Today’s Lecture

Lecture 17: Course Review Continued:
Hook’s Law,
Nonconservative Forces,
System of Particles,

Chapter 11,
Impulse, Conservation of
Momentum, Collisions



Springs
and
Hook’s Law



Example: Work to Stretch a Spring

r=() A

Distance, A

o e e e — ——
|

From Hook’s Law a spring exerts a force
proportional to its displacement from equilibrium:

F = —kx

This is the force by the spring on the hand stretching
it. From Newton’s 3", the force exerted by the hand
Is kx. The work done by the hand is the integral:

T A PN
W—jokxdx—zkx

What would the work be if the hand
compressed the spring?



Example: Springs in Series with Two Masses

é - Two springs are in series, both with a spring
L constant of k = 20N/m. Mass m, = .2kg and

mass m, = .4kg. Find the displacement of the

m;
é . lower mass.
_ x
Fg—'FSI —|— )Cz | fot

e Newton’s 2" for the lower mass is:

m,

Ti—mag = kx; —mag = 0 - x; = mag/k
Newton’s 2"d for the upper mass is:

To—Ty—mig = kxy —kx;—mig =0
Ty —mag—mig =0 - Xy = (M1 + mM2)g/kK

The total displacement of the lower mass is:

Xtot = (2m2 —m1)g/k = 9.8/20 =.49m = 49cm



Work - Kinetic Energy Theorem



Conservation of Energy

From the Work-Energy Theorem the work done on an object is equal to
the change in its kinetic energy:

Y P (B od? = AK = L2 L2
W—mj 0 d?—anet d?—AK—Zme > MV;

If we consider separately the work done by conservative forces, W, and

non-conservative forces, W,
AK — WC + Wnc

Potential energy was defined as the negative of the work done by
conservative forces: AU = - W_. Hence:

AK‘|‘ AU — Wnc

In the absence of non-conservative forces, the total mechanical energy is
conserved!

AK+AU =0 » 4mv?+Uj = $mv?+ U = E




Conservative and Nonconservative Forces

2 If the work done between points A and B
B IS path independent then we can state:

W = [ [F-aP] = [[F-d7],

The work done by the force F going
/ from A to B and back to A, W,g,, IS:
A

Waga = ji[ﬁ-d?]l—jB[E-d?]Z = jB[ﬁ’-d?]1+jA[E-d?]2 =0

A A B

If the total work done by a force over a closed path vanishes,

Waga = §E-d?= 0!

the force is said to be conservative!

Work done by frictional forces Is proportional to —dr in both directions,
ergo — nonconservative!



Potential Energy
{,/\\/X The negative of the work done by a

conservative force along any arbitrary path
between two points is defined to be the
change in the potential energy (associated
1 with that force) between those two points.

A AU=—IiE-d?

The difference in potential energy depends only on the location of the
endpoints! Also the zero of U is arbitrary. It is usually chosen for convenience.

The change in gravitational e -~ B y o
potential energy: AUg = _,[0<_ng > +dF = mg IO dy = mgy

The change in a spring’s (e s dv e [ vdy = L2
potential energy: AUk I()( kx'> dr kIOXdX 2kX



Example: Releasing the Glider

CpA=7kg/m ; égo A glider with a mass of 400kg Is
m = 400kg ° released at an altitude of 1524m and an
F initial velocity of 100mph = 44.7m/s.

= If it lands on the runway at 10m/s, how
much work was done by the drag force

vo=44Tm/s
Ay =1524m

“/

on the way down?

From the work energy theorem the change in kinetic energy is found from the
net work on the glider. The work done by gravity is mgh. Hence the
nonconservative work Is:

Whe = AK —mgh = %400(102 — 44.7?) — 400(9.8)1524 = —6.35 x 108

An interesting point to note is that by using the work-energy theorem we did
not need to know the drag coefficient, the average velocity, or the distance
traveled prior to landing!



Systems of Particles



Center of Mass

Mathematically we define the center of mass
as the average of the mass weighted vector
displacement of the individual particles.

Defining the total mass as M. Densi{y Volume
dm = pdV

N
M =m1+m2+m3+---=2mi
=1

!
This allows us to define the center of mass as: 2
IR N
Rem = ﬁ(ml?l i mz?z i m3_r’3 + oo -) = ﬁ Zl: mi_r’i
1=
For continuous media both — 1
sums become integrals: M = J.dm, and Rem = 7 I?dm



Example: COM for Paraboloidal Solid

: Consider a parabolidal solid of height h and uniform
I density p. The height of the solid is given by z = a r°.
e Find (a) the mass, M, of the solid and (b) the z

coordinate, Z ., for the center of mass.

