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Conditions for EquilibriumConditions for Equilibrium
A body is in static equilibrium when it is stationary and when both

“the net external force and the net external torque are zero!”

∑
i

F i  0 and ∑
i

 i  0

If the tension in the support cable does not act at the center of “gravity” for
the beam and the worker then the beam will rotate!  Not good!

For static equilibrium we also have ∑
i

p i  0



 net  Rcm  Mg





Example: TeeterExample: Teeter--TotterTotter
Consider a teeter-totter as shown in the 
figure. If a child of mass m is a 
distance x from the fulcrum and the 
weight of mass M is a distance y, what 
is the ratio of x/y for the teeter-totter to 
be in equilibrium?

As usual we must first choose an origin from which to find the torques. 
First we consider the fulcrum as the origin: 

The larger the mass M, the further the child must sit from the fulcrum.

Now choose the location of the weight as the origin. The normal force at 
the fulcrum must equal the weight of the child and the mass M. Hence:

mgx  Mgy → x/y  M/m

mgx  y  M  mgy → mx  My
This leads to the same result. What 
if the board is at an angle q

 
wrt the 

horizontal?



Example: Crane EquilibriumExample: Crane Equilibrium
Consider the crane as shown in the figure. 
The boom is supported by a cable attached 
to its center point. Find the tension in the 
cable when angle of the boom is 50o above 
the horizontal and the mass of the boom is 
1700kg. The hanging mass is 2200kg.  

Summing torques about the pivot point P:

T9sin50∘ − 1700g9cos 50∘ − 2200g18cos 50∘  0

Solving for T: T  4400  1700
sin50∘ 9.8cos 50∘  50kN

Again the normal forces at the pivot balance all of the forces.



Example: Tip or Slide, that is the Question.Example: Tip or Slide, that is the Question.
A rectangular block, twice as high as it is 
wide, is resting on an incline with an angle q
and a coefficient of static friction m. What 
condition on m

 
will cause the block to slide 

before it tips?
The maximum torque resulting from the 
normal force occurs when the normal force 
acts at the lowest edge of the block. If the 
torque from the gravitational force is greater 
than this restoring torque, the block will tip! 

The torque about the lowest edge must vanish. This means that at the steepest 
angle prior to tipping the center of mass must lie directly above this point. This 
angle is given by tan q

 
= ½.  For the block not to slide:

mgcos − mg sin ≥ 0 →  ≥ tan  1/2

Hence if m
 

is less than ½ the block will slide before it tips!



Example: Tip or Slide, that is the Question.Example: Tip or Slide, that is the Question.

A cone, three times as high as it is wide, is 
resting on an incline with an angle q
and a coefficient of static friction m. What 
condition on m

 
will cause the cone to slide 

before it tips?

Again the torque about the lowest edge must vanish. For a cone the center of 
mass is h/4 above the base.  At steepest angle prior to tipping the center of mass 
must lie directly above the lowest edge. This angle is given by tan q

 
= 2/3.  For 

the block not to slide:

Hence if m
 

is less than 2/3 the block will slide before it tips!

mgcos − mg sin ≥ 0 →  ≥ tan  2/3



Example: Weighted Disk on InclineExample: Weighted Disk on Incline
Consider a uniform disk of mass M and radius R 
with a weight of mass m on the rim. The disk is 
on an incline of angle q

 
with friction (rolls and 

not slides). Find the angle f
 

as shown such that 
the disk is in static equilibrium. 

In equilibrium the forces are balanced by the 
normal force and the frictional force.   

To balance torques it is convenient to choose the
point of contact between the incline and the disk 
as the origin. The moment arm to the center of 
the disk is: 

R  Rsin

i  Rcos


j

The moment arm for the weight on the rim is: r  R − Rcos

i  Rsin


j

The expression for 
the total torque:

  R  −Mg

j  r  −mg


j  0

  −MgRsin

k − mgRsin − cos


k  0



Example: Weighted Disk on InclineExample: Weighted Disk on Incline
Consider a uniform disk of mass M and radius R 
with a weight of mass m on the rim. The disk is 
on an incline of angle q

 
with friction (rolls and 

not slides). Find the angle f
 

as shown such that 
the disk is in static equilibrium. 

The expression for the net torque:   

Solving for f
 

:

The normal force is what is required for equilibrium normal to the incline.  The 
friction force results in equilibrium parallel to the incline. It is convenient to 
choose the origin for the moment arms at the point of contact between the 
incline and the disk so that it is not required to know these forces.

  −MgRsin

k − mgRsin − cos


k  0

mcos  msin  M sin → cos  1  M/m sin
  cos−11  M/m sin





Example: Equilibrium ConditionsExample: Equilibrium Conditions

The potential energy as a function of x is:

Ux  Uo
x3

xo
3  a x2

xo
2  4 x

xo

For what values of a will there be two 
static equilibria? Comment on the 
stability of these equilibria. 

