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11--D Kinematics with Uniform AccelerationD Kinematics with Uniform Acceleration

vt − vo  
0

t
adt  at → vt  vo  atVelocity as a function of t:

xt − xo  
0

t
vtdt  

0

t
vo  atdt

xt  xo  vot  1
2 at2

Position as a function of t:

Substituting for t: t  vt − vo
a

Δxt  vo
vt − vo

a  1
2 a vt − vo

a
2

2aΔxt  v2t − vo
2

We can express v(x):



yf  yi  Vit  1
2 at2

0  h  0  1
2 −gt2

t  2h
g



Vf
2 − Vi

2  2ayf − yi 







Vectors in 2 Dimensions Vectors in 2 Dimensions –– Scalar ProductScalar Product

From our definitions up to this point we 
can define a vector      such that it points
along the x axis. 

By definition taking the scalar product of 
this vector with         yields the scalar

A

The axes can be rotated, but their magnitude and the angle between the two
vectors remains unchanged.  This means that this result is a general invariant
result for any coordinate system where q

 
is the angle between the two vectors.

B

A and B are the magnitudes of their respective
vectors and q

 
is the angle between them.

A  B  ABcos





An object’s position is given by:

a) What is its initial velocity?

b) How long does it take for its velocity to rotate 90o?

For this to happen the x component of the velocity must vanish, or:

Example: Velocity/Acceleration 2DExample: Velocity/Acceleration 2D
r  ct − bt3


i  dt2j

c  6.7m/s, b . 81m/s3, d  4.5m/s2

v t  0  d r
dt t0

 c − 3bt2

i  2dt


j

t0

v t  0  c

i  6.7


i m/s

c − 3bt2  0 → t  c/3b  1. 66sec

c) How much does its speed change during this time?

v t  c/3b  2d c/3b

j  14. 94


j

Δv  14.94 − 6. 7  8.24m/s





y  tanx − g
2V0

2 cos2
x2



Example: Olympic FlameExample: Olympic Flame
In the ’92 Olympics the Olympic
Flame was lit by a flaming arrow.
Given the geometry shown, find
the initial velocity to reach flame
at the peak of the trajectory.

The peak of the trajectory equation 
occurs when dy/dx = 0, or:  

Finding the height when dy/dx = 0:  

y  tanx − 1
2

g
V0

2 cos2
x2

yℓ  h  tanℓ − 1
2

gℓ2

gℓ/ tan

h  1
2 tanℓ

y  tanx − 1
2

g
V0

2 cos2
x2

dy
dx xℓ

 tan − gℓ
V0

2 cos2
 0

V0
2 cos2 

gℓ
tan → V0

2 
gℓ

sin cos



NonuniformNonuniform Circular MotionCircular Motion

Each point along the path can be characterized by a radius of curvature, r.  
An object with speed v has a radial acceleration of  v2/r and a tangential 
acceleration of magnitude  dv/dt . In general both v and r change as the 
object moves.

a  at

 − ar

r with at  dv
dt and ar  v2

r  2r



F 
dp
dt 

dmv 
dt

F  m dv
dt  ma



More About NewtonMore About Newton’’s Second Laws Second Law

is the net force
This is the vector sum of all the forces acting on 

the object

Newton’s Second Law can be expressed in 
terms of components:
ΣFx = m ax
ΣFy = m ay
ΣFz = m az

∑ F

Most philosopher's of science 
consider Newton’s 2nd to be 
the definition of a force.



Example: NewtonExample: Newton’’s 3s 3rdrd -- Pushing Those BlocksPushing Those Blocks
On a surface with negligible friction, there are 
two opposing forces, F1 = 5N and F2 = -3N, 
acting on two blocks of mass m1 = 1kg and 
m2 = 3kg. (a) What is the force, F21 , of the 
second block acting on the first?

From Newton’s 2nd the acceleration of both blocks is:

From Newton’s 3rd:

a  Fnet
mtot

 F1  F2
m1  m2

 5 − 3
1  3  1

2 m/s2

The net force acting on m2 = 3kg, is the force of the first block 
acting on the second, F12 , and F2 = -3N. From Newton’s 2nd:

F12  F2  m2a → F12  m2a − F2  3
2  3  4 1

2 N

F21  −F12  −4 1
2 N



Example: Springs in Series with an Additional Mass Example: Springs in Series with an Additional Mass 
Two springs each with a spring constant of
k = 20N/m support two mass, m1 = .2kg and 
m2 = .4kg as shown. Find the displacement 
from equilibrium of each spring. 