‘ (a) The total mass is found from the integral

o '/!“—=——-___

/ — M= j pdV = j pA(z)dz Where  A(z) = nr? = £z

h
Performing this integral we find: M = jo p%ZdZ p%h—; pV

(b) The center of mass Z_.,, Is found from the integral

_ 1 _ 1" _ 1"z,
Lem = I\/I.‘.Zpdv_ VJOZA(z)dz— VJ.O 52 dz



Example: COM for Paraboloidal Solid

: Consider a parabolidal solid of height h and uniform
I density p. The height of the solid is given by z = a r°.
| Find (a) the mass, M, of the solid and (b) the z

coordinate, Z ., for the center of mass.

| - (b) The center of mass Z_, is found from the integral

/ T Zom = ﬁ j zpdV = % j Z 7A(z)dz = % j Z Z24;

Evaluating this integral we find =~ Zem = %%h?’ = %h?’/(z—’;hz) = %h

For the cone Z_, = 3h/4. In light of this result, does the height for the
paraboloidal solid make sense?



Motion of the Center of Mass

The total momentum of a system of particles is equal to the momentum
of the center of mass. In the absence of any net external force this
momentum is conserved.

To see this consider the time derivative of the center of mass:

\ 4 cin

i=1 =1
— N N —
I:)cm — Mi d ?i — I\/lvcm — mlvl
- dt - cn
i= i=

¥

Even though individual particles may be moving relative to the center of
mass, the center of mass maintains a uniform velocity.



External Forces and the Center of Mass

The sum of all the net forces on each of the particles determines the
acceleration of the center of mass.

However, we need to consider the sum of the forces on each of the particles.
Some of the forces on the it particle are due to external forces (e.g. external
gravitational field). There are also forces between the particles themselves
(at least a gravitational attraction). This could make the problem virtually
intractable, but Newton’s 34 comes to the rescue. It is the basis for
recognizing that the sum of the internal forces over all of the particles
cancel! It is only the sum of all the external forces that induce an
acceleration of the center of mass.




Example: Asteroid Explodes

An explosion breaks up an asteroid at
rest into three pieces whose centers of
mass travel away In a plane as shown.
Find the expressions for the speeds of
masses m, and m, as a function of
mass m, and the angles 6, and 6,.

Recognizing that the initial momentum is zero and there are no external
forces:

|3)1+|3)2+|3)3 = m171+ m272+ m373 =0

In component form we
have 2 algebraic equations _ _
and 2 unknowns: y: M1V1SINO1 + MaV2SINdz = Mavs

X: —mMmqviC0SO1+ MyvoCc0sh, =0



Example: Asteroid Explodes

An explosion breaks up an asteroid at
rest into three pieces whose centers of
mass travel away In a plane as shown.
Find the expressions for the speeds of
masses m, and m, as a function of
mass m, and the angles 6; and 6,.

X: —miVviC0SH1+ myvacosh, =0
Y. m1V13in91 + m2V25in92 = M3V3
Solving these algebraic equations _
with the determinate approach: det = -mimsin(f1 + 62)

M3  V3C0SO;
M1 sin(@; + 0,)
M3  V3C0SO;
M2 sin(@; + 0,)

Vi = —M3M,V3C0SH,/det =

and:
Vo = —mMiM3V3C0SHq/det =




Example: Rockets

A spacecraft designed to probe interstellar medium is moving away
from the Sun with a velocity of v; = 35 km/s (at the orbit of Pluto). At
that point an advanced rocket exhaust fuel at a velocity of v, = 47 km/s.
If the mass of the rocket (sans fuel) is 750kg, how much fuel must be
used to accelerate the rocket to 150 km/s ?

| AV = VexIn M vy —v; = v In A
From the rocket equation: " f f
i _ 150-35 _

Ms = I\/Iie—2-447 - 750 = (750 + Mfue|)e‘2-447

Hence the fuel mass is:
Mi,e = 7500247 — 750 = 7915kg



Chapter 11.:

Impluse, Collisions,
and
Conservations Laws



Impulse

Given a collision between two objects, we know that the force
on the object is it’s change in momentum with time:

podp
di

The impulse is the integrated change in momentum over the
time during the collision:

Impulse: [=f]7dz=fd[3 | = AP = P;- P,

The average impulse force is this integrated change in
momentum divided by the total time:

Note: compare impulse to
. N work: Impulse is analog in
Foe = 1 time instead of space.

