Chapter 12

Rotational Motion



Circular Motion Reviewed 5

6 is the angular displacement wheres =r 6.

99 s the angular velocity « where v = ro.

dt
4V s the instantaneous acceleration a, which has radial
dt -
component Y e’
Y
dw

2 is the angular acceleration « which is related to the

tangential instantaneous acceleration by a, = ra

We studied the motion along the arc length s = 76 and how the forces and

motion are solved. In Chapter 12 we begin to study the energy contained in
the circular motion, and how Newton’s laws and Energy Conservation apply.



Equations of Angular Motion 0

For an abject rotating in a circle with constant
angular acceleration ¢ by definition

0] =wi+at

7

Also by definition, we can use the average angular velocity to

find the final angle after time t:

W, + o,
2

A

0 -6 +w,,1-0+

1
Substituting in for w, | 6, =6, + w7+ Eaz“

Substituting in for 7= (v, -w,)/a Look familiar?

w? = o? + 2a(0; - 0i)




Relating Linear and Angular Motion

The equations if linear and angular motion are analogous.

Linear

Angular
constant a in one dimension constant o
V,=V,+at W, =0, +al

X, =X +Vl+—at 0.=0+ot+_—at

2

& &

;=v;+2a(x,-x) w; = w; + 2000, - 6))

v

¥ =0  Many more analogies exist

Thus the translationis Vv —~®  including with force,
a— ¢ energy and momentum.



Relating Linear and Angular Motion

The simplest way to understand the link s = 0Or
between linear and angular equations of v, =Qr
motion is through the tangential motion.
 =or
S, the arc length, can be thought of as the tangential displacement.
These two
points will
. ) have the
For a rigid rotating body, every same m and a,
point will have the same o and o, not v, and a,
but not the same tangential variables .
v, and a, because of r. »
N ot
e

Ok, but how does Force work?



Torque: the Angular Analog of Force

| Torque can be thought of as an “angular
s o  Force” which causes a change in angular
. S | motion. It is defined as:

T = rFsin@

0 sl In (b) Fsiné is the component of the
PR force perpendicular to the door.
g In (c) rsind is the component of the
moment arm perpendicular to the force,
defined as the lever arm.
The choice Is often determined by the

It should be noted that: particular application or problem.

Torque depends on the choice of the origin

In the next chapter we will define torque .
as a vector via the vector product: T=TxF



Internal Torques Cancel

Consider an arbitrary object rotating about
an axis (the bold point in the figure). Two
Fi; ¥ mass elements exert equal and opposite
W T forces on each other. The torques about the

0 G, _
o / axis are:
)

e H, = . 9. 1 I
i 511 I'I : T le — Flzr]_slnel and T2]_ = F21r25|n92

Since F,, = -F,, and r,sinf, = r,sing, the
Internal torques cancel!

Internal torques cancel in pairs just as the internal forces do.
The net torgue is the sum of external torques!



Moment of Inertia and Torque

What is the analog of Newton’s second law F=ma in circular motion?

Consider a point mass on a circular track and a force perpendicular to the

radius of that track.
Substitute the tangential acceleration in terms of the

analog of linear acceleration, the angular acceleration
F =ma, = m(ar)

This force is the linear motion force and is always
changing direction. The torque (sin0=1) is:

T =7l
Torgue is the analog of force in circular motion.
Simple form in point Substituting the force into the torque equation:
mass case, not always 5
/ T=mra=la

2
[ = mr~, the moment of inertia, is the analog of mass in rotational motion.



Calculating the Moment of Inertia

For point masses and continuous media the moment of
inertia is calculated in a similar way as the center of mass,
but with r? instead of r (and we do not divide by the total
mass).

For a collection of point masses [ = 2 rfmi

. 1 2
For a continuous medium of mass [ = f redm

Similarly to the center of mass, the moment of inertia depends
on the choice of origin through r.

Note that r is the distance to the axis of rotation, and I is not equal
toMr?,.



Example: Moment of Inertia of Two Point Masses

A dumbbell shaped object of two equal
masses a distance | apart is subjected to a
torque, 7, about an axis ¥ of the way

@ o) D between the two masses. How long will

It take for the system to rotate through an
angle 6?

First we need to find the moment of inertia for the system:
_m( LY? 3LY°_ 5 2
1=m(z) +m(3) = gm

The angular acceleration is: o = 7/l = 87/(5ml?)

From the kinematic relations: g = Lg12 = _47_¢2
2 5ml?



Example: Moment of Inertia for a Flat Plate

Y| dm y(r) Find the moment of inertia of the flat plate of mass
\\ boundary M with the dimensions shown in the figure.