For this configuration the lower spring is 
supporting m2 . From Hook’s law its 
displacement is:

From Newton’s 3rd, the upper spring is supporting both masses. From 
Hook’s law:

The total displacement is:  

xl 
m2g

k  . 4  9.8
20 . 196m  19.6cm

xu 
m2  m1g

k  . 6  9.8
20 . 294m  29.4cm

xtot  xu  xl  29.4  19.6  49cm



Remember that the change Remember that the change 
in a springs length is NOT in a springs length is NOT 
the springs length!the springs length!



Example: AtwoodExample: Atwood’’s Machines Machine

Applying Newton’s 2nd for each 
object (often called the equations of 
motion or EOM) yields (note signs in 
each equation):

To solve this system of equations we start
by summing them to eliminate T,

Does this result make physical sense?

m2g − T  m2a and T − m1g  m1a

m2 − m1g  m2  m1a → a  m2 − m1
m2  m1

g



Incline With FrictionIncline With Friction
A child slides down a 20o slope with a 
coefficient of kinetic friction mk = .085.
(a) What is the child’s acceleration?

From the Free-Body diagram, the vector equation
for the sled is:

From the Free-Body diagram we see that
the component equations are:

Substituting for the normal force in the x component equation 
followed by dividing by m yields:

Fg  Fk  N  ma

Fg sin − Fk  mg sin − k N  ma
N − mg cos  0

a  gsin − k cos  9.8sin20∘ −. 085cos 20∘  2.57m/s2



Incline With FrictionIncline With Friction
A child slides down a 20o slope with a 
coefficient of kinetic friction mk = .085.
(b) At what angle will the child velocity 
remain constant?

From the results for a general angle we saw

The acceleration vanishes when

What happens when the angle of the incline, q, is less than tan-1(mk )?

What happens when the angle of the incline, q, approaches p/2?

a  gsin − k cos

sin  k cos → k  sin
cos  tan



Two Blocks & Incline PlaneTwo Blocks & Incline Plane
Assuming frictionless surfaces, find the 
acceleration of m2 . 

From a free-body diagram the vector EOM 
for m1 is:

Choosing a coordinate system in which the x axis is parallel to the incline the 
component equations are:

The EOM for m2 is particularly simple: 

It is important to note that we have assumed that m2 is accelerating down and
m1 is accelerating up the incline. We could have done the reverse, but we must
be consistent. That is, m1 and m2 cannot both accelerate up (or down). 

T  N  Fg  ma

T − m1g sin  m1a and N − m1gcos  0

m2g − T  m2a



Two Blocks & Incline PlaneTwo Blocks & Incline Plane
Assuming frictionless surfaces, find the 
acceleration of m2 . 

The two relevant equations are:

Taking into account that sin(q) = ½, the acceleration is:

As long as m2 > ½ m1 then the acceleration is consistent with m1 moving up
the incline. If m2 < ½ m1 then m1 will accelerate down the incline.

What if there is friction on the surface of the incline?

T − m1g sin  m1a and m2g − T  m2a

a  m2 − m1/2
m1  m2

g

T − m1g sin ∓ k m1gcos  m1a and m2g − T  m2a



WorkWork--Kinetic Energy TheoremKinetic Energy Theorem

The kinetic energy for a single particle of mass m traveling at speed v is 
defined as:

The time derivative of this expression is easily evaluated as 

Now we can multiply this expression by dt to find                            
Integrating this expression along the path of the particle we find

This is a statement of the Work-KE theorem,
“The change in a particle’s kinetic energy between two points 

is equal to the work done by the net force along the path
between the two points.”

dK  Fnet  d r

K  1
2 mv2  1

2 mv  v

dK
dt  mv  dv

dt  m dv
dt  v  Fnet  d r

dt

ΔK  
r 1

r 2
Fnet  d r  W



From Hook’s Law a spring exerts a force 
proportional to its displacement from equilibrium: 

This is the force by the springby the spring on the hand stretching 
it. From Newton’s 3rd, the force exerted by the handby the hand 
is kx.  The work done by the hand is the integral:

What would the work be if the hand 
compressed the spring?