At Momentum instead of Energy



Example: Impulse

6. A proton moving the positive x direction at
4.3Mm/s collides with a nucleus. The collision
lasts 0.12fs. And the average impulse force is

= (42 +17))uN (a) Find the velocity of
the proton after the collision. (b) Through what O
angle has the proton’s motion been deflected?

In this case the average force and collision time is given. The impulse is
then:

I=Ap=mv,-my,=F, Al
Solving for the final velocity:

F, At

m

V=V, +

(42i +177)(10°N)(0.12x107%s)
1.67x107*" kg

vV, =(43x10°m/s)i +



Example: Impulse

6. A proton moving the positive x direction at
4.3Mm/s collides with a nucleus. The collision
lasts 0.12fs. And the average impulse force is

— (421 o [ ])z”N (a) Find the velocity of
the proton after the collision. (b) Through what O
angle has the proton’s motion been deflected?

Thus the final velocity is:

V. =(7320 +1.22))(10%)m/s

The deflection angle can be gotten from the velocity vector:

1.22
0. =tan (——) =948°
/ (7 32)

The impulse itself is not asked for, but is equal to:

I=Ap=F At=(5i +2))(10°)Ns



Inelastic vs. Elastic Collisions

Inelastic collisions: the momentum is conserved, not the energy

Elastic collisions: the momentum and energy are conserved

For a totally inelastic collision between two objects, the objects stick
together and become one mass. Only momentum conserved:

my, + m,, =(m, +m,)yv,

For a totally elastic collision between two objects, the objects are unchanged
in form, and rebound perfectly while conserving kinetic energy as well as
momentums: = = = =
My, + n,v,, =y, , + m,v,,
TR URPEES IR
—my. A+ —mY. =y —m.y
1 2¥ 2 1% 2o
2 " 2 ¢ 2t 3
Inelastic collisions are rarely totally inelastic, elastic collisions are rarely
totally elastic. Reality is somewhere between and these are the limits.



Example: Inelastic Collision

20) In an ice show stunt, a 70kg skater catches a 150g baseball moving at
23m/s. (a) If the skater was initially at rest, what is his final speed? (b) If the
catch takes 36ms, what is the average impulsive force exerted by the ball?

Assume that the skating is frictionless and aligned with the direction of the
ball. The skater catches the ball so the collision is totally elastic.

(@) my,+m,y, = (ml ot mz)vf

Note: in the case of
0 U Bl s s inelastic collisions
1_), 1 1i + Iﬁ/ ml ]—}’_2. in ome dimension,
! (m, + m.,) (m1 + m,) ' typically there is
0.15 one equation for
v, =———(23)m/s=0.05m/s GHE MU Wh
70.15
(b) _ Ap _ (70kg)(0.05m / 5) _[osen

“ At (0.0365)



Elastic Collisions in One-Dimension

For an elastic collisions in one-dimension both energy and
momentum are conserved:
Note that for elastic
collisions in one dimension
Lz + Lmovz = vz + Lmov2  there are two equations
5 M1Vi; + 5 MaV3 = 5 M1V + 5 MoV g

for two unknowns.

M1V + MaVoi = M1Vs + MoVys

Rearranging and simplifying:

M1(V1i — Vi) = Ma(Vyr — Vai)

m; (V4 —v%) = ma(v—v3)

Now we can divide the second equation by the first and then rearrange:

This pair of equations (linear) is
M1Vii + M2Vai = MaVar + M1V much easier to work with than the
original. Also note that the relative

Vij — V2i = Vo — Vs .
velocities become reversed!



Elastic Collisions in One-Dimension
Example: Vos | g

In a one dimensional elastic collision
M is initially at rest. If both masses |
end up with the same speed, V¢ = - Vp,

how are m and M related? Vng M M

'

our equations become: Given: V,, ==V,
MVmi = MVr + MVps = MV = MV — MV

Vmi = Vi — Vimf = Vmi = —2V

Substituting for v,; we find:

— 2MVig = MV — MV e with the result M = 3m

As we already noted, this pair of equations is much easier to work with
than the original conservation of energy and conservation of momentum!
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