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Circular Motion and AccelerationCircular Motion and Acceleration
Consider the two unit vectors that
are convenient for angular motion: 

r  cos

i  sin


j


  − sin


i  cos


j

The position vector can now be written

r  rr  r cos

i  sin


j  x


i  y


j

The velocity vector is simply the time derivative of the position vector.
For circular motion the radius of curvature, r, is constant. However, f = f(t),
is time dependent. This means to find the velocity vector we must
be careful when taking the derivative of the position vector – chain rule!



Circular Motion and AccelerationCircular Motion and Acceleration
Consider the two unit vectors that
are convenient for angular motion: 

r  cos

i  sin


j


  − sin


i  cos


j

The velocity vector can now be expressed:

Taking the derivative of the velocity
yields the acceleration. Assuming a 
constant rate of rotation, w:

The radial acceleration points
radially inward! What 
happens when there is angular 
acceleration? Stay tuned!

v  d r
dt  r dcos

dt

i  d sin

dt

j

v  r − sin

i  cos


j d

dt  r

  v




a  dv
dt  r − d sin

dt

i  dcos

dt

j

a  −r cos

i  sin


j d

dt  −2rr  − v 2

r
r
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NewtonNewton’’s Second Laws Second Law

is the net force
This is the vector sum of all the forces acting on the 

object

Newton’s Second Law, F=maF=ma, can be expressed 
in terms of components:
SFx = m ax
SFy = m ay
SFz = m az

∑ F

Most philosopher's of science 
consider Newton’s 2nd to be 
the definition of a force.
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Conservation of Energy Conservation of Energy 

and theand the
WorkWork--KE TheoremKE Theorem





Example: Incline Plane with FrictionExample: Incline Plane with Friction
Consider the incline plane in the figure with a 
coefficient of kinetic friction, mk .  Using the 
conservation of energy determine (a) the value 
of m2 necessary for it to sink and (b) its velocity 
after it drops Dy when starting from rest. 

From the work-energy 
theorem:

After m2 drops a distance Dy the work-energy theorem for this system is 
expressed: 

Solving for v2 yields:

Since v2 must be greater than zero the criteria for m2 to sink is:

ΔK  ΔU  Wnc

1
2 m1v2  1

2 m2v2  m1gΔy sin − m2gΔy  −k m1gcosΔy

v2  m2 − m1 sin − k m1 cos2gΔy/m1  m2

m2  m1 sin  k m1 cos



Example: Incline Plane with FrictionExample: Incline Plane with Friction
Consider the incline plane in the figure with a 
coefficient of kinetic friction, mk .  Using the 
conservation of energy determine (a) its velocity 
after it drops Dy when starting from rest and (b) 
the value of m2 necessary for it to sink. 

Solving for v yields:

These results also arise from Newton’s 2nd:

And:

v  m2 − m1 sin − k m1 cos 2gΔy
m1  m2

m2g − m1g sin − k m1gcos  m1  m2a

v  2aΔy  m2 − m1 sin − k m1 cos 2gΔy
m1  m2





Force and Potential EnergyForce and Potential Energy
Again think of the potential energy
plot as a picture of a roller coaster.
The force

Fx  − dU
dx

tends to push the object downhill as
shown in the plot at x=x1 and x=x2 .

Note that at the points x3 and x4 where dU/dx = 0, U is a minimum or 
a maximum. The object is in equilibrium as the net force vanishes at those
points. However x3 is a point of stable equilibrium (why?) and x4 is a
point of unstable equilibrium (why?).

For example consider the potential energy for a spring:

Ux  1
2 kx2 → F  − dU

dx  −kx





Center of Mass Integrations Center of Mass Integrations 
andand

RocketsRockets



Center of MassCenter of Mass
Mathematically we define the center of mass 
as the average of the mass weighted vector 
displacement of the individual particles. 
Defining the total mass as M.

For continuous media both 
sums become integrals: 

M  m1  m2  m3     ∑
i1

N

mi

This allows us to define the center of mass as:

Rcm  1
M m1 r 1  m2 r 2  m3 r 3      1

M ∑
i1

N

mi r i

M   dm, and Rcm  1
M  r dm



CM for Pentagon with One Triangle MissingCM for Pentagon with One Triangle Missing

Find the center of mass of a pentagon of side 
a with one triangle missing.

The height, h, is h = a/2 tan54o and
above the vertex. 

If the height of the triangles is h, then the CM for the –m triangle is h/3. The
CM for the full pentagon is h above the base (the center of the pentagon). The 
expression for ycm is then:

The easiest way to do this problem is consider 
it as a complete pentagon with 5 triangles of 
mass m plus the missing triangle with mass -m.

ycm  1
4m 5mh − mh/3  14

12 h  h  1
6 h

ycm  a
12 tan54∘ . 115a





RocketsRockets
Rewriting the equation for conservation of 
momentum: 

M  Δmv  Mv  Δv  Δmv − vex

0  MΔv − vexΔm

The expelled mass, Dm, represents a decrease in rocket mass, 
hence the change DM in rocket mass is given by DM = - Dm. 
We now divide by Dt and take the limit to form differentials.

Here we have identified the thrust as
FT which is equal to –vex dM/dt. This is 
constant. However M decreases with 
time, so the acceleration increases.  

FT  M dv
dt  −vex

dM
dt



RocketsRockets
To solve for the velocity as a function of time
we multiply our EOM, 

by dt, separate and integrate. 

The velocity as a function of 
time is shown in the plot: 

FT  M dv
dt  −vex

dM
dt


i

f
dv  vf − vi  −vex 

i

f dM
M  vex ln Mi

Mf



Examples: RocketsExamples: Rockets
A rocket ejects 105 kg of fuel in the 90s after launch. (a) How much thrust 
is developed if the fuel is ejected at 3.0km/s with respect to the rocket? 
(b) What is the maximum total mass of the rocket if it is to get off the 
ground?  (c) If the rocket has the maximum mass from (b), what is the 
maximum acceleration of the rocket?

(a) FT  vex
dM
dt  3  103 105

90  3.33  106N

(b) Mmax  FT/g  3.33  106/9.8  3.4  105kg
(c) amax  FT −Mming/Mmin  3.33  106/2.4  105 − 9.8

amax  4.075m/s2

What is the terminal speed of a rocket if it exhaust 80% of its fuel at an 
exhaust velocity of vex = 2.5km/s?

v  vex ln Mi
Mf

 2.5  103 ln5  4km/s



Examples: RocketsExamples: Rockets
If a rocket’s exhaust speed is 200m/s relative to the rocket, what fraction of 
its initial mass must be ejected to increase the rocket’s speed by 50m/s?

Δv  vex ln Mi
Mf

Mf
Mi

 e−Δv/vex  e−50/200 . 78

From the rocket equation the ratio of the final mass, Mf , to the initial mass, 
Mi , is:

The amount of mass that was ejected during this burn is:

Mi − Mf
Mi

. 22 → ΔM . 22Mi
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