Example: Work to Stretch a SpringExample: Work to Stretch a Spring

F  −kx

W  
0

x
kx ′dx ′  1

2 kx2



A spring with spring constant k is compressed a distance A and while being 
attached to an object of mass m. The spring is then released. What is the speed 
of the object when the spring returns to its original equilibrium position?

Example: Kinetic Energy and SpringsExample: Kinetic Energy and Springs

The work done by the spring on the object is W = ½ k A2.  From 
the Work-Kinetic Energy Theorem:

W  1
2 kA2  1

2 mv2 → v  k
m A

The details of using the force of the spring to find the acceleration 
and then using kinematics to find the velocity are not required. The 
Work-Kinetic Energy Theorem solves the problem with minimal 
effort. 



Example: Work and the Gravitational ForceExample: Work and the Gravitational Force

How much work does the force of gravity
do on a car as it drives from the top of the
hill, (y=h) to the bottom (y=0)?

The force of gravity is  

The path integral for the work done by gravity,

Fg  −mg

j .

Note that the details of the path didn’t matter for this problem,
only the change in height, h, was relevant. 

Does the sign make sense for this result?

W  
1

2
Fg  d r  −

1

2
mg

j  d r  −

h

0
mgdy

W  −mg0 − h  mgh



Example: Work and the Gravitational ForceExample: Work and the Gravitational Force

Assuming that the car started from rest, 
how fast is the car traveling when it 
reaches the bottom of the hill (ignoring 
friction)? 

From the work-energy theorem: 

Again the work-energy theorem solves this problem with minimal effort!

The work done by gravity as the rolls 
down the hill was found to be:  

W  mgh

W  mgh  1
2 mv2 → v  2gh



Conservation of EnergyConservation of Energy
From the Work-Energy Theorem the work done on an object is equal to 
the change in its kinetic energy:    

W  m  dv
dt  d r   Fnet  d r  ΔK  1

2 mvf
2 − 1

2 mvi
2

If we consider separately the work done by conservative forces, Wc , and 
non-conservative forces, Wnc :     ΔK  Wc  Wnc

ΔK  ΔU  Wnc

Potential energy was defined as the negative of the work done by 
conservative forces: DU = - Wc .  Hence: 

In the absence of nonIn the absence of non--conservative forces, the total mechanical energy is conservative forces, the total mechanical energy is 
conserved!conserved!

ΔK  ΔU  0 → 1
2 mvi

2  Ui  1
2 mvf

2  Uf  E





Force and Potential EnergyForce and Potential Energy
Again think of the potential energy
plot as a picture of a roller coaster.
The force

Fx  − dU
dx

tends to push the object downhill as
shown in the plot at x=x1 and x=x2 .

Note that at the points x3 and x4 where dU/dx = 0, U is a minimum or 
a maximum. The object is in equilibrium as the net force vanishes at those
points. However x3 is a point of stable equilibrium (why?) and x4 is a
point of unstable equilibrium (why?).

For example consider the potential energy for a spring:

Ux  1
2 kx2 → F  − dU

dx  −kx



Vertical SpringVertical Spring
A mass m is dropped from a height h above the 
top of a spring with spring constant k. What is 
the maximum compression of the spring?     

If zero for the gravitational potential energy is 
chosen to be the height at the top of the spring, then 
the conservation of energy for this problem is:

Now it a simple problem of solving the quadratic equation:

Note that it is important to note that the mass does not come to rest until 
the spring obtains maximum compression!

What is the physical 
significance of the 
other root?

E  mgh  −mgx  1
2 kx2

1
2 kx2 − mgx − mgh  0 → x  mg

k 1  1  2kh/mg



Center of MassCenter of Mass
Mathematically we define the center of mass 
as the average of the mass weighted vector 
displacement of the individual particles. 
Defining the total mass as M.

For continuous media both 
sums become integrals: 

M  m1  m2  m3     ∑
i1

N

mi

This allows us to define the center of mass as:

Rcm  1
M m1 r 1  m2 r 2  m3 r 3      1

M ∑
i1

N

mi r i

M   dm, and Rcm  1
M  r dm



Example: Center of Mass Example: Center of Mass –– Uniform Solid ConeUniform Solid Cone

From symmetry considerations the center of
mass must lie on the z axis. All that is left is to
perform the integral to determine Zcm . 

