Chapter 12

Rotational Motion ||



Relating Linear and Angular Motion

The equations if linear and angular motion are analogous.

Linear

Angular
constant a in one dimension constant o
V,=V,+at W, =0, +al

X, =X +Vl+—at 0.=0+ot+_—at
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¥ =0  Many more analogies exist

Thus the translationis Vv —~®  including with force,
a— ¢ energy and momentum.



Relating Linear and Angular Motion

The simplest way to understand the link s = 0Or
between linear and angular equations of v, =Qr
motion is through the tangential motion.
 =or
S, the arc length, can be thought of as the tangential displacement.
These two
points will
. ) have the
For a rigid rotating body, every same m and a,
point will have the same o and o, not v, and a,
but not the same tangential variables .
v, and a, because of r. »
N ot
e

Ok, but how does Force work?



Torque: the Angular Analog of Force

| Torque can be thought of as an “angular
s o  Force” which causes a change in angular
. S | motion. It is defined as:

T = rFsin@

0 sl In (b) Fsiné is the component of the
PR force perpendicular to the door.
g In (c) rsind is the component of the
moment arm perpendicular to the force,
defined as the lever arm.
The choice Is often determined by the
It should be noted that: particular application or problem.

Torque depends on the choice of the origin

In the next chapter we will define torque .
as a vector via the vector product: T=TxF



Moment of Inertia and Torque

What is the analog of Newton’s second law F=ma in circular motion?

Consider a point mass on a circular track and a force perpendicular to the
radius of that track.

Substitute the tangential acceleration in terms of the
analog of linear acceleration, the angular acceleration

F =ma, = m(ar)

This force is the linear motion force and is always
changing direction. The torque (sin0=1) is:

T =7l
Torgue is the analog of force in circular motion.
Simple form in point Substituting the force into the torque equation:
mass case, not always 5
/ T=mra=la

2
[ = mr~, the moment of inertia, is the analog of mass in rotational motion.



Calculating the Moment of Inertia

For point masses and continuous media the moment of
inertia is calculated in a similar way as the center of mass,
but with r? instead of r (and we do not divide by the total
mass).

For a collection of point masses [ = 2 rfmi

. 1 2
For a continuous medium of mass [ = f redm

Similarly to the center of mass, the moment of inertia depends
on the choice of origin through r.

Note that r is the distance to the axis of rotation, and I is not equal
toMr?,.



Example: Moment of Inertia of a Thin Disk
about its Center

Due to circular symmetry we only have
to integrate along the radial direction.

N\ The differential mass element is:

i

_ M
dm = A 2rdr

Performing the moment of inertia integral:

R
I T M 34 2rtM R4 _ 1 2
I—_"rdm—jo—Aandr— R2 4 2MR

This result can be used to sum thin disks for any objects with circular
symmetry such as a sphere or disk etc.



Example: Moment of Inertia of a Cone

h Find the moment of inertia of a uniform
solid cone of height h, density p, about its
central axis.

dm = pdV. d : -
S el o The differential element for the moment of

Inertia for a disk of thickness dy is:

«— R—>»
dl = %rzdm = %rz(nrz)dy

The dependence of rony is: r(y) = %(h —y) Performing the integral:

Cmp RV (" nag, TP fR\*hs Integration is a bit easier
= _<_> I (h—y)'dy = ( h ) 5 if we invert the cone.

_ ( ) h® _ 3 MR2 Also, does this result
anZh/3 make sense?




Moment of Inertia g
oment o wr
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Several Examples ,

i Thin rod about center { : [ Thin rod about end

{=%me T [ =iMe
/,//‘H‘\_ ons
/'/ B

Note that the moment of @&
- . . |\ 3N f/ | < ;

\. \ 1 { R ,: =,./ o
Inertial is always of the - T e =~
form, | = @ MR? , where . \ < .

