Circular Motion 2

Lecture 5




Uniform Circular Motion

A body moving in a circle of radius r
with uniform speed v

In a time interval Af the arc length traversed is
As = rAG O in radians 0 — 271

The limit as that time interval goes to zero is v
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Instantaneous Acceleration o

The direction of v 1s always tangent to the
circle. So, in time At the vector v changes
direction by the angle between v, and v..

The angle made by r, and r; is equal to the
angle made by v, and v, because the two
triangles defined by the vectors are
formally sim ilar.

Thus the ratio of corresponding sides are

equal: AV As
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Instantaneous Acceleration o

In the same way as the limit as the time

interval vanished defined the linear velocity
and acceleration, and the angular velocity,

the instantaneous acceleration is defined by

=]

this limit.
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a, . is always pointed
along the radius, and
points toward the
center of the circle of
motion.




Circular Motion and Acceleration

Consider the two unit vectors that
are convenient for angular motion:

T =cos¢gi +sing]

¢ = —sing1 +cos¢]

The position vector can now be written
T =r7= r<cos¢>T + sinqu) = X1 +VY]

The velocity vector is simply the time derivative of the position vector.

For circular motion the radius of curvature, r, is constant. However, ¢ = ¢(t)
IS time dependent. This means to find the velocity vector we must

be careful when taking the derivative of the position vector — chain rule!



Circular Motion and Acceleration

Consider the two unit vectors that
are convenient for angular motion:

T =cos¢gi +sing]

¢ = —sing1 +cos¢]

The velocity vector can now be expressed.
7. 4P _ r( dcos¢ - dsing T)
Taking the derivative of the velocity dt dt dt

yields the acceleration. Assuminga v _ r(_singT + cosd do _ i —
constant rate of rotation, w: < ? ¢J> dt »=Vo

2 _ 4V _ wr(_dsmgb +  dcos¢ JA) The radial acceleration points
dt dt radially inward! What
2 = —or(cose + sinﬁ)d—(/) _ _,2r7 — _¥2> happens when there is angular
dt " acceleration? Stay tuned!



Example: Space Shuttle Orbit

A space shuttle is In orbit at a height of 250km, where the Earth’s gravitational
acceleration 1s 93% of its surface value. What is the period of its orbit?

The radius for this circular orbit is r = Rg + 250km. The radial acceleration
Is due to the Earth gravitational pull. Hence:

939 = 0’r > w = ,/.93¢g/r
o =2nlT > T =2m /rl.93¢

Since r = 6.62x10° m we have: T = 5355sec = 89.25min

There is no choice here. The properties of low Earth orbits are determined
by the size and mass of the Earth. As gravity weakens and the size of the orbits
Increases this period increases, e.g. the moon has a period of 27 days.



Example: Engineering a Road

A flat horizontal road is designed for an 80 km/h speed limit. If the maximum
radial acceleration is a, = 1.5 m/s?, what is the minimum radius for curves on
his road?

For this problem it is more convenient to use the expression that uses linear
velocity versus angular velocity to find the radial acceleration.

V2 v2 (80 x 10%/3600)°

a:Tﬁr:? 15 :329m

This radius is strongly dependent upon the amount of friction between the auto
and the road (as we shall see in chapters 5 and 6). If friction cannot support
this amount of acceleration then it will break free and slide off of the road.



Nonuniform Circular Motion

For a mass on a string moving S

: : : .~ slower - |
vertically, gravity will add a 1
component of acceleration in the ; |

vertical direction. 11 gl \)q f

The ball will spin faster at the '\ faster -
bottom than at the top. =

o e

Because the rotation is speeding up and
slowing down along the circle, there must
be a tangential acceleration in addition to
the radial one.




Nonuniform Circular Motion

We can separate the acceleration vector
into two parts. The radial (already
discussed in Uniform Circular Motion),
which changes the direction of the velocity,
and the tangential, which changes the
speed of rotation.

Using the limits we’ve defined previously,
the tangential acceleration is simply:

dv p?
a, = — while e
I 8

dt i




Nonuniform Circular Motion

When a body travels along a curved path

with constant speed, @ 1s L to the path and L
to v

When the body travels along a curved path
with increasing speed, a has both L and ||

components, and points ahead of the
radius to the path.