At a height z (radius r) the volume element is:

Since r(z) satisfies the relationship r = Rz/h the integral for Zcm becomes:

Zcm  1
M  zdm  1

M  zdV  1
V  zdV

dV  Azdz  r2zdz

Zcm  1
V  zdV  1

V  zr2zdz

Zcm  1
V  z R2

h2 z2dz  R2

h2R2h/3


0

h
z3dz

Zcm  3
h3

h4

4  3
4 h (from the vertex)



Motion of the Center of MassMotion of the Center of Mass
The total momentum of a system of particles is equal to the momentum 
of the center of mass. In the absence of any net external forcenet external force this 
momentum is conservedconserved. 

To see this consider the time derivative of the center of mass: 

Even though individual particles may be moving relative to the center of 
mass, the center of mass maintains a uniform velocity.

d
dt Rcm  v cm  1

M ∑
i1

N

mi
d
dt r i  1

M ∑
i1

N

mi v i

Pcm ∑
i1

N

mi
d
dt r i  M v cm ∑

i1

N

mi v i



External Forces and the Center of MassExternal Forces and the Center of Mass
The sum of all the net forces on each of the particles determines the 
acceleration of the center of mass. 

d
dt Pcm ∑

i1

N

mi
d
dt v i ∑

i1

N

mi a i ∑
i1

N

Fi−net

However, we need to consider the sum of the forces on each of the particles. 
Some of the forces on the ith particle are due to external forces (e.g. external 
gravitational field). There are also forces between the particles themselves 
(at least a gravitational attraction). This could make the problem virtually 
intractable, but Newton’s 3rd comes to the rescue. It is the basis for 
recognizing that the sum of the internal forces over all of the particles the sum of the internal forces over all of the particles 
cancel!cancel! It is only the sum of all the external forces that induce an 
acceleration of the center of mass.

d
dt Pcm ∑

i1

N

Fi−ext



RocketsRockets
To solve for the velocity as a function of time
we multiply our EOM, 

by dt, separate and integrate. 

The velocity as a function of 
time is shown in the plot: 

FT  M dv
dt  −vex

dM
dt


i

f
dv  vf − vi  −vex 

i

f dM
M  vex ln Mi

Mf





Elastic Collisions in OneElastic Collisions in One--DimensionDimension
For an elastic collisions in one-dimension both energy and 
momentum are conserved: 

m1v1i  m2v2i  m1v1f  m2v2f

1
2 m1v1i

2  1
2 m2v2i

2  1
2 m1v1f

2  1
2 m2v2f

2

Rearranging and simplifying: 

m1v1i − v1f  m2v2f − v2i 

m1 v1i
2 − v1f

2  m2 v2f
2 − v2i

2

Now we can divide the second equation by the first and then rearrange: 

m1v1i  m2v2i  m2v2f  m1v1f

v1i − v2i  v2f − v1f

Note that for elastic Note that for elastic 
collisions in one dimension collisions in one dimension 
there are two equations there are two equations 
for two unknowns.for two unknowns.

This pair of equations (linear) isThis pair of equations (linear) is
much easier to work with than the much easier to work with than the 
original. Also note that the relativeoriginal. Also note that the relative
velocities become reversed! velocities become reversed! 



Elastic Collisions in OneElastic Collisions in One--DimensionDimension
Example:Example:

Substituting for vmi we find:

As we already noted, this pair of equations is much easier to woAs we already noted, this pair of equations is much easier to work with rk with 
than the original conservation of energy and conservation of momthan the original conservation of energy and conservation of momentum!entum!

With vMi = 0 and vmf = - vMf , 
our equations become: 

In a one dimensional elastic collision
M is initially at rest. If both masses 
end up with the same speed, vmf = - vMf , 
how are m and M related?

mvmi  mvmf  MvMf → mvmi  mvmf − Mvmf

vmi  vMf − vmf → vmi  −2vmf

− 2mvmf  mvmf − Mvmf with the result M  3m



Inelastic Collisions in TwoInelastic Collisions in Two--DimensionsDimensions
Example: Ballistic PendulumExample: Ballistic Pendulum
If a bullet with mass m strikes the wooden 
block with mass M, find the initial 
velocity of the bullet if the block rises to a 
height h after impact. 

