
TodayToday’’s Lectures Lecture

Lecture 17: Course Review Continued;
Hook’s Law, 
Nonconservative Forces,
System of Particles,

Chapter 11, 
Impulse, Conservation of
Momentum, Collisions



SpringsSprings
and and 

HookHook’’s Laws Law



From Hook’s Law a spring exerts a force 
proportional to its displacement from equilibrium: 

This is the force by the springby the spring on the hand stretching 
it. From Newton’s 3rd, the force exerted by the handby the hand 
is kx.  The work done by the hand is the integral:

What would the work be if the hand 
compressed the spring?

Example: Work to Stretch a SpringExample: Work to Stretch a Spring

F  −kx

W  
0

x
kx ′dx ′  1

2 kx2



Example: Springs in Series with Two MassesExample: Springs in Series with Two Masses
Two springs are in series, both with a spring 
constant of k = 20N/m. Mass m1 = .2kg and 
mass m2 = .4kg. Find the displacement of the 
lower mass.  

Newton’s 2nd for the lower mass is:

The total displacement of the lower mass is: 

Newton’s 2nd for the upper mass is:

Tl − m2g  kxl − m2g  0 → xl  m2g/k

Tu − Tl − m1g  kxu − kxl − m1g  0
Tu − m2g − m1g  0 → xu  m1  m2g/k

xtot  2m2 − m1g/k  9.8/20 . 49m  49cm



Work Work –– Kinetic Energy TheoremKinetic Energy Theorem



Conservation of EnergyConservation of Energy
From the Work-Energy Theorem the work done on an object is equal to 
the change in its kinetic energy:    

W  m  dv
dt  d r   Fnet  d r  ΔK  1

2 mvf
2 − 1

2 mvi
2

If we consider separately the work done by conservative forces, Wc , and 
non-conservative forces, Wnc :     ΔK  Wc  Wnc

ΔK  ΔU  Wnc

Potential energy was defined as the negative of the work done by 
conservative forces: DU = - Wc .  Hence: 

In the absence of nonIn the absence of non--conservative forces, the total mechanical energy is conservative forces, the total mechanical energy is 
conserved!conserved!

ΔK  ΔU  0 → 1
2 mvi

2  Ui  1
2 mvf

2  Uf  E



Conservative and Conservative and NonconservativeNonconservative ForcesForces
If the work done between points A and B 
is path independent then we can state:  

The work done by the force F going 
from A to B and back to A, WABA ,  is:

If the total work done by a force over a closed path vanishes,

WAB  
A

B
F  d r

1
 

A

B
F  d r

2

WABA  
A

B
F  d r

1
− 

A

B
F  d r

2
 

A

B
F  d r

1
 

B

A
F  d r

2
 0

WABA   F  d r  0!

the force is said to be conservativeconservative!!
Work done by frictional forces is proportional to –dr in both directions,

ergo – nonconservativenonconservative!!



Potential EnergyPotential Energy
The negative of the work done by a 
conservative force along any arbitrary path 
between two points is defined to be the 
change in the potential energypotential energy (associated 
with that force) between those two points. 

ΔU  −
A

B
F  d r

The difference in potential energy depends only on the location of the 
endpoints! Also the zero of U is arbitrary. It is usually chosen for convenience.

The change in gravitational
potential energy: ΔUg  −

0

y
−mg


j  d r  mg 

0

y
dy  mgy

The change in a spring’s
potential energy:

ΔUk  −
0

x
−kx


i  d r  k 

0

x
xdx  1

2 kx2



Example: Releasing the GliderExample: Releasing the Glider

A glider with a mass of 400kg is 
released at an altitude of 1524m and an 
initial velocity of 100mph = 44.7m/s. 
If it lands on the runway at 10m/s, how 
much work was done by the drag force 
on the way down? 

From the work energy theorem the change in kinetic energy is found from the 
net work on the glider. The work done by gravity is mgh. Hence the 
nonconservative work is:

Wnc  ΔK − mgh  1
2 400102 − 44.72 − 4009. 81524  −6.35  106J

An interesting point to note is that by using the work-energy theorem we did 
not need to know the drag coefficient, the average velocity, or the distance 
traveled prior to landing!



Systems of ParticlesSystems of Particles



CenterCenter of Massof Mass
Mathematically we define the center of mass 
as the average of the mass weighted vector 
displacement of the individual particles. 
Defining the total mass as M.

For continuous media both 
sums become integrals: 

M  m1  m2  m3     ∑
i1

N

mi

This allows us to define the center of mass as:

Rcm  1
M m1 r 1  m2 r 2  m3 r 3      1

M ∑
i1

N

mi r i

M   dm, and Rcm  1
M  r dm



Example: COM for Example: COM for ParaboloidalParaboloidal SolidSolid

(a) The total mass is found from the integral

where

Performing this integral we find:

(b) The center of mass Zcm is found from the integral

M  dV  Azdz Az  r2  
a z

M  
0

h
a zdz  a

h2

2  V

Consider a parabolidal solid of height h and uniform 
density r. The height of the solid is given by z = a r2. 
Find (a) the mass, M, of the solid and (b) the z 
coordinate, Zcm , for the center of mass.

Zcm  1
M  zdV  1

V 0

h
zAzdz  1

V 0

h 
a z2dz



Example: COM for Example: COM for ParaboloidalParaboloidal SolidSolid

(b) The center of mass Zcm is found from the integral

Evaluating this integral we find

For the cone  Zcm = 3h/4.  In light of this result, does the height for the 
paraboloidal solid make sense?

