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Angular MomentumAngular Momentum
Rotational DynamicsRotational Dynamics



  r  v
r2



  d
dt

Angular Velocity and Acceleration as Angular Velocity and Acceleration as 
VectorsVectors
(a) An increase in angular 
speed alone means that Dw

 

is 
parallel to w. (b) A decrease 
in angular speed alone means 
that Dw

 

is antiparallel to w. 
(c) If w

 

only changes 
direction, then for small Dw

 the angular acceleration is 
perpendicular to w.  

A change in the direction of the angular velocity without a change in angular 
speed is analogous to the radial acceleration for circular motion. Remember 
angular velocity and angular acceleration are vectors!



Angular Momentum and TorqueAngular Momentum and Torque
Angular momentum is defined as 

L  r  p

By analogy with Newton’s 2nd

for linear motion we stated that:     dL
dt

Now consider a system of particles for 
which the total angular momentum is:

L ∑
i

L i ∑
i
 r i  p i 

Taking the time derivative of the angular momentum yields:

dL
dt ∑

i

d r i
dt  p i  r i 

dp i
dt ∑

i

r i  Fi

dL
dt ∑

i

 i   net

The analogy is complete!The analogy is complete!
Note when there is no Note when there is no 
external torque, angular external torque, angular 
momentum is conserved!momentum is conserved!



Example: Conservation of Angular MomentumExample: Conservation of Angular Momentum
The lower disk has a mass M1 and a radius 
R1 , while the upper disk has a mass M2 and 
a radius R2 . The lower disk as a initial 
angular frequency of wi . The upper disk 
drops freely down and frictional forces act 
to bring the two disks to the same angular 
speed. (a) What is the final angular speed, 
wf ?   

In the absence of any external torque, angular momentum is conserved.
For this one dimensional problem this is expressed as:

Li  Lf

I1i  I1  I2f

f 
I1

I1  I2
i 

M1R1
2

M1R1
2  M2R2

2 i



Example: Conservation of Angular MomentumExample: Conservation of Angular Momentum
The lower disk has a mass M1 and a radius 
R1 , while the upper disk has a mass M2 and 
a radius R2 . The lower disk as a initial 
angular frequency of wi . The upper disk 
drops freely down and frictional forces act 
to bring the two disks to the same angular 
speed. (b) how much energy was lost to 
friction?   

The initial kinetic energy is Ei = ½ I1 wi
2, while the final kinetic energy is:

Ef  1
2 I1  I2f

2  1
2 I1  I2

I1
I1  I2

2
i

2  1
2

I1
2

I1  I2
i

2

ΔE  Ef − Ei  1
2

I1
2

I1  I2
i

2 − 1
2 I1i

2

ΔE  1
2

I1
I1  I2

− 1 I1i
2  − 1

2
I2

I1  I2
I1i

2
The change in kinetic
energy is:



Example: Conservation of Angular MomentumExample: Conservation of Angular Momentum
A uniform turntable of mass M and radius 
R is a rest on a frictionless axle. A lump of 
putty, mass m, approaches the turntable 
with a velocity v along a line that passes a 
distance b from the center of the turntable 
and sticks to its edge. Find the resulting 
angular frequency, w.

Again angular momentum is conserved. The initial angular momentum is that 
of the putty: 

Li  mvr sin  mvb

The final angular momentum is: Lf  Itt  mR2  1
2 M  m R2

Setting them equal and solving for w:   mvb
m  M/2

vb
R2



Example: Conservation of Angular MomentumExample: Conservation of Angular Momentum
Two small beads of mass m are free to slide 
on a frictionless rod of mass M and length l as 
shown. Initially the beads are held together as 
the rods center and the rod is spinning at 
angular velocity wo . Find the expression for 
the angular velocity, w, of the rod as a 
function of the location of the beads.

Again angular momentum is conserved. The 
initial angular momentum is that of the rod: 

The angular momentum L(r):

Setting them equal and solving for w:

Lr  Irod  2mr2  1
12 Ml2  2mr2 

Li  Irodi  1
12 Ml2i

r  Ml2

Ml2  24mr2 i

How does the angular frequency change when the beads leave the rod?



