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Torque depends on the choice of the origin

  rFsin

  r  F

Torque: the Angular Analog of ForceTorque: the Angular Analog of Force

Torque can be thought of as an “angular 
force” which causes a change in angular 
motion. It is defined as:

In (b) Fsinq
 

is the component of the 
force perpendicular to the door.
In (c) rsinq

 
is the component of the 

moment arm perpendicular to the force, 
defined as the lever arm.
The choice is often determined by the 
particular application or problem.It should be noted that:

In the next chapter we will define torque
as a vector via the vector product: 





Note that r is the distance to the axis of rotation, and I is notnot equal 
to M r2

cm .



Example: Moment of Inertia of a Thin Disk Example: Moment of Inertia of a Thin Disk 
about its Centerabout its Center

dm  M
A 2rdr

Due to circular symmetry we only have 
to integrate along the radial direction. 
The differential mass element is: 

Performing the moment of inertia integral:  

I   r2dm  
0

R M
A 2r3dr  2M

R2
R4

4  1
2 MR2

This result can be used to sum thin disks for any objects with circular 
symmetry such as a sphere or disk etc. 



Example: Moment of Inertia of a ConeExample: Moment of Inertia of a Cone

Find the moment of inertia of a uniform 
solid cone of height h, density r, about its 
central axis.

The differential element for the moment of 
inertia for a disk of thickness dy is:

dI  1
2 r2dm  

2 r2r2dy

The dependence of r on y is: ry  R
h h − y Performing the integral:

I  
2

R
h

4 
0

h
h − y4dy  

2
R
h

4 h5

5

I  M
2R2h/3

R
h

4 h5

5  3
10 MR2

Integration is a bit easier 
if we invert the cone. 
Also, does this result does this result 
make sense?make sense?



Moment of Inertia
Several Examples

Note that the moment of 
inertial is always of the 
form, I = a

 
MR2 , where 

a

 
< 1. Why is that? 

What about the moment 
of inertia of a ring or 
hollow cylinder? 



Moment of Inertia for a 
Rectangle About an Axis 
Perpendicular to its Center

A rectangle is does not have circular 
symmetry about its axis of rotation. Does 
this change things?  Not really! 

The differential mass element dm = M/A dxdy.
The distance to an arbitrary mass element from the axis 
of rotation is r2 = x2 + y2. Hence:

I  M
A −a/2

a/2 
−b/2

b/2
x2  y2dxdy  M

A −a/2

a/2 x3

3  y2x
−b/2

b/2
dy

I  M
ab −a/2

a/2 b3

12  by2 dy  M
a

b2

12 y  y3

3 −a/2

a/2

I  1
12 Ma2  b2





Example: Moment of Inertia of a RodExample: Moment of Inertia of a Rod
Find the moment of inertia for a rod of 
mass m and length     about an axis
perpendicular to the rod through its 
(a) center and its (b) end. 

ℓ

(a) The integral for I with an axis through its center is straightforward

I  
−ℓ/2

ℓ/2
x2dm  

−ℓ/2

ℓ/2
x2dx  m

ℓ −ℓ/2
ℓ/2

x2dx

with the result: I  m
ℓ

2ℓ/23

3  1
12 mℓ2

What is particularly interesting about this result is to note what happens
when we consider its momentum of inertia about an axis through its end.



Example: Moment of Inertia of a RodExample: Moment of Inertia of a Rod
Find the moment of inertia for a rod of 
mass m and length     about an axis
perpendicular to the rod through its 
(a) center and its (b) end. 

ℓ

(b) The integral for I with an axis through its end is also straightforward

We note that the difference between this result and the moment
of inertia about an axis through its center is:

I  
0

ℓ
x2dm  m

ℓ 0

ℓ
x2dx  1

3 mℓ2

DDII is is mm times the distance to the times the distance to the 
CM squared. Verification of CM squared. Verification of 
the parallel axis theorem!the parallel axis theorem!