- Thin ring or hollow cylinder Disk or solid cylinder
a < 1' Why IS that? ! dh.l-‘l]':’lj:\’i“ " I -;‘F):"}\Ij'fi't:\ e 4 i ; " » ;| ;
Solid cylinder about its perpendicular bisector
L _ b} I'=1iMR> + 5M(? _
Solid sphere about diameler Hollow spherical shell about diameter Solid sphere about tangent line T
I =i MR? I =3 MR? I =1MR

What about the moment

R ) B\
- - = " ! & f
of inertia of a ring or -
- ? \\ : = ‘\\“ //"' ‘\\ 5 //;’
hollow cylinder” = =
i_-m[ j\i.IL; about perpendicular axis Flat plate about central axis 0
I = SM(a® + b?) [ =-1Ma
| h }r_:‘*?:-;
" il



Moment of Inertia for a
Rectangle About an Axis
Perpendicular to its Center

A rectangle is does not have circular
symmetry about its axis of rotation. Does
this change things? Not really!

The differential mass element dm = M/A dxdy.
The distance to an arbitrary mass element from the axis
of rotation is r? = x? + y2. Hence:

M @ b/2d

_a/2 9 —bJ2 A —‘.a/ZI: 3 7Y X]b/z y
_M al2 b3 y_
= ab j—a/Z[ 12 +by [ Y73 i|—a/2

| = 2-M(a? + b?)

a2 b/
| = A.‘- _[ (X% + y?)dxdy =




The Parallel Axis Theorem

Given the moment of inertia about an axis through the center
of mass of an object, the moment of inertia about any axis
parallel to that axis can be written as:

R

Where h is the distance to

_ 2 center of mass (or axis of
I=1_ + Mh

the moment of inertia) of

w

e

e

the object.

For the cylinder off axis:

I=%MR2+ Mh*

This can simplify the solution of rotational motions about axes and also
differences between rotational motion around different axes.



Example: Moment of Inertia of a Rod

Find the moment of inertia for a rod of
| mass m and length ( about an axis
e S perpendicular to the rod through its
o] it (a) center and its (b) end.

(a) The integral for | with an axis through its center is straightforward

2 2 n (V2
| = f x2dm = I X2 udx = —f x2dx
112 12 0 J_y2

m 2(0/2)° _ 1

_ 1 2
. 3 17 M

with the result: | =

What is particularly interesting about this result is to note what happens
when we consider its momentum of inertia about an axis through its end.



Example: Moment of Inertia of a Rod

Find the moment of inertia for a rod of
mass m and length ( about an axis
perpendicular to the rod through its

(a) center and its (b) end.

(b) The integral for I with an axis through its end is also straightforward

0 )
. 2 . m 2 _ 1 2
I—on dm——Q J-Ox dx —3m0

We note that the difference between this result and the moment
of inertia about an axis through its center is:

1 o 5 Al is m times the distance to the
Al = leng — lem = ng = m((/2) CM squared. Verification of
the parallel axis theorem!



Example: Parallel Axis Theorem

What is the moment of inertia of the Moon about the Earth? What is the
ratio of the moment of inertia of the actual Moon to that of the Moon as a
point mass? Approximate the Moon as a sphere and ignore the rotation

about the sun efc.

Moon

M =7.4x10%kg
R =1,738,000m
h = 384,400,000m

The ratio is:

iMR2 + Mh*

I,

12

Mh*

I=1_+ MH
2 2 2
[=_MR®+ Mh

I=1.09%10" kgm’

We can treat the

moon as a point
mass to a degree
of accuracy of 10>,

=1.00001 =1




Rotational Energy

In the simplest sense we learned AW = FAx in linear motion.
What are the work and energy in rotational motion?

Again consider a point mass on a circular track
and a force perpendicular to the radius of that
track (for simplicity). For a distance along the arc

length:
AW = FAS

Substituting in for the force from the torque
(sin0=1) and the arc length in terms of r and 0:

T=rF AS = rA0

we find the expression for work done to apply a torque to the mass
across and angle AO

AW = %AS = %FAH = 7AO More generally| W = j’[d@




Rotational Energy

In the simplest sense we learned AW = FAx in linear motion.

