
Chapter 12Chapter 12
Rotational DynamicsRotational Dynamics

Chapter 13Chapter 13
Rotational VectorsRotational Vectors

Angular MomentumAngular Momentum



Rotational DynamicsRotational Dynamics
The knowledge of a body’s moment of inertia allows us to use the rotational  
analog of Newton’s second law to determine the object’s behavior.

A cylindrical satellite of radius R is spinning at a 
frequency f. It must be stopped so that a space 
shuttle crew can make repairs. Two small jets 
each with a thrust F are mounted tangent to the 
satellite’s surface as shown. How long must they 
fire to bring the satellite to rest?

Note that the moment of inertia for a 
cylinder is the same as that for a disk! Does this result make sense?

Δ  t and   2RF

Δ  2f  
I t  2RF

I t

t  2fMR2/2
2RF 

fMR
2F



Example: Rotational DynamicsExample: Rotational Dynamics
A solid cylinder of mass M and radius R is used to 
support a massless rope and a bucket of mass m. 
Find the rate of acceleration of the bucket into the 
well.

First consider the free body 
diagram for the bucket:

Next the free body diagram for the 
cylinder. The tangential acceleration 
of the cylinder must equal a. 

mg − T  ma

a  R  
I R  TR2

MR2/2
 2T

M



Example: Rotational DynamicsExample: Rotational Dynamics
A solid cylinder of mass M and radius R is used to 
support a massless rope and a bucket of mass m. 
Find the rate of acceleration of the bucket into the 
well.

Substituting for T to solve for a:

Note that the acceleration is reduced 
due to the rotational inertia of the 
cylinder. 

a  2T/M  2mg − a/M → a 1  2m
M  2 m

M g

a  2m
M  2m g

Does this result make sense? 



Example: Atwood Machine (again)Example: Atwood Machine (again)
Now find the acceleration for the masses in an Atwood 
machine with a cylindrical pulley of radius R and a 
moment of inertia I. 

For this case the tension in the rope is different on 
each side. There are now three free body diagrams to 
consider. The two for the suspended masses leads to 
the equations:

There is now a net torque on the pulley and after 
applying the no slip condition its equation of motion is: 

m2g − T2  m2a and T1 − m1g  m1a

  T2 − T1R  I  Ia/R



Example: Atwood Machine (again)Example: Atwood Machine (again)
Now consider an Atwood machine with a cylindrical 
pulley of radius R and a moment of inertia I. 

Dividing the torque equation by R and adding the 
two equations yields:

Compare this to the solution for a massless pulley. 

Again the acceleration is reduced due to the rotational inertia of the pulley. 

m2 − m1g  m1  m2  I/R2a

a  m2 − m1g
m1  m2  I/R2

a  m2 − m1
m1  m2

g



Example: Incline Plane w Pulley & FrictionExample: Incline Plane w Pulley & Friction
A block of mass m is attached by a massless 
string to a solid cylinder pulley of mass M and 
radius R. When the mass is released it 
accelerates down the plane with an acceleration 
a. Find the coefficient of kinetic friction, mk . 

Newton’s 2nd for the mass m yields:

Again (the rope does not slip) the tangential acceleration of the pulley is 
equal to this acceleration: 

mg sin − T − kmgcos  ma

a  R  
I R  R2

I T

For a solid cylinder I = ½ MR2 and after combining the equations:

m  M/2a  mg sin − kmgcos



Example: Incline Plane w Pulley & FrictionExample: Incline Plane w Pulley & Friction
A block of mass m is attached by a massless 
string to a solid cylinder pulley of mass M and 
radius R. When the mass is released it 
accelerates down the plane with an acceleration 
a. Find the coefficient of kinetic friction, mk . 

Solving for mk :

If mk = tanq
 

then there is no acceleration and the moment of inertia of the 
pulley is irrelevant. However for steeper angles the moment of inertia again 
reduces the acceleration of the mass sliding down the incline.

m  M/2a  mg sin − kmgcos

k 
mg sin − m  M/2a

mgcos  tan − m  M/2
mcos

a
g

Could we have solved this problem with the work-energy theorem? You betcha!
Now DK includes rotational kinetic energy as well. Give it a try!