Initially momentum is conserved so that: 

mv  M  mV

Conserving energy as the block (and bullet) rise in the gravitational field 
we have: 1

2 M  mV2  M  mgh → V  2gh

Solving for v : v  M  m
m 2gh



Elastic Collisions in OneElastic Collisions in One--DimensionDimension
Three BlocksThree Blocks

The conservation equations for each collision are: 

Blocks B and C have masses 2m and m 
respectively and are at rest on a frictionless 
surface. Block A also of mass m is heading 
at block B with a velocity v. Assuming that 
all collisions are elastic what is the final 
velocity of each block 

For the first collision these become:

m1v1i  m2v2i  m1v1f  m2v2f and v1i − v2i  v2f − v1f

With solutions:

v  vAf  2vBf and v  vBf − vAf

vBf  2v/3 and vAf  −v/3



Elastic Collisions in OneElastic Collisions in One--DimensionDimension
Three BlocksThree Blocks

The conservation equations for each collision are: 

Blocks B and C have masses 2m and m 
respectively and are at rest on a frictionless 
surface. Block A also of mass m is heading 
at block B with a velocity v. Assuming that 
all collisions are elastic what is the final 
velocity of each block 

For the second collision these become:

m1v1i  m2v2i  m1v1f  m2v2f and v1i − v2i  v2f − v1f

With solutions:

4v/3  2vBf  vCf and 2v/3  vCf − vBf

vCf  8v/9 and vBf  2v/9 Note that the total final Note that the total final 
momentum is equal to momentum is equal to mvmv..



One Final ExampleOne Final Example

Two identical pendulum bobs are suspended
from strings of equal length. One is released
from a height h. When it hits the second bob
they stick together. What is the maximum 
height that the pair rise to on the opposite 
side?

Clearly the answer is h/4, WHY?



Note that r is the distance to the axis of rotation, and I is notnot equal 
to M r2

cm .



Example: Moment of Inertia of a Thin Disk Example: Moment of Inertia of a Thin Disk 
about its Centerabout its Center

dm  M
A 2rdr

Due to circular symmetry we only have 
to integrate along the radial direction. 
The differential mass element is: 

Performing the moment of inertia integral:  

I   r2dm  
0

R M
A 2r3dr  2M

R2
R4

4  1
2 MR2

This result can be used to sum thin disks for any objects with circular 
symmetry such as a sphere or disk etc. 



Example: Thin Spherical ShellExample: Thin Spherical Shell
For a thin spherical shell the mass element is:

Finding the mass element was the hard part. 
The integral for the moment of inertia is:

Could we have used the moment of inertia for a solid sphere of radius R and 
subtracted the moment of inertia for a solid sphere (same density) of slightly 
smaller radius, R-dR ? 

Absolutely, give it a try!

I   r2dm   y2dm  2M
A R4 

0


sin3d

I  2M
4R2 R4 

0


1 − cos2 sind  1

2 MR2 2 − 2
3

I  2
3 MR2

dm  M
A 2yRd  2M

A R2 sind



Example: Moment of Inertia of a RodExample: Moment of Inertia of a Rod
Find the moment of inertia for a rod of 
mass m and length     about an axis
perpendicular to the rod through its 
(a) center and its (b) end. 

ℓ

(a) The integral for I with an axis through its center is straightforward

I  
−ℓ/2

ℓ/2
x2dm  

−ℓ/2

ℓ/2
x2dx  m

ℓ −ℓ/2
ℓ/2

x2dx

with the result: I  m
ℓ

2ℓ/23

3  1
12 mℓ2

What is particularly interesting about this result is to note what happens
when we consider its momentum of inertia about an axis through its end.





Kinetic Energy for a Rolling ObjectKinetic Energy for a Rolling Object

For a rolling object the total kinetic energy is 
the sum of the linear and rotational kinetic 
energies. 

Kroll  Klin  Krot  1
2 mv2  1

2 I2

If a sphere rolls down an incline (without slipping), what fraction of 
its kinetic energy is rotational? 

The non-slip condition is v = Rw. Hence the ratio of the KE’s is:

Krot
Klin  Krot

 I2

mv2  I2  2/5mR22

mv2  2/5mR22

Krot
Klin  Krot

 2v2

5v2  2v2  2
7



Example: A Ball Rolling Down an InclineExample: A Ball Rolling Down an Incline

After rolling down a height h, what is the speed of 
the ball after starting from rest?

Even in the presence of friction, if the ball rolls and 
does not slip, the total mechanical energy is 
conserved. (Without friction the ball will only slide.)

