Today’s Lecture

Lecture 16: Course Review;
Kinematics,
Newton’s Laws of Motion,
Conservation of Energy

Chapter 11, Rockets



Review
Kinematics



Projectile Trajectory is Parabolic

We can show this by eliminating time from the problem and

deriving the function y(x). First, solve for the time from the
position equation in x

x =V, cos(O)t %A
X G
= e (g
V, cos(6) e A 5 l 8
> \Q
Then substitute in V=Y,cos(0)
for t in position

equation for y

X

y =V, sin(8)(——) - ~ g(

V,cos(6) 2 VOCOS(Q))

Trajectory is always
y = tan(6)x - S X arabolic in x
2V} cos’ () P




Uniform Circular Motion bl

A body moving in a circle of radius r
with uniform speed v

In a time interval A7 the arc length traversed is As
As = A6 6 in radians 0 — 27 4

The limit as that time interval goes to zero is v

do

E is called the angular velocity @ where v =rw



Circular Motion and Acceleration

Consider the two unit vectors that
are convenient for angular motion:

T =cos¢i +sing]

d =—singi +cosdj

The position vector can now be written
T=r7= r<cos¢T + sinqﬁ) = X1 +y]

The velocity vector is simply the time derivative of the position vector.

For circular motion the radius of curvature, r, is constant. However, ¢ = ¢(t),
IS time dependent. This means to find the velocity vector we must

be careful when taking the derivative of the position vector — chain rule!



Circular Motion and Acceleration

Consider the two unit vectors that
are convenient for angular motion:

T =cosdl +sing]

1 ¢ =—singi +cosdj

The velocity vector can now be expressed:
v dP _ r( dcos¢ o dsing T)
Taking the derivative of the velocity dt dt dt

yields the acceleration. Assuming a = = e o el T do _ ord = Vo
constant rate of rotation, w: ( ¢ ¢J> dt »=Vo

2 _dv _ wr(_dSin¢T+ dcos¢ JA) The radial acceleration points
dt dt dt radially inward! What
3 — —wr(cos¢T+ sinﬁ)%—f _ _o2r — _V2 & happens when there is angular

" acceleration? Stay tuned!



Review
Dynamics



Kinematics vs. Dynamics

Kinematics are a description of motion
*What we have studied so far
*Displacement, Velocity, Acceleration

Dynamics are a description of the cause of change in
motion
*Require New Concepts: Force and Mass
*Newton’s Three Laws of Motion
*Obtained from first principles
Fundamental
*Based on experimental observations of motion
*Not a derivation



Newton’s Laws of Motion

1. The Law of Inertia: The velocity of a body will not change
unless a net force acts on that body.

2. The Law of Force, Mass and Acceleration: The force on a
body is equal to its change in momentum with time. For
constant mass, this is the mass times the acceleration.

3. Law of Action and Reaction: For each force acting on body B
from body A, there is an equal and opposite force acting on

body A from body B.



Newton’'s Second Law

> F is the net force

This Is the vector sum of all the forces acting on the
object

Newton’s Second Law, F=ma, can be expressed
In terms of components:

2F, =ma,
XF,=ma, Most philosopher's of science
>F,=ma, consider Newton’s 2"d to be

the definition of a force.



Newton’s Third Law of Motion

Law of Action and Reaction: For each force acting on body B

from body A, there is an equal and opposite force acting on
body A from body B.

—

F, =-F,

A B
FA
< my > Mg >
aA ks — aB
FB
F = ma
Both bodies move, the lighter Uniform circular motion Fy

mass accelerates faster. is outward on the string.



Review
Conservation of Energy
and the
Work-KE Theorem



Conservation of Energy

We previously (Chapter 7) described the change in the kinetic
energy as being equal to the work done on an object.

_ dr _— I % 1 4
AK =W=mldv-=—=ml dv-v=m[=v: ==y
If we consider separately the work done by conservative and

nonconservative forces: AK=W_+W

We have defined the Potential Energy as the negative of the
work done by Conservative forces: AK =-AU+W

Thus: AK + AU = Wnc

When W =0 the total energy is conserved, and:

K +U =K, + U, total energy is always equal to initial energy



Example: Incline Plane with Friction

Consider the incline plane in the figure with a
coefficient of kinetic friction, p,. Using the
conservation of energy determine (a) the value
of m, necessary for it to sink and (b) its velocity
after it drops Ay when starting from rest.

iﬂ:mc =
EIGURE 6-76 Problems 67, 68. From the Work-energy AK + AU = W
— nc

theorem:

After m, drops a distance Ay the work-energy theorem for this system is

expressed: 1

%mlv2 + 5 M2V? + M1gAYsing — magAy = —umag cos Ay

Solving for v yields: v2 = (my — m1sind — M1 cos@)2gAy/(my + my)
Since v2 must be greater than zero the criteria for m, to sink is:

my > mySinG + puxmicosé



Example: Incline Plane with Friction

Consider the incline plane in the figure with a
coefficient of kinetic friction, y,. Using the
conservation of energy determine (a) its velocity
_ after it drops Ay when starting from rest and (b)
_ T the value of m, necessary for it to sink.

FIGURE 6-76 Problems 67, 08.

Solving for vyields: v = J(mz —m;Sin@ — My cosH) m?gf%/qz

These results also arise from Newton’s 2nd:

mog — M1gsing — uxmigcosd = (Mg + my)a

And: v = J2aAy = \/(mg—mlsine—ukmlcose) m?ngA?/ng




Force and Potential Energy

Consider a force pushing a body along the x axis. The work
being done by the force is:

W =-AU
We also know that W =F Ax
Combining these AU
two we can write: 5 x - A

This applies to 3D motion in general:

]_{' = _(d_U/i\_F d_U}+ d_U/;;)
dx dy dz

—

_ N Here, V is a
Or, in gradient notation: =Nl vector differential
operator.



