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Rotational Dynamics

The knowledge of a body’s moment of inertia allows us to use the rotational
analog of Newton’s second law to determine the object’s behavior.

A cylindrical satellite of radius R Is spinning at a
frequency f. It must be stopped so that a space
shuttle crew can make repairs. Two small jets
each with a thrust F are mounted tangent to the
satellite’s surface as shown. How long must they
fire to bring the satellite to rest?

Aw = at and 7 = 2RF

Aa):27rf:%t:2RTFt

. 27fMR?/2  zfMR
B 2RF — 2F

Note that the moment of inertia for a

) : ) Does this result make sense?
cylinder is the same as that for a disk!



Example: Rotational Dynamics

o)) :,E"? A solid cylinder of mass M and radius R is used to

1 (A support a massless rope and a bucket of mass m.

A 0 Find the rate of acceleration of the bucket into the
- r

| N First consider the free body / \

diagram for the bucket: 7 B
.IIII ‘I IIII|
mg—T = ma %1 |

Next the free body diagram for the
cylinder. The tangential acceleration
of the cylinder must equal a

. b I TR2 2T
a=aR = IR— NMRZ2 ~ M



Example: Rotational Dynamics

A solid cylinder of mass M and radius R is used to
support a massless rope and a bucket of mass m.
Find the rate of acceleration of the bucket into the

well.

Substituting for T to solve for a:

a=2T/M =2m(g —a)/M - a<1+ 2wm> = Z%Q

2m

&= M+2mY

Note that the acceleration is reduced
due to the rotational inertia of the Does this result make sense?

cylinder.



Example: Atwood Machine (again)

+ =

Now find the acceleration for the masses in an Atwood
machine with a cylindrical pulley of radius R and a
moment of inertia .

For this case the tension in the rope is different on
each side. There are now three free body diagrams to
consider. The two for the suspended masses leads to

the equations:

mog—T, =mea and T; —mig = mia

There is now a net torque on the pulley and after
applying the no slip condition its equation of motion is:

1 =(T2-T1R = la = la/R



Example: Atwood Machine (again)

Y Now consider an Atwood machine with a cylindrical
!
1

pulley of radius R and a moment of inertia I.

ak Dividing the torque equation by R and adding the
\ y / two equations yields:
. (m2—my)g = (M +m; + I/R?)a
1 A q — (mz — ml)g
i:\ m M1+ Mo + |/R?
e 4 7n2
Compare this to the solution for a massless pulley.
H
_ Ma—My
a= M1 + Mo 9

Again the acceleration is reduced due to the rotational inertia of the pulley.



Example: Incline Plane w Pulley & Friction

B~ A block of mass m is attached by a massless
SO string to a solid cylinder pulley of mass M and
N Ny 2N radius R. When the mass Is released it
\ accelerates down the plane with an acceleration

N a. Find the coefficient of kinetic friction, y,.

Newton’s 2" for the mass m yields: mgsing — T — yxmgcosé = ma

Again (the rope does not slip) the tangential acceleration of the pulley is
equal to this acceleration:

a=aR=TR=RT

For a solid cylinder | =% MR? and after combining the equations:

(m+ M/2)a = mgsing — uymgcosé



Example: Incline Plane w Pulley & Friction

R A block of mass m is attached by a massless
BOp string to a solid cylinder pulley of mass M and
:‘ N radius R. When the mass is released it
i accelerates down the plane with an acceleration
il a. Find the coefficient of kinetic friction, y,.

(m+ M/2)a = mgsind — uxmgcos o

Solving for p,: Iy = mgsind — (m+ M/2)a _ ang — (m+ M/2)

mg cos 6 mcos 6

QO

If 1, = tan@ then there is no acceleration and the moment of inertia of the
pulley is irrelevant. However for steeper angles the moment of inertia again
reduces the acceleration of the mass sliding down the incline.

Could we have solved this problem with the work-energy theorem? You betcha!
Now AK includes rotational kinetic energy as well. Give it a try!



Example: Disk Rotating About Axis on Edge

A uniform disk or radius R is rotating about a
horizontal axis at its edge. What is its minimum

angular speed, w, required for it to make a complete
circle?

From the conservation of energy:

Evot = 502 = Eiop = 2MgR

From the parallel axis theorem the momentum

of inertia about an axis on its edge Is: | = %mR2 +mR? = %mR2

» _ 4mgR _ 4mgR
| 3mR?/2
29

w =2 3_R

-89
3R

Solving for w:
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The Vector Product (Cross Product)
Vs. Scalar Product

In terms of the angle between the two

= vectors, the vector and scalar products
y B are written:
% A-B = ABcosf
= » - 2 ~
A X A x B = ABsingk

Where the unit vector k points
perpendicular to both A and B.

What is the vector product in unit vector notation?

We’ve discussed scalar products in previous lectures.
An example of a scalar product is Work.