Example: Disk Rotating About Axis on EdgeExample: Disk Rotating About Axis on Edge
A uniform disk or radius R is rotating about a 
horizontal axis at its edge. What is its minimum 
angular speed, w, required for it to make a complete 
circle? 

From the conservation of energy:

Solving for w:

Ebot  1
2 I2  Etop  2mgR

From the parallel axis theorem the momentum
of inertia about an axis on its edge is: I  1

2 mR2  mR2  3
2 mR2

2 
4mgR

I 
4mgR

3mR2/2
 8

3
g
R

  2 2g
3R
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A  B  ABcos

A  B  ABsin

k



The Vector Product (Cross Product)The Vector Product (Cross Product)

The vector product can be formed by expanding 
the vectors in their basis and applying the sinq

 between the individual basis vectors.

A  B  Ax

i  Ay


j  Az


k  Bx


i  By


j  Bz


k

A  B  AyBz − AzBy

i  AzBx − AxBz


j  AxBy − AyBx


k


i 


i  0,


j 


j  0,


k 


k  0


i 


j 


k ,


j 


k 


i ,


k 


i 


j


j 


i  −


k ,

k 


j  −


i ,

i 


k  −


j

The net result is:

For A and B in the x – y plane as shown:

A  B  ABsin

k



The Vector Product (Cross Product)The Vector Product (Cross Product)

The net result of this is we can express the 
vector product of A and B as the determinant:

A  B 


i


j


k

Ax Ay Az

Bx By Bz




i Ax Bx

j Ay By

k Az Bz

The magnitude of the 
vector product of A and B: A  B  ABsin

The vector A x B is normal to the plane formed by the two vectors 
A and B with a direction determined by the “right hand rule”.



  r  v
r2



  r  F depends on the choice of origin



Example: TorqueExample: Torque

Give the magnitude and direction of the 
smallest force you could apply at P to 
produce a torque of 1.2 N-m

(a) about an axis through the center of the disk
(b) about a vertical axis tangent to the edge.

(a) For an axis through the center, the lever arm is 
r = 35cm. The maximum for sinq

 
is when q

 
= p/2.

(b) For an axis through the edge, the force must be perpendicular to the disk 
or else some component of the force will be parallel to the moment arm.

  rF → F  /r  1.2/. 35  3.4N

  rF → F  /r  1.2/. 7  1.7N

To minimize the force there must be no component of the force parallel to 
the moment arm.



Example: TorqueExample: Torque

The torque is given by t
 

= r x F or: 

Hence the answers are:

A sphere of radius R = 1m is centered at the origin. 
At what coordinates on the surface of the sphere 
would you apply a force F = 5N in the +y 
direction to produce (about the origin) 

(a) 5Nm torque pointing in the -z direction
(b) 3.4Nm torque pointing in the +z direction
(c) 3.4Nm torque pointing in the –x direction?

  x

i  y


j  z


k  5


j  5x


k − 5z


i and

R2  x2  y2  z2  1

(a) x  −1, y  z  0

(b) x  . 68, y   1 − . 682  . 73, z  0

(c) x  0, y  . 73, z . 68

The finite values for y allow 
for force to lie on the surface 
of the sphere.



  d
dt

Angular Velocity and Acceleration as Angular Velocity and Acceleration as 
VectorsVectors
(a) An increase in angular 
speed alone means that Dw

 

is 
parallel to w. (b) A decrease 
in angular speed alone means 
that Dw

 

is antiparallel to w. 
(c) If w

 

only changes 
direction, then for small Dw

 the angular acceleration is 
perpendicular to w.  

A change in the direction of the angular velocity without a change in angular 
speed is analogous to the radial acceleration for circular motion. Remember 
angular velocity and angular acceleration are vectors!



L  r  p

L  I

  I  dL
dt
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