P
h
1[ hi’”‘ From symmetry about the y = 0 axis we can find the
< 3

momentum of inertia for the upper half and multiply
by 2. The expression for the upper boundary is:

y(r) = hy + hzﬁhlr

The differential mass element Is:

M/2 M

dm = Tydr = (h1+ ho)R ydr

The integral for the momentum R
of inertia of the entire plate | = jrzdm = 2_[ r n Mh = y(r)dr
(remember the factor of 2) : 0 (N1+h2)




Example: Moment of Inertia for a Flat Plate

Find the moment of inertia of the flat plate of mass
y(r) M with the dimensions shown in the figure.

boundary

hlj: \ Substituting in the expression for y(r) and integrating:
X v jrzdmzszrz M

= (hp +h )R y(rydr

e = (h1+h2)RJ- (h hl )dr

_ R3
= (h1+h2)R<h +(h2—ha) = )

Y\ dm

S

(h1 + 3h2) MR2

Algebraically simplifying: | = 6 (hy +hy)

If h,=h, then | reduces to | = 1/3 M R?, the correct result for a flat plate.



Example: Moment of Inertia of a Thin Disk
about its Center

Due to circular symmetry we only have
to integrate along the radial direction.

N\ The differential mass element is:

i

_ M
dm = A 2rdr

Performing the moment of inertia integral:

R
I T M 34 2rtM R4 _ 1 2
I—_"rdm—jo—Aandr— R2 4 2MR

This result can be used to sum thin disks for any objects with circular
symmetry such as a sphere or disk etc.



Example: Moment of Inertia for a Sphere
about its Axis

For a sphere of radius R, we can sum (integrate) the
moments of inertia for series of infinitesimal disks.

The momentum of inertia for an infinitesimal disk 1s:
dl = y?dm = y?pdV = yzgnyzdz

The radius of these disks, y(z), is found from:

y2 = R2 - 72

Perforlfning_the Integral | _ IR (Rz_zz)%ﬂ(Rz_zz)dz - M jR (R2 — 22)%dz
for | yields:

= 5 R3 27 (2R® —4R%/3+ 2R¥/5) = 3 > MR?(2 — 4/3 + 2/5)
| could also have been 1” ) )
found from a spherical ! = gMR%(2+6/5) = £MR

volume element.



Example: Thin Spherical Shell

z For a thin spherical shell the mass element is:

dm = M27ry(Rd9) Manzsmede

i i <] Finding the mass element was the hard part.

\ f / ~ The integral for the moment of inertia is:

| = jrzdm = 'yzdm = Z”TMR“ r sin®0do
. 0

_ 27M pa — ~ac20) i _ 1 mp2(o _
| = 2ZR | " (1 - cos20)singde MR (2

_ 2 \Mp2
|—3|\/|R

Could we have used the moment of inertia for a solid sphere of radius R and
subtracted the moment of inertia for a solid sphere (same density) of slightly

smaller radius, R-6R ?
Absolutely, give it a try!

%)



Some Examples
of Moments of
Inertia
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Example: Moment of Inertia of a Rod

Find the moment of inertia for a rod of
| mass m and length ( about an axis
e S perpendicular to the rod through its
o] it (a) center and its (b) end.

(a) The integral for | with an axis through its center is straightforward

2 2 n (V2
| = f x2dm = I X2 udx = —f x2dx
112 12 0 J_y2

with the result: | _ m 2(0/2)° _ 12
( 3 12

What is particularly interesting about this result is to note what happens
when we consider its momentum of inertia about an axis through its end.



Example: Moment of Inertia of a Rod

Find the moment of inertia for a rod of
mass m and length ( about an axis
perpendicular to the rod through its

(a) center and its (b) end.

(b) The integral for I with an axis through its end is also straightforward

0 )
. 2 . m 2 _ 1 2
I—on dm——Q J-Ox dx —3m0

We note that the difference between this result and the
moment of inertia about an axis through its center of mass is:

The increase in | just happens
to be m times the distance to
the CM squared!

Al = leng — lom = %mo2 = m(0/2)?



The Parallel Axis Theorem

Given the moment of inertia about an axis through the center
of mass of an object, the moment of inertia about any axis
parallel to that axis can be written as:

Where h is the distance to

. ’) center of mass (or axis of
R I — I cm T+ M h the moment of inertia) of
the object.
e
h For the cylinder off axis:
o
e © 1= 3MR?+Mh’

e

This can simplify the solution of rotational motions about axes and also
differences between rotational motion around different axes.



Example: Parallel Axis Theorem for Flat Plate

For a flat plate the mass element is:

= The moment of inertial integral with the
e rotation axis through the CM is:

al2
_ [ r2qm — > M _2M a’b _ 1 2

The moment of inertial integral with the rotation axis along one side is:

lside = jrzdm = J‘:xz%bdx = %a%b = %Ma2

From the Parallel
AXIis Theorem:

lsice = lom + M(a/2)° = (112 + i)MaZ — %Ma2
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