What are the work and energy in rotational motion?

If we integrate the torque we find the
work done in the angular acceleration,
generating rotational kinetic energy:

W = frd@ f[ade fI—dG

14 Ifded If d 11 0
= f; = fa) a)=5 (0, —;)

The K_, is as we

expect, with I and 7 = l T? How does this effect
o analogs of LA rolling motion?
linear motion.




Kinetic Energy for a Rolling Object

W For a rolling object the total kinetic energy is
/ the sum of the linear and rotational kinetic
energies.
=
Kroll = Kiin + Krot = %mvz + %M)Z

If a sphere rolls down an incline (without slipping), what fraction of
Its kinetic energy Is rotational?

The non-slip condition is v = Rw. Hence the ratio of the KE’s Is:

Krot _ l? _ (2/5)mR2a)2
Kiin + Kot mv2+ 10?2  mv2+ (2/5)mR2%w?
Krot 2v? _ 2

Kiin + Krot 5v2 +2v2 7



Example: A Ball Rolling Down an Incline

) After rolling down a height h, what is the speed of
o the ball after starting from rest?

Even in the presence of friction, if the ball rolls and
¥ does not slip, the total mechanical energy Is
conserved. (Without friction the ball will only slide.)

AU+ AK =0 - —mgh+%mv2+%lw2 =0
mgh = %mv2 + %mRZco2 = liomv2

V = ‘/%Zgh =‘/% /2gh < ./2gh

The ball has a lower velocity because some of the potential can been
converted into rotational kinetic energy!



Flashback: Potential Energy Curves

A ball is rolled onto the path shown.
If its initial velocity iIs v = 6m/s does
the ball make it over the last hill?

h, =2m
h =1m

When we first analyzed this problem,
we ignored rotational kinetic energy
and the ball did not quite make it over
the last hill.

h,=-2m

Now we ask the question: E — %m\/i2 + %Iw? 3 mgh,

The answeris: E = %mViz + %mViz = %Omviz = 25.2m

E = 25.2m > 2(9.8)m = 19.6m

The additional rotational kinetic energy was enough to climb the last hill!



Flashback: Potential Energy Curves

A ball is rolled onto the path shown.
If its initial velocity iIs v = 6m/s what
Is the final velocity of the ball?

h, =2m
h, = 1m
When we first analyzed this problem,
the ball did not quite make it over the

last hill. Now the conservation of
energy yields:

h,=-2m

~Lpves vz o Lmyve = L
E = > MV + £ MVi = i mvi = 10mvf mgh;

Vi = VvZ+ 10 —=>ghy - Vi = Jvz + 10gh,/7

= J36+ 10(19.6)/7 = 8.0m/s

The conservation of energy including rotational kinetic energy was enough to
climb the last hill but it also resulted in a lower velocity than that for a particle
with v; = 6 m/s that falls 2m!



Balls Rolling on an Inclined Track (again)

Before we found the time that a sliding
ball (starting from rest) spent on each
side of the track. How will the
rotational energy change that ratio?

Since both balls start from the same
height, hence they both have the same

From kinematics we know thatv = at. Velocity at the bottom: R T
Hence: =479

2
_ _ R t, _ axy _ Vi 2d,
Vi = aily = arly t, ~ ar 2d2 sz
ty _di _ h sinf; _ sing;
to dz sin91 h Sin91

This is the same ratio that we obtained without rotation.
Both accelerations are reduced by the same factor.



Balls Rolling on an Inclined Track (again)

How long will it take to reach the
bottom sliding versus rolling?

Balls accelerate over the same distance.
However they obtain different
velocities at the bottom. Hence:

From kinematics the ratio of the final velocities leads to:
Vslid _ J2asiad _ /aslid _ |1
Vroll Jm droll 5
lsid _ Vslid @&ron _ |7 5 _ |5
troll Adslid  Vroll 5 7 !

The time on the incline for a sliding mass is less (larger accelerations and
velocities) than a rolling ball.
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