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Example: Predicting Motion Using NewtonExample: Predicting Motion Using Newton’’s 2s 2ndnd

A force                            acts on a 1.2 kg object 
which is initially at rest at the origin. (a) What is 
the object’s acceleration? (b) What is its location 
after 3.5s? (c) How fast and in what direction is it 
moving after 3.5s?

(a) From Newton’s 2nd the acceleration is:

F  2.4

i  1.7


j

a  F/m  2.4

i  1.7


j /1.2  2.0


i  1.4


j m/s2

(b) From the kinematics for an object with uniform acceleration the location 
is:

r t  v 0t  1
2 at2  0  1

2 2.0

i  1.4


j t2

r 3.5  1
2 2.0


i  1.4


j 3.52  12.25


i  8.68


j m



Example: Predicting Motion Using NewtonExample: Predicting Motion Using Newton’’s 2s 2ndnd

A force                            acts on a 1.2 kg object 
which is initially at rest at the origin. (a) What is 
the object’s acceleration? (b) What is its location 
after 3.5s? (c) How fast and in what direction is it 
moving after 3.5s? 

The object’s speed after 3.5s is:

F  2.4

i  1.7


j

(c) From the kinematics for an object with uniform 
acceleration the velocity is:

v t  v 0  at  0  2.0

i  1.4


j t

v 3.5  2.0

i  1.4


j 3.5  7


i  5


j m/s

v  vx
2  vy

2  72  52  8.6m/s

It’s direction (as measured from the x axis) is:   tan−1 5
7  35.5∘



Example: Hockey Player and that PuckExample: Hockey Player and that Puck

A hockey player strikes a 170g puck accelerating it 
from rest to 50 m/s. If the hockey stick is in contact 
with the puck for 2.5 ms, what is the average force 
on the puck?

To find the average force we need the average 
acceleration:

〈a  Δv
Δt  50m/s

2.5  10−3s
 20  103m/s2

From Newton’s 2nd the average force is:

〈F  m〈a . 17kg  20  103m/s2  3.4kN



Example: A Truck and That PoleExample: A Truck and That Pole

A truck moving at 70km/h collides with a 
pole. The front of the truck is compressed by 
.94m. What average force must a seatbelt 
exert in order to restrain a 75 kg passenger in 
this accident?

Again, to find the average force we 
need the average acceleration. From 
the kinematic relation between velocity, 
distance, and acceleration:

From Newton’s 2nd the average 
force on the passenger  is:

vf
2 − vi

2  2〈aΔx → 〈a 
vf

2 − vi
2

2Δx

〈a  0 − 70/3.62

2. 94
 −201m/s2

〈F  m〈a  75kg  −201m/s2

〈F  −15kN

What’s with the minus sign?



Example: NewtonExample: Newton’’s 3s 3rdrd -- Pushing Those BooksPushing Those Books

On a surface with negligible friction, you push
with a force F on a book of mass m1 that pushes 
on a book of mass m2 . (a) What is the force, F21 ,  
exerted by the second book on the first?

From Newton’s 2nd the acceleration of the books 
is:

Both books are accelerating at the 
same rate. From Newton’s 2nd the 
force of the first book on the second, 
F12 , is:

a  F
mtot

 F
m1  m2

F12  m2a  m2
m1  m2

F

From Newton’s 3rd we know that the 
force of the second book on the first is:

F21  −F12  − m2
m1  m2

F



Example: NewtonExample: Newton’’s 3s 3rdrd -- Pushing Those BooksPushing Those Books

On a surface with negligible friction, you push
with a force F on a book of mass m1 that pushes 
on a book of mass m2 . (b) What is the net force, 
F1 ,  exerted on the first book?

There are two forces acting on the first book. The 
force that occurs from you pushing on book 1, F, 
as well as the force of book 2 on book 1, F21 . The 
net force on book 1, F1 , is:

We should note that this force is 
consistent with Newton’s 2nd as the 
acceleration of the first book is:

F1  F  F21  F − m2
m1  m2

F

F1 
m1

m1  m2
F

a1 
F1
m1

 F
m1  m2

 a!



Example: NewtonExample: Newton’’s 3s 3rdrd -- Pushing Those BlocksPushing Those Blocks

On a surface with negligible friction, there are 
two opposing forces, F1 = 5N and F2 = -3N, 
acting on two blocks of mass m1 = 1kg and 
m2 = 3kg. (a) What is the force, F21 , of the 
second block acting on the first?

From Newton’s 2nd the acceleration of both blocks is:

From Newton’s 3rd:

a  Fnet
mtot

 F1  F2
m1  m2

 5 − 3
1  3  1

2 m/s2

The net force acting on m2 = 3kg, is the force of the first block 
acting on the second, F12 , and F2 = -3N. From Newton’s 2nd:

F12  F2  m2a → F12  m2a − F2  3
2  3  4 1

2 N

F21  −F12  −4 1
2 N



Example: NewtonExample: Newton’’s 3s 3rdrd -- Pushing Those BlocksPushing Those Blocks

On a surface with negligible friction, there are 
two opposing forces, F1 = 5N and F2 = -3N, 
acting on two blocks of mass m1 = 1kg and 
m2 = 3kg. (b) What is the net force acting on 
the first block? Is this a consistent result?

