








Circular Motion and AccelerationCircular Motion and Acceleration
Consider the two unit vectors that
are convenient for angular motion: 

r  cos

i  sin


j


  − sin


i  cos


j

The position vector can now be written

r  rr  r cos

i  sin


j  x


i  y


j

The velocity vector is simply the time derivative of the position vector.
For circular motion the radius of curvature, r, is constant. However, 
is time dependent. This means to find the velocity vector we must
be careful when taking the derivative of the position vector – chain rule!

  t



Circular Motion and AccelerationCircular Motion and Acceleration
Consider the two unit vectors that
are convenient for angular motion: 

r  cos

i  sin


j


  − sin


i  cos


j

The velocity vector can now be expressed:

Taking the derivative of the velocity
yields the acceleration. Assuming a 
constant rate of rotation, w:

The radial acceleration points
radially inward! What 
happens when there is angular 
acceleration? Stay tuned!

v  d r
dt  r dcos

dt

i  d sin

dt

j

v  r − sin

i  cos


j d

dt  r

  v




a  dv
dt  r − d sin

dt

i  dcos

dt

j

a  −r cos

i  sin


j d

dt  −2rr  − v 2

r
r



Example: Space Shuttle OrbitExample: Space Shuttle Orbit
A space shuttle is in orbit at a height of 250km, where the Earth’s gravitational
acceleration is 93% of its surface value. What is the period of its orbit? 

The radius for this circular orbit is r = RE + 250km. The radial acceleration
is due to the Earth gravitational pull. Hence:

. 93g  2r →   . 93g/r

  2/T → T  2 r/. 93g

Since r = 6.62x106 m we have: T  5355sec  89.25min

There is no choice here.  The properties of low Earth orbits are determined 
by the size and mass of the Earth. As gravity weakens and the size of the orbits
increases this period increases, e.g. the moon has a period of 27 days.



Example: Engineering a RoadExample: Engineering a Road
A flat horizontal road is designed for an 80 km/h speed limit. If the maximum
radial acceleration is ar = 1.5 m/s2, what is the minimum radius for curves on 
his road?

For this problem it is more convenient to use the expression that uses linear 
velocity versus angular velocity to find the radial acceleration. 

This radius is strongly dependent upon the amount of friction between the auto
and the road (as we shall see in chapters 5 and 6). If friction cannot support 
this amount of acceleration then it will break free and slide off of the road. 

a  v2
r → r  v2

a 
80  103/36002

1.5  329m











Circular Motion and AccelerationCircular Motion and Acceleration
Again consider the two unit vectors that
are convenient for angular motion: 

r  cos

i  sin


j


  − sin


i  cos


j

The position vector is written as:

r  rr  r cos

i  sin


j  x


i  y


j

Again we take the time derivative of the position vector assuming that the 
radius of curvature, r, is constant. Again,                , is time dependent and 
velocity is given by: 

  t

Up to this point nothing has changed from our previous development, 
however now we will not assume that w or equivalently v is a constant!

v  r − sin

i  cos


j  r


  v






Circular Motion and AccelerationCircular Motion and Acceleration
Now we assume that w = w(t) and 
dw(t)/dt = a, the angular acceleration.
The full acceleration now becomes:

This is the mathematical expression that includes both the tangential 
acceleration,          and the radial acceleration, 

When an object travels along a curved path its total acceleration is a vector 
sum of its radial acceleration and its tangential acceleration. As already pointed
out if, at is positive the acceleration vector points ahead of the radius
and if at is negative its acceleration vector points behind the radius. 

a  dv
dt

 − 2rr

a  at

 − 2rr  at


 − v2

r
r

a  at

 − ar

r

at

, − 2rr  − v2

r
r .







Example: Example: NonuniformNonuniform Circular MotionCircular Motion
(a)When the car reaches 15m/s what 
arc length has it traversed?  (b) Would 
the car stop on the turn if the driver
continued to brake at this rate?

(a) The arc length that it traversed is:

s 
vf

2 − vi
2

2a  152 − 202

−2. 92
 95m

(b) For the final velocity to go 
to zero the arc length must be:

s  −vi
2

2a  −202

−2. 92
 217.4m

The angle the car traverses to
come to a stop: 

So the car does come to a stop before turning 90o. 

  217.4
190  1.14rad  

2



Example: Example: NonuniformNonuniform Circular MotionCircular Motion
In the hammer throw a ball on the end of a 1.2 m long
wire is released from a height of 1.3 m while traveling
at an angle of 24o above horizontal.  If it travels 84 m
before landing, what was its radial acceleration upon 
release? 
From the trajectory equation,

y  x tan − 1
2

g
V0

2 cos2
x2

We can solve for V0
2:

V0
2  1

2cos2
g

x tan − y x2

V0
2  1

2cos224∘
9.8

84 tan24∘  1.3 842

V0
2  1070. 5m/s2

Hence the radial acceleration is: ar  V0
2/r  1070.5/1.2  892m/s2

and the data given:
x  84m,   24∘,
y  −1.3m
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