ΔI  Iend − Icm  1
4 mℓ2  mℓ/22





ΔW  FΔs

  rF Δs  rΔ

ΔW  
r Δs  

r rΔ  Δ W   d





Kinetic Energy for a Rolling ObjectKinetic Energy for a Rolling Object

For a rolling object the total kinetic energy is 
the sum of the linear and rotational kinetic 
energies. 

Kroll  Klin  Krot  1
2 mv2  1

2 I2

If a sphere rolls down an incline (without slipping), what fraction of 
its kinetic energy is rotational? 

The non-slip condition is v = Rw. Hence the ratio of the KE’s is:

Krot
Klin  Krot

 I2

mv2  I2  2/5mR22

mv2  2/5mR22

Krot
Klin  Krot

 2v2

5v2  2v2  2
7



Example: A Ball Rolling Down an InclineExample: A Ball Rolling Down an Incline

After rolling down a height h, what is the speed of 
the ball after starting from rest?

Even in the presence of friction, if the ball rolls and 
does not slip, the total mechanical energy is 
conserved. (Without friction the ball will only slide.)

ΔU  ΔK  0 → −mgh  1
2 mv2  1

2 I2  0

mgh  1
2 mv2  1

5 mR22  7
10 mv2

v  5
7 2gh  5

7 2gh  2gh

The ball has a lower velocity because some of the potential can been 
converted into rotational kinetic energy! 



Flashback: Potential Energy CurvesFlashback: Potential Energy Curves
A ball is rolled onto the path shown. 
If its initial velocity is v = 6m/s does 
the ball make it over the last hill? 

When we first analyzed this problem, 
we ignored rotational kinetic energy 
and the ball did not quite make it over 
the last hill.

Now we ask the question: 

The answer is: 

The additional rotational kinetic energy was enough to climb theThe additional rotational kinetic energy was enough to climb the last hill!last hill!

E  1
2 mvi

2  1
2 Ii

2 ?
 mgh2

E  1
2 mvi

2  1
5 mvi

2  7
10 mvi

2  25.2m

E  25.2m  29.8m  19.6m



Flashback: Potential Energy CurvesFlashback: Potential Energy Curves
A ball is rolled onto the path shown. 
If its initial velocity is v = 6m/s what  
is the final velocity of the ball? 

When we first analyzed this problem, 
the ball did not quite make it over the 
last hill. Now the conservation of 
energy yields:

The conservation of energy including rotational kinetic energy was enough to 
climb the last hill but it also resulted in a lower velocity than that for a particle 
with vi = 6 m/s that falls 2m!

E  1
2 mvi

2  1
5 mvi

2  7
10 mvi

2  7
10 mvf

2 − mgh2

vf
2  vi

2  10
7 gh2 → vf  vi

2  10gh2/7

vf  36  1019.6/7  8.0m/s



Balls Rolling on an Inclined Track (again)Balls Rolling on an Inclined Track (again)

Before we found the time that a sliding 
ball (starting from rest) spent on each 
side of the track. How will the 
rotational energy change that ratio? 

Since both balls start from the same 
height, hence they both have the same 
velocity at the bottom: From kinematics we know that v = at.

Hence: vf  10
7 gh

vf  a1t1  a2t2 →
t1
t2

 a2
a1


vf

2

2d2

2d1
vf

2

t1
t2

 d1
d2

 h
sin1

sin2
h  sin2

sin1

This is the same ratio that we obtained without rotation. 
Both accelerations are reduced by the same factor.



Balls Rolling on an Inclined Track (again)Balls Rolling on an Inclined Track (again)

How long will it take to reach the 
bottom sliding versus rolling? 

Balls accelerate over the same distance. 
However they obtain different 
velocities at the bottom. Hence: 

From kinematics the ratio of the final velocities leads to:

The time on the incline for a sliding mass is less (larger accelerations and 
velocities) than a rolling ball.

vslid
vroll


2aslidd
2arolld

 aslid
aroll

 7
5

tslid
troll

 vslid
aslid

aroll
vroll

 7
5

5
7  5

7
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