W =F - AF = (F,Ax) + (F,Ay) + (F,Az) = FArcos®6




The Vector Product (Cross Product)

] The vector product can be formed by expanding
B the vectors in their basis and applying the sing
y B between the individual basis vectors.
% TxT=0 Jxj=0 kxk=0
e P
A X I x] =k, Jxk=1, kx1=]
FxT =k kxf=-F, Txk=—]

The net result is:
= (AT +AJ +AK) x (BT +Byj +B.k)
= (AyB; — A;By)T + (A:Bx — AB2) T + (ABy — AjBy)K

For A and B in the x — y plane as shown:

—

A x B = ABsinok



The Vector Product (Cross Product)

i The net result of this is we can express the
. B vector product of A and B as the determinant:
y B
L N
e__ Bt KXE): Ac Ay A, | = ]\ Ay By
4 B« By B, | |k A B,

The magnitude of the

vector product of A and B: ‘A % B‘ = ABsIng

The vector A x B is normal to the plane formed by the two vectors
A and B with a direction determined by the “right hand rule”.



The “right hand rule” and the angular
velocity vector

The “‘right hand rule” refers to the direction of a vector product
result being in the direction of your thumb as you wrap your
fingers around from the first vector to the second. This applies
to ALL vector products.

The angular velocity vector
actually comes from the |
vector product

w — :==__ S -__
r ‘ - =

and points along the axis of rotation according to the right
hand rule. Sign of m obviously relates to direction of rotation.




Torque as a Vector

Torque also formally comes from the vector product

7 =T xF depends on the choice of origin

S So, as in the figure shown, the torque is always
perpendicular to both r and F.

Screws and nuts are typically For a given amount of
threaded to tighten in the force the torque increases
direction of torque. with the radius at which

it is applied. This is the
reason why door knobs
are at the outer end of
doors. And why car
steering wheels are so big.




Example: Torque

Give the magnitude and direction of the
smallest force you could apply at P to
produce a torque of 1.2 N-m

(a) about an axis through the center of the disk

(b) about a vertical axis tangent to the edge.

: N, Y. ':IH"“ j
“%J (a) For an axis through the center, the lever arm is
r = 35cm. The maximum for sin@ i1s when @ = x/2.

t=rF->F=1/r=12/.35=3.4N

(b) For an axis through the edge, the force must be perpendicular to the disk
or else some component of the force will be parallel to the moment arm.

t=rF->F=1/r=12/.7=1.7N

To minimize the force there must be no component of the force parallel to
the moment arm.



Example: Torque

A sphere of radius R = 1m Is centered at the origin.
At what coordinates on the surface of the sphere
would you apply a force F = 5N in the +y
direction to produce (about the origin)

(a) 5SNm torque pointing in the -z direction

(b) 3.4Nm torque pointing in the +z direction

(c) 3.4Nm torque pointing in the —x direction?

The torque is given by T =r X F or:
7 = <xT+yT+z?> x 5] = 5xk —5z1 and

RZ=x?+y?2+2z2=1
Hence the answers are:

(@) x=-1y=2=0 The finite values for y allow
(b) x =.68, y = i‘/l —(.68)° =+.73,z=0 for force to lie on the surface
of the sphere.

(c) x=0,y=+73, z =068



Angular Velocity and Acceleration as
Vectors

(a) An increase in angular h
speed alone means that Aw is Ofina Tﬂm Ia
parallel to w. (b) A decrease -

In angular speed alone means
that Aw is antiparallel to w.

(c) If w only changes ©
direction, then for small Aw &

the angular acceleration is
perpendicular to w. (a)

A change In the direction of the angular velocity without a change in angular
speed is analogous to the radial acceleration for circular motion. Remember
angular velocity and angular acceleration are vectors!

_)
- dw

“ T Tdt




Angular Momentum

The angular momentum L is defined with the vectors of linear

motion:

ik

For a system
of particles

4

C=7xP

Here the object may or may not be in
circular motion. The angular momentum
is simply defined instantaneously at a
location and about an axis.

Typically, but not always, we can write this
in the analogous rotational mechanics

form:

e —
L = lw

The torque can be written as the change in the angular momentum, just
as the linear force was written as the change in the linear momentum.

_)
’l’:

I = 4L

dt

analogous to

dp

7_ap
dt

from linear motion



Example: Angular Momentum

13-20 An anemometer for measuring wind speed consists
of four small metal cups, each of mass 120g, mounted on
the ends of essentially massless rods 32cm long. Find (a)
the anemometers rotational inertia about its central axis
and (b) its angular momentum when it’s spinning at 12
rev/s in the direction indicated.

R =16cm

(a) The moment of inertia for the four cup o,/

anemometer is Looking
I=Yr’m=4R*M down
= 4(0.12kg)(0.16m)> 541.23 x 10 kgm”

(a) Using this moment of inertia, w=12)2x)rad /s
L=I1w |

Directed downward by right

L=(1.23x107)(12)(27)Js ={0.926Js| hand rule

Would we get the same from L=7Fx p? Yes.



Example: Angular Momentum

13-27 Two identical 1800kg cars are
¥, traveling in opposite directions at 90km/h.
; Each car’s center is 3.0m from the center of
the highway. What are the magnitude and
direction of the angular momentum of the
system consisting of the two cars, about a
point on the center line of the highway?

The angular momentum can be written L=7x p
L=(ri+rj)x(pi+p,j)

L--rpk F
For both cars _vp X or one car

L= L =~(3.0)1800)(-900/36) - (-3.0)(1800)(900/36)Jsk

F ol Isk This is out of the board.
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