Zcm  1
M  zdV  1

V 0

h
zAzdz  1

V 0

h 
a z2dz

Consider a parabolidal solid of height h and uniform 
density r. The height of the solid is given by z = a r2. 
Find (a) the mass, M, of the solid and (b) the z 
coordinate, Zcm , for the center of mass.

Zcm  1
V

3a h3  

3a h3 / 
2a h2  2

3 h



Motion of the Center of MassMotion of the Center of Mass
The total momentum of a system of particles is equal to the momentum 
of the center of mass. In the absence of any net external forcenet external force this 
momentum is conservedconserved. 

To see this consider the time derivative of the center of mass: 

Even though individual particles may be moving relative to the center of 
mass, the center of mass maintains a uniform velocity.

d
dt Rcm  v cm  1

M ∑
i1

N

mi
d
dt r i  1

M ∑
i1

N

mi v i

Pcm ∑
i1

N

mi
d
dt r i  M v cm ∑

i1

N

mi v i



External Forces and the Center of MassExternal Forces and the Center of Mass
The sum of all the net forces on each of the particles determines the 
acceleration of the center of mass. 

d
dt Pcm ∑

i1

N

mi
d
dt v i ∑

i1

N

mi a i ∑
i1

N

Fi−net

However, we need to consider the sum of the forces on each of the particles. 
Some of the forces on the ith particle are due to external forces (e.g. external 
gravitational field). There are also forces between the particles themselves 
(at least a gravitational attraction). This could make the problem virtually 
intractable, but Newton’s 3rd comes to the rescue. It is the basis for 
recognizing that the sum of the internal forces over all of the particles the sum of the internal forces over all of the particles 
cancel!cancel! It is only the sum of all the external forces that induce an 
acceleration of the center of mass.

d
dt Pcm ∑

i1

N

Fi−ext



Example: Asteroid ExplodesExample: Asteroid Explodes
An explosion breaks up an asteroid at 
rest into three pieces whose centers of 
mass travel away in a plane as shown. 
Find the expressions for the speeds of 
masses m1 and m2 as a function of 
mass m3 and the angles q1 and q2 . 

Recognizing that the initial momentum is zero and there are no external 
forces:

P1  P2  P3  m1 v 1  m2 v 2  m3 v 3  0

In component form we 
have 2 algebraic equations 
and 2 unknowns:

x: − m1v1 cos1  m2v2 cos2  0
y: m1v1 sin1  m2v2 sin2  m3v3



Example: Asteroid ExplodesExample: Asteroid Explodes
An explosion breaks up an asteroid at 
rest into three pieces whose centers of 
mass travel away in a plane as shown. 
Find the expressions for the speeds of 
masses m1 and m2 as a function of 
mass m3 and the angles q1 and q2 . 

Solving these algebraic equations 
with the determinate approach: 

x: − m1v1 cos1  m2v2 cos2  0
y: m1v1 sin1  m2v2 sin2  m3v3

det  −m1m2 sin1  2

and: 
v1  −m3m2v3 cos2/ det  m3

m1
v3 cos2

sin1  2

v2  −m1m3v3 cos1/ det  m3
m2

v3 cos1
sin1  2



Example: RocketsExample: Rockets
A spacecraft designed to probe interstellar medium is moving away 
from the Sun with a velocity of vi = 35 km/s (at the orbit of Pluto). At 
that point an advanced rocket exhaust fuel at a velocity of vex = 47 km/s. 
If the mass of the rocket (sans fuel) is 750kg, how much fuel must be 
used to accelerate the rocket to 150 km/s ?

From the rocket equation:
Δv  vex ln Mi

Mf
→ vf − vi  vex ln Mi

Mf

ln Mi
Mf

 150 − 35
47  2.45

Hence the fuel mass is:
Mf  Mie−2.447 → 750  750  Mfuele−2.447

Mfuel  750e2.447 − 750  7915kg



Chapter 11:Chapter 11:

ImpluseImpluse, Collisions,, Collisions,
and and 

Conservations LawsConservations Laws



I  ΔP  Pf − Pi

Fave  I
Δt











Elastic Collisions in OneElastic Collisions in One--DimensionDimension
For an elastic collisions in one-dimension both energy and 
momentum are conserved: 

m1v1i  m2v2i  m1v1f  m2v2f

1
2 m1v1i

2  1
2 m2v2i

2  1
2 m1v1f

2  1
2 m2v2f

2

Rearranging and simplifying: 

m1v1i − v1f  m2v2f − v2i 

m1 v1i
2 − v1f

2  m2 v2f
2 − v2i

2

Now we can divide the second equation by the first and then rearrange: 

m1v1i  m2v2i  m2v2f  m1v1f

v1i − v2i  v2f − v1f

Note that for elastic Note that for elastic 
collisions in one dimension collisions in one dimension 
there are two equations there are two equations 
for two unknowns.for two unknowns.

This pair of equations (linear) isThis pair of equations (linear) is
much easier to work with than the much easier to work with than the 
original. Also note that the relativeoriginal. Also note that the relative
velocities become reversed! velocities become reversed! 



Elastic Collisions in OneElastic Collisions in One--DimensionDimension
Example:Example:

Substituting for vmi we find:

As we already noted, this pair of equations is much easier to woAs we already noted, this pair of equations is much easier to work with rk with 
than the original conservation of energy and conservation of momthan the original conservation of energy and conservation of momentum!entum!

With vMi = 0 and vmf = - vMf , 
our equations become: 

In a one dimensional elastic collision
M is initially at rest. If both masses 
end up with the same speed, vmf = - vMf , 
how are m and M related?

mvmi  mvmf  MvMf → mvmi  mvmf − Mvmf

vmi  vMf − vmf → vmi  −2vmf

− 2mvmf  mvmf − Mvmf with the result M  3m
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