ΔU  ΔK  0 → −mgh  1
2 mv2  1

2 I2  0

mgh  1
2 mv2  1

5 mR22  7
10 mv2

v  5
7 2gh  5

7 2gh  2gh

The ball has a lower velocity because some of the potential can been 
converted into rotational kinetic energy! 



Example: Incline Plane w Pulley & FrictionExample: Incline Plane w Pulley & Friction
A block of mass m is attached by a massless 
string to a solid cylinder pulley of mass M and 
radius R. When the mass is released it 
accelerates down the plane with an acceleration 
a. Find the coefficient of kinetic friction, mk . 

Newton’s 2nd for the mass m yields:

Again (the rope does not slip) the tangential acceleration of the pulley is 
equal to this acceleration: 

mg sin − T − k mgcos  ma

a  R  
I R  R2

I T

For a solid cylinder I = ½ MR2 and after combining the equations:

m  M/2a  mg sin − k mgcos



Example: Incline Plane w Pulley & FrictionExample: Incline Plane w Pulley & Friction
A block of mass m is attached by a massless 
string to a solid cylinder pulley of mass M and 
radius R. When the mass is released it 
accelerates down the plane with an acceleration 
a. Find the coefficient of kinetic friction, mk . 

Solving for mk :

If mk = tanq
 

then there is no acceleration and the moment of inertia of the 
pulley is irrelevant. However for steeper angles the moment of inertia again 
reduces the acceleration of the mass sliding down the incline.

m  M/2a  mg sin − k mgcos

k 
mg sin − m  M/2a

mgcos  tan − m  M/2
mcos

a
g

Could we have solved this problem with the work-energy theorem? You betcha!
Now DK includes rotational kinetic energy as well. Give it a try!



The Vector Product (Cross Product)The Vector Product (Cross Product)
The vector product can be formed by expanding 
the vectors in their basis and applying the sinq

 between the individual basis vectors.

A  B  Ax

i  Ay


j  Az


k  Bx


i  By


j  Bz


k

A  B  AyBz − AzBy

i  AzBx − AxBz


j  AxBy − AyBx


k


i 


i  0,


j 


j  0,


k 


k  0


i 


j 


k ,


j 


k 


i ,


k 


i 


j


j 


i  −


k ,

k 


j  −


i ,

i 


k  −


j

The net result is:

For A and B in the x – y plane as shown:

A  B  ABsin

k



The Vector Product (Cross Product)The Vector Product (Cross Product)

The net result of this is we can express the 
vector product of A and B as the determinant:

A  B 


i


j


k

Ax Ay Az

Bx By Bz




i Ax Bx

j Ay By

k Az Bz

The magnitude of the 
vector product of A and B: A  B  ABsin

The vector A x B is normal to the plane formed by the two vectors 
A and B with a direction determined by the “right hand rule”.



L  r  p

L  I

  I  dL
dt

Angular MomentumAngular Momentum
Angular momentum for a particle is defined as 

From our new definition
of angular velocity:   r  v

r2

we have the result: L  m r  v   mr2

Summing (integrating) over multiple particles leads to:

The torque is the rate of 
change of angular momentum. 



Example: Conservation of Angular MomentumExample: Conservation of Angular Momentum
The lower disk has a mass M1 and a radius 
R1 , while the upper disk has a mass M2 and 
a radius R2 . The lower disk as a initial 
angular frequency of wi . The upper disk 
drops freely down and frictional forces act 
to bring the two disks to the same angular 
speed. (a) What is the final angular speed, 
wf ?   

In the absence of any external torque, angular momentum is conserved.
For this one dimensional problem this is expressed as:

Li  Lf

I1i  I1  I2f

f 
I1

I1  I2
i 

M1R1
2

M1R1
2  M2R2

2 i



Example: Conservation of Angular MomentumExample: Conservation of Angular Momentum
A uniform turntable of mass M and radius 
R is a rest on a frictionless axle. A lump of 
putty, mass m, approaches the turntable 
with a velocity v along a line that passes a 
distance b from the center of the turntable 
and sticks to its edge. Find the resulting 
angular frequency, w.

Again angular momentum is conserved. The initial angular momentum is that 
of the putty: 

Li  mvr sin  mvb

The final angular momentum is: Lf  Itt  mR2  1
2 M  m R2

Setting them equal and solving for w:   m
m  M/2

vb
R2



Conditions for EquilibriumConditions for Equilibrium
A body is in static equilibrium when it is stationary and when both

“the net external force and the net external torque are zero!”

