum of a system of particles is simply the sum of the 
momentum of the constituent particles. We found this to be the momentum 
of the center of mass:

This implies that: 

The total kinetic energy 
can now be written as:

Pcm ∑
i1

N

mi v i ∑
i1

N

mi V  u i  MV ∑
i1

N

mi u i

∑
i1

N

mi u i  0!

The total kinetic energy is the sum of the center of mass kinetic energy and 
the internal kinetic energy which is the kinetic energy measured in the 
frame of the center of mass!

K  1
2 MV2 ∑

i1

N
1
2 miui

2  Kcm  Kint



Radioactive DecayRadioactive Decay
A lithium-5 nucleus with a velocity v = 
1.6x106 m/s decays into a proton and an a

 particle. The a particle has a speed v = 
1.4x106 m/s with an angle 33o to the original 
direction. Find the center of mass and 
internal kinetic energies before and after the 
decay.

The CM motion does not change after the decay. Hence the center of mass 
kinetic energy is:  

The internal energy is zero before the decay. After the decay the 
velocities of the particles were found to be:

K  1
2 MV2  1

2
5  10−3

6.022  1023 1.6  1062  1. 06  10−14J

v   1.4cos 33∘

i  1.4sin33∘


j  106m/s  1.174


i . 762


j  106m/s

v p  3.30

i  3.05


j  106m/s



Radioactive DecayRadioactive Decay
A lithium-5 nucleus with a velocity v = 
1.6x106 m/s decays into a proton and an a

 particle. The a particle has a speed v = 
1.4x106 m/s with an angle 33o to the original 
direction. Find the center of mass and 
internal kinetic energies before and after the 
decay.

The velocities relative to the center of mass are:  

The internal energy after the decay is:

u   1.17 − 1.6

i . 762


j  106m/s  −. 43


i . 762


j  106m/s

u p  3.30 − 1.6

i  3.05


j  106m/s  1.70


i  3.05


j  106m/s

Kint  1
2 ∑

i1

N

miui
2  1

2 mux
2  uy

2   1
2 mpupx

2  upy
2 

Kint  1.27  1014J

What is the source What is the source 
of this energy?of this energy?
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