Summing the forces acting on block 1 yields Fnet :   

Yes, this is a consistent result!

With this net force, from Newton’s 2nd the acceleration of block 1 is:

Fnet  F1  F21  5 − 4 1
2  1

2 N

a1 
1/2N
1kg  1

2 m/s2  a



Example: NewtonExample: Newton’’s 3s 3rdrd -- Pushing Those BlocksPushing Those Blocks

A asteroid slams into the moon with a force of 
2x109 N.  What is the force of a 2kg rock on 
the other side of the moon acting on the 
moon?

To induce this acceleration the force, FMR , of the moon on the 2kg 
rock is: 

From Newton’s 2nd the acceleration of 
the moon is:

a  F
Mmoon

 2  109

7.34  1022  2. 7  10−14m/s2

FMR  ma  2  2.7  10−14  5.4  10−14N

The force of the rock on the moon is the negative of this which is tiny! 
Again it is the acceleration of the total mass that is important. For a 
huge mass, the acceleration is small, hence this result!







Example: Measuring Mass in an ElevatorExample: Measuring Mass in an Elevator

An object in an elevator is on a spring which 
is accelerating downward at a = 1m/s2. What 
is the mass of the object if the displacement of 
the spring is .02m (relative to having no mass) 
and the spring constant is k = 20N/m?  

There are two forces acting on the object, gravity and force of the 
spring in the elevator. Defining the positive direction to be upward, 
Newton’s 2nd yields:

Note that the displacement of the object is negative. 

Fg  kx  −mg  kx  −ma → kx  mg − a

m  kx
g − a  20. 02

9.8 − 1 . 045kg  45g





Example: Springs in (a) Parallel and (b) Series Example: Springs in (a) Parallel and (b) Series 

(a) Two springs which have the same 
unstretched length but different spring 
constants, k1 and k2 , are connected side-by-side. 
Find the new effective spring constant.

If the springs are compressed/stretched an 
equal distance x from equilibrium then the 
restoring force is simply:

Thus if two springs are arranged in parallel (a) the effective spring 
constant is simply a sum of the two spring constants.

F  −k 1x − k 2x  −k 1  k 2 x  −keffx

k eff  k 1  k 2



Example: Springs in (a) Parallel and (b) Series Example: Springs in (a) Parallel and (b) Series 
(b) Two springs have different spring constants 
k1 and k2 and are connected end-to-end. Find the 
new effective spring constant.

Now consider the forces acting on the 
springs in (b). From Newton’s 3rd the springs 
are pulling/pushing on each other with equal 
strength. Hence the tension/compression, F, 
in both springs is equal. 

Summing the displacements of the springs: 

Δx1  Δx2  F
k1

 F
k2

 F 1
k1

 1
k2

Dx1 + Dx2 is the total displacement of the
springs connected in series, (b). 

Hence the effective spring 
constant is:

keff  F
Δx  F

Δx1  Δx2

1
keff

 Δx1  Δx2
F  1

k1
 1

k2



Example: Springs in (a) Parallel and (b) Series Example: Springs in (a) Parallel and (b) Series 

To summarize, two springs connected in parallel 
each have the same displacement. This means 
that their restoring forces add, and the effective 
spring constant is: 

If the spring are connected in series, then 
from Newton’s 3rd they each experience the 
same restoring force and the displacement 
is the sum of the individual displacements. 
The effective spring constant for this case is:

keff  k1  k2

1
keff

 1
k1

 1
k2

→ keff 
k1k2

k1  k2

Which configuration has
the larger spring constant?



Example: Springs in Series with an Additional Mass Example: Springs in Series with an Additional Mass 
Two springs each with a spring constant of
k = 20N/m support two mass, m1 = .2kg and 
m2 = .4kg as shown. Find the displacement 
from equilibrium of each spring. 

For this configuration the lower spring is 
supporting m2 . From Hook’s law its 
displacement is:

From Newton’s 3rd, the upper spring is supporting both masses. From 
Hook’s law:

The total displacement is:  

xl 
m2g

k  . 4  9.8
20 . 196m  19.6cm

xu 
m2  m1g

k  . 6  9.8
20 . 294m  29.4cm

xtot  xu  xl  29.4  19.6  49cm



Example: Springs in Series with an Additional Mass Example: Springs in Series with an Additional Mass 
Two masses of mass m1 and m2 are 
connected by a spring with spring 
constant k. A force F is applied to the 
larger of the two masses. (a) How 
much does the spring stretch from its 
equilibrium length? (b) Find the net 
force on the larger mass.

(a) This acceleration of this combination 
is determined by Newton’s 2nd: From Hook’s law and Newton’s 2nd, 

the displacement of the spring is 

(b) The net force on the larger mass is:  

a  F/m1  m2 x  m1a
k  m1

m1  m2
F
k

Fnet  F − kx  1 − m1
m1  m2

F  m2
m1  m2

F
For a force of 15N and a
spring constant of 140N/m:

x  2
5

15
140  4.3cm



Remember that the changeRemember that the change 
in a springs length is NOT in a springs length is NOT 
the springs length!the springs length!


	Forces and Motion��Newton’s Laws Review �Newton’s Third Law�Hook’s Law – Springs�
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21