When the body travels along a curved path
with decreasing speed, g has both L and |
components and points behind the radius
to the path.




Nonuniform Circular Motion

A body moving in any curved

path has associated with it at &
any time t a radius of curvature,
a tangential angular velocity, a A
radial acceleration and a "
tangential acceleration. _' % S

If the body has no tangential acceleration, and constant
radial acceleration, it remains in Uniform Circular Motion.

For Nonuniform Circular Motion, the radius of curvature is
constantly changing location, magnitude or both.



Circular Motion and Acceleration

Again consider the two unit vectors that
are convenient for angular motion:

T =cosgi +singj
¢ =—singi +cosgj

The position vector is written as:

T=r1T= r(cos¢T+sin¢T> = xi +yj

Again we take the time derivative of the position vector assuming that the
radius of curvature, r, is constant. Again, ¢ = ¢(t), is time dependent and
velocity is given by:

V = or(-singi +cos¢] ) = arg = vé

Up to this point nothing has changed from our previous development,
however now we will not assume that w or equivalently v is a constant!



Circular Motion and Acceleration

Now we assume that w = w(t) and
dw(t)/dt = @, the angular acceleration.
2.2 fa The full acceleration now becomes:

ﬂa — 0°rt

|
|

= aid — @t = awd — VT

a
a=ap—af

This is the mathematical expression that includes both the tangential
acceleration, a:¢, and the radial acceleration, — w2rt = _V_rzf_

When an object travels along a curved path its total acceleration is a vector

sum of its radial acceleration and its tangential acceleration. As already pointed
out If, a, Is positive the acceleration vector points ahead of the radius

and If a, Is negative its acceleration vector points behind the radius.



Example: Nonuniform Circular Motion

4-10: A road makes a 90° bend

with a radius of 190m. A car ; ;f e

enters the bend moving at y 4
20m/s. Finding this too fast, the /
driver decelerates at 0.92m/s>. a, /
Determine the acceleration of L
the car when its speed rounding a

r=190m

the bend has dropped to 15m/s.

The car has both radial and tangential accelerations. The
tangential is given by the deceleration as a,=0.92m/s*. The

radial acceleration when the speed i1s 15m/s:

a, =

v-  (15m/s)
r

190m

= =12mls




Example: Nonuniform Circular Motion

4-10: A road makes a 9(0° bend
with a radius of 190m. A car v/
enters the bend moving at
20m/s. Finding this too fast, the i r=190m
driver decelerates at 0.92m/s-. a, f a,
Determine the acceleration of T8

the car when its speed rounding | a
the bend has dropped to 15m/s.

Summing the vector accelerations the magnitude is:

a= o\/a; +a; = ‘J(l.jﬁ.lfj‘j)+(0.92H’H32) =1.5m/s

a
And it points an angle 8 from tangential 0 =tan™ (—) ={53°

a,




Example: Nonuniform Circular Motion

(a) When the car reaches 15m/s what

arc length has it traversed? (b) Would ‘
the car stop on the turn if the driver

continued to brake at this rate?

(a) The arc length that it traversed is: 0

V2 — y?2
S — f S 152—202 — 905m

2a -2(.92)
(b) For the final velocity to go - Vi _ 202 _ 217.4m
to zero the arc length must be: 2a  -2(.92)

The angle the car traverses to

_217.4 _ x
come to a stop: ¢ = = 1.14rad <

190 2

So the car does come to a stop before turning 90°.



Example: Nonuniform Circular Motion

In the hammer throw a ball on the end of a 1.2 m long
wire is released from a height of 1.3 m while traveling
at an angle of 24° above horizontal. If it travels 84 m

before landing, what was its radial acceleration upon
release?

From the trajectory equation,  and the data given:

1 9 o, X = 84m, 0 = 24°,
y = xtanf — = X
2 \/3c0s20 y = —1.3m
2 _ 1 9 2
V0= Scos?0 Xtand —y”
We can solve for V,*: Y — 9.8 (84)2

2c0s224° 84tan24° + 1.3
VZ = 1070.5(m/s)?

Hence the radial acceleration is:  a, = V3/r = 1070.5/1.2 = 892m/s?



Lecture 6;

Tomorrow

Circular Motion Examples
Newton’s Laws of Motion
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