Example: Conservation of Angular MomentumExample: Conservation of Angular Momentum

A uniform spherical cloud of interstellar gas has a total 
mass of m = 2x1030kg and a radius of R = 1013m. It is 
rotating with a period of 1.4x106 yrs. If the cloud 
collapses to form a star of radius r = 7x108m, what is 
its rotational period.

Again angular momentum is conserved, this time for two uniform spherical 
objects. 

These are the approximate values for our Sun. 
The problem is never actually this simple.The problem is never actually this simple.

Iii  Iff → IiTf  IfTi

Tf 
If
Ii

Ti  r2

R2 Ti  49  1016

1026 1.4  106 . 00686yrs

Tf  2.5days



Rotational DynamicsRotational Dynamics
The crane shown in the figure consists of a 
hollow drum of mass md and radius rd that is 
driven by an engine to wind up the cable. The 
cable passes over a solid cylindrical pulley of 
mass mp and radius rp . How much torque must 
the engine apply to the drum to lift the weight, 
mass mw , with an acceleration a?

There are three free-body diagrams 
with corresponding EOM’s: 

T1 − mwg  mwa
T2 − T1rp  Ip  Ip

a
rp

 − T2rd  Id  Id
a
rd

To solve these equations we divide 
equations 2 and 3 by rp and rd 
respectively and add: 

/rd − mwg  mwa  Ip
a
rp

2  Id
a
rd

2



Rotational DynamicsRotational Dynamics
The crane shown in the figure consists of a 
hollow drum of mass md and radius rd that is 
driven by an engine to wind up the cable. The 
cable passes over a solid cylindrical pulley of 
mass mp and radius rp . How much torque must 
the engine apply to the drum to lift the weight, 
mass mw , with an acceleration a?

Substituting in the values 
for the moment of inertias:

Yields: 

Ip  1
2 mprp

2 and Id  mdrd
2

  mwrdg  a  1
2 mprp  mdrd a

The first term on the RHS is what you would obtain for massless pulley and 
drum. Finite mass contributes the additional terms due to rotational inertia.





3D Angular Momentum: Precession3D Angular Momentum: Precession

What is the rate of precession for the gyro?
First we determine the torques and the angular 
momentum, then apply t

 
= dL/dt. Consider the 

figure below:

Assume that the rotational 
axis is massless. Then the 
torque due to gravity is:

  D  mg →   mgDsin

A small change in the angular momentum, dL, is: dL  Lsind



3D Angular Momentum: Precession3D Angular Momentum: Precession

What is the rate of precession for the gyro?
First we determine the torques and the angular 
momentum, then apply t

 
= dL/dt. 

Solving for the precession rate, W = df/dt :

dL  dt  mgDsindt  Lsind

The precession rate is independent of q! 

  d
dt 

mgD
L



Example: PrecessionExample: Precession

A uniform solid sphere is mounted on a shaft 
of negligible mass and length r. The shaft 
rests on a frictionless pivot. The sphere is 
spinning at an angular rate w

 
while 

precessing at in a horizontal circle at a rate W. 
Find the radius, R, of the sphere.  

The precession rate is given by:   d
dt 

mgD
L

r

For this problem D = r + R and 
L = Iw

 
= 2/5 mR2 w. Using these 

values in the expression for the 
rate of precession: 

The solution for this quadratic: 

 
gr  R
2/5R2

→ gr  gR  2
5 R2

R  5g
4 1  1  8r/5g



Example: PrecessionExample: Precession
Initially a gyroscope is spinning with angular 
speed w

 
and is perfectly balanced so that it is 

not precessing. When a mass m is hung from 
the frame the gyro precesses about the 
vertical axis at a rate W. Find the rotational 
inertia of the gyro.

The torque due to gravity is: 

The torque is the rate of change of the angular momentum. Hence:

Solving for I:  

  mgR

  mgR  dL
dt  L  I

I  mgR

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