Force and Potential Energy

Again think of the potential energy
plot as a picture of a roller coaster.
The force

) Ulx)

_ _du
Fx = dx

tends to push the object downhill as
shown in the plot at x=x; and x=X,.

Note that at the points X, and x, where dU/dx = 0, U is a minimum or

a maximum. The object is in equilibrium as the net force vanishes at those
points. However X, Is a point of stable equilibrium (why?) and x, is a
point of unstable equilibrium (why?).

For example consider the potential energy for a spring:

U(x) = Sk > F=-Gd — kx



Power is the Rate at Which Energy is
Changed, or Work is Done

The amount of work done itself does not depend on how long it takes to
do the work. The rate of change in Energy is the Power that is being
imparted. The average power can be written:

AW dWwW
P = ——  While in the differential limit: P = ——

At dt

We can express the power as a function of Force and Velocity by
differentiating the expression for the work done

p=d_W=ﬁ.ﬂ=ﬁ.g
dt dt

The SI units of Power are J/s=W called Watts.



Center of Mass Integrations
and
Rockets



Center of Mass

Mathematically we define the center of mass
as the average of the mass weighted vector
displacement of the individual particles.
Defining the total mass as M.

Density Volume

|
\ dm >pdV
M=mMi+MytMateee= Zmi
=1
!
This allows us to define the center of mass as: 2
IR N
Rem = ﬁ(ml?l i mz?z i m3_r’3 + oo -) = ﬁ Zl: mi_r’i
For continuous media both — 1
sums become integrals: M = J.dm, and Rem = 7 I?dm



CM for Pentagon with One Triangle Missing

Find the center of mass of a pentagon of side

3 9 a with one triangle missing.
o B
ﬁ“\ / The easiest way to do this problem is consider
\ f.ﬁ N\ It as a complete pentagon with 5 triangles of
\ 4 “x\ y mass m plus the missing triangle with mass -m.
V N

If the height of the triangles is h, then the CM for the —m triangle is h/3. The
CM for the full pentagon is h above the base (the center of the pentagon). The
expression for y., Is then:

Yon = == (5mh —mh/3) = 12h = h+ Lh

12 6

The height, h, is h = a/2 tan54° and ~ Yem = 112 tan54° =.115a
above the vertex.



Rockets

Rocket propulsion is achieved by the Eé

exhaust of fuel mass at high speed, in A

the process the mass of the rocket and =
fuel left over reduces. By the law of
conservation of momentum, the
momentum of the rocket and (all of

the) fuel system remains constant as
this fuel mass is expelled.

Exhausted fuel mass Change in rocket speed Fuel exhaust speed
\ \ o
(M +Am)y =My +Av)+Am(v-v, )
— \ T

Initial momentum New rocket momentum Exhausted fuel momentum

Thus the change in mass of the rocket + fuel is a critical part
to finding the correct or accurate thrust.



Rockets -

Rewriting the equation for conservation of :
momentum:

(M + Am)v = M(V + AV) + AmM(V — Vex) < ﬂwéz R

¥+ AV

0 = MAV — VexAm ~

(at)

The expelled mass, Am, represents a decrease in rocket mass,
hence the change AM in rocket mass Is given by AM = - Am.
We now divide by At and take the limit to form differentials.

Here we have identified the thrust as

av _ _, dM F- which is equal to —v,, dM/dt. This is
dt O dt constant. However M decreases with

time, so the acceleration increases.

Fr =M




Rockets

To solve for the velocity as a function of time
we multiply our EOM,

_mav ., dM
Fr =M = Ve

by dt, separate and integrate.

f ‘ "
Ch/:: Vf——\ﬁ = —V J. Sﬂyl_:: V In I
ji ! ] M e (N1
150}
The velocity as a function of S 100
time is shown in the plot: £ 5

M+ Am

{a)

C’_'Em ;% ﬁ

\r+:w
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Yicrminal
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Examples: Rockets

A rocket ejects 10° kg of fuel in the 90s after launch. (a) How much thrust
IS developed if the fuel is ejected at 3.0km/s with respect to the rocket?
(b) What is the maximum total mass of the rocket if it is to get off the

ground? (c) If the rocket has the maximum mass from (b), what is the
maximum acceleration of the rocket?

(8) Fr=vedM - 3x 10319—(2)5 _ 3.33 x 106N

(0) Muax = F1/g = 3.33 x 105/9.8 = 3.4 x 105kg

(©) amx = (FT — MminG)/Mmin = 3.33 x 108/(2.4 x 105) — 9.8
amax = 4.075m/s?

What is the terminal speed of a rocket if it exhaust 80%o of its fuel at an
exhaust velocity of v, = 2.5km/s?
M;

V = veXInWf = 2.5x10%In5 = 4km/s



Examples: Rockets

If a rocket’s exhaust speed is 200m/s relative to the rocket, what fraction of
Its initial mass must be ejected to increase the rocket’s speed by 50m/s?

From the rocket equation the ratio of the final mass, M, to the initial mass,
M;, Is:
Mi

AV = Ve In

ex Mf
Mg _ @-AVVex _ o-50200 _ 78
M;

The amount of mass that was ejected during this burn is:

Mi — My

N =.22 - AM =.22M;
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