Equilibrium is determined by dU/dx = 0.
Taking the derivative of U:

For two real roots a2 > 12, a ~ 3.5. Taking the second derivative yields:

dU
dx  Uo

xo
3 x2

xo
2  2a x

xo
 4  0 → x1,2

xo
 1

3 −a  a2 − 12

d2Ux1,2
dx2  Uo

xo
2 6 x1,2

xo
 2a  2 Uo

xo
2 a2 − 12 Right point is Right point is metastablemetastable. . 

Left point is unstable.Left point is unstable.



Example: Unstable EquilibriumExample: Unstable Equilibrium
The top of a roller coaster track is described by:

h . 94x −. 01x2

Here h and x are measured in meters. (a) Find 
the point on the track where the cars are in 
static equilibrium. (b) Is the equilibrium stable 
or unstable? (c) What is the height of the track 
at the equilibrium point? 

(a) The potential energy is given by U(x) = mgh. For equilibrium dU/dx = 0.

dU
dx  mg. 94 −. 02x  0 → x  47m

(b) The second derivative determines stability: 

d2U
dx2  −. 02mg  0 → unstable

(c) The height at x = 47 is: h . 9447 −. 01472  22m



Example: Multiple Equilibrium PointsExample: Multiple Equilibrium Points
In a certain semiconductor the local potential is:

Here x is the position of the electron in nm, 
and U is its potential energy in aJ = 10-18J. 
The constants are a = 8 aJ/nm2 and b = 1 
aJ/nm3. Locate the equilibrium positions for 
the electron and describe their stability.

For equilibrium dU/dx = 0:

The second derivative 
determines stability: 

Ux  ax2 − bx4

dU
dx  2ax − 4bx3  0

x  0,  a/2b  0,  2nm

d2Ux
dx2  2a − 12bx2

d2Ux  0
dx2  2a  16  0 → stable

d2Ux  2
dx2  16 − 124  0 → unstable
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Simple Harmonic MotionSimple Harmonic Motion

Mathematically such a force is described as:

The is the force exerted by an ideal spring of spring constant k. 
From Newton’s 2nd we can write:

Simple harmonic motion results when an 
object is subject to a linear restoring force and 
is called simple harmonic motion, SHO. 

F  −kx

F  m d2x
dt2  −kx

An object experiencing such a force means that when it is displaced from 
equilibrium there is a force proportional to the distance from equilibrium that 
accelerates the object back towards its equilibrium position. 

How do we describe such motion?



Simple Harmonic MotionSimple Harmonic Motion

From Newton’s 2nd:

Simple harmonic motion results when an 
object is subject to a linear restoring force and 
is called simple harmonic motion, SHO. 

F  m d2x
dt2  −kx

The solution to this equation is of the form x = A cos(wt) + B sin(wt). To see 
this we simply substitute this function into the “differential equation” 
represented by Newton’s 2nd. Taking the derivatives: 

dx
dt  −Asint  Bcost

d2x
dt2  −2Acost − 2Bsint

d2x
dt2  −2x



Simple Harmonic MotionSimple Harmonic Motion

Substituting this result into Newton’s 2nd:

Simple harmonic motion results when an 
object is subject to a linear restoring force and 
is called simple harmonic motion, SHO. 

This equation is satisfied if w2 = k/m ! But what is this w
 

? We know from 
the form of x that when wT = 2p

 
the sine or cosine function returns to its 

value it had when t = 0. So T is the period of the sine or cosine function. 
Hence w

 
= 2p

 
/T = 2pf, where f is the frequency of oscillation. 

F  m d2x
dt2  −m2x  −kx

Just as with angular velocity, w
 

is measured in radians per second. When 
wT = 2p

 
radians the trignometric functions recycle. The motion is 

oscillatory with frequency f = w/2p
 

where   k/m .



Simple Harmonic MotionSimple Harmonic Motion

Simple harmonic motion results when an 
object is subject to a linear restoring force and 
is called simple harmonic motion, SHO. The 
general solution is then: 

x  Acost  Bsint with   k/m

What about the unknown constants A and B? They are determined by the 
initial conditions. For example if at t = 0 the system satisfies x = xo and v = 0, 
then: 

xt  0  A  xo and v  dx/dt  B  0

The solution for this initial condition becomes: xt  xo cost



Simple Harmonic MotionSimple Harmonic Motion

Simple harmonic motion results when an 
object is subject to a linear restoring force and 
is called simple harmonic motion, SHO. The 
general solution is then: 

Graphically this solution is given by:

Does the expression for angular frequency

  k/m

make sense? What happens when the 
spring constant k increases, what about the 
dependence on m? 

x  Acost  Bsint with   k/m
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