∑
i

F i  0 and ∑
i

 i  0

If the tension in the support cable does not act at the center of “gravity” for
the beam and the worker then the beam will rotate!  Not good!

For static equilibrium we also have ∑
i

p i  0



Example: Leaning Board Against a WallExample: Leaning Board Against a Wall
A board of mass m and length L is leaning 
against a wall. The wall is frictionless and 
the coefficient of static friction between the 
floor and the board is m. Find the minimum 
angle f

 
at which the board can be leaned 

without slipping.

The component force equations yield:

F1  mg and F1  F2

The most convenient origin for the torque equation is the bottom of the board. 
Balancing torques 
about that point: mg L

2 sin/2 −   F2Lsin  mgL sin

2  sin/2 − /2 sin  cot

Solving for f: tan  1/2 →   tan−11/2 Does this make sense?



Example: Crane EquilibriumExample: Crane Equilibrium
Consider the crane as shown in the figure. 
The boom is supported by a cable attached 
to its center point. Find the tension in the 
cable when angle of the boom is 50o above 
the horizontal and the mass of the boom is 
1700kg. The hanging mass is 2200kg.  

Summing torques about the pivot point P:

T9sin50∘ − 1700g9cos 50∘ − 2200g18cos 50∘  0

Solving for T: T  4400  1700
sin50∘ 9.8cos 50∘  50kN

Again the normal forces at the pivot balance all of the forces.





Example: Multiple Equilibrium PointsExample: Multiple Equilibrium Points
In a certain semiconductor the local potential is:

Here x is the position of the electron in nm, 
and U is its potential energy in aJ = 10-18J. 
The constants are a = 8 aJ/nm2 and b = 1 
aJ/nm3. Locate the equilibrium positions for 
the electron and describe their stability.

For equilibrium dU/dx = 0:

The second derivative 
determines stability: 

Ux  ax2 − bx4

dU
dx  2ax − 4bx3  0

x  0,  a/2b  0,  2nm

d2Ux
dx2  2a − 12bx2

d2Ux  0
dx2  2a  16  0 → stable

d2Ux  2
dx2  16 − 124  0 → unstable



Simple Harmonic MotionSimple Harmonic Motion

Mathematically such a force is described as:

The is the force exerted by an ideal spring of spring constant k. 
From Newton’s 2nd we can write:

Simple harmonic motion results when an 
object is subject to a linear restoring force and 
is called simple harmonic motion, SHO. 

F  −kx

F  m d2x
dt2  −kx

An object experiencing such a force means that when it is displaced from 
equilibrium there is a force proportional to the distance from equilibrium that 
accelerates the object back towards its equilibrium position. 

How do we describe such motion?



Simple Harmonic MotionSimple Harmonic Motion

Simple harmonic motion results when an 
object is subject to a linear restoring force and 
is called simple harmonic motion, SHO. The 
general solution is then: 

x  Acost  Bsint with   k/m

What about the unknown constants A and B? They are determined by the 
initial conditions. For example if at t = 0 the system satisfies x = xo and v = 0, 
then: 

xt  0  A  xo and v  dx/dt  B  0

The solution for this initial condition becomes: xt  xo cost



Simple Harmonic MotionSimple Harmonic Motion

Simple harmonic motion results when an 
object is subject to a linear restoring force and 
is called simple harmonic motion, SHO. The 
general solution is then: 

Graphically this solution is given by:

Does the expression for angular frequency

  k/m

make sense? What happens when the 
spring constant k increases, what about the 
dependence on m? 

x  Acost  Bsint with   k/m



S H O S H O -- Velocity and AccelerationVelocity and Acceleration
It is useful to consider the velocity and acceleration 
as it relates to the displacement. For this we will 
use the solution that includes the phase. 

The velocity is the first derivative:

From this we see that the velocity is out of phase with the displacement. When 
the displacement is maximum, the velocity is zero. Similarly when the velocity 
is maximum the displacement is zero. 

The acceleration is the 
second derivative:

The acceleration always has the opposite sign of the displacement, i.e. the 
object is under the influence of a restoring force!

xt  Acost  

vt  dx
dt  −Asint  

at  d2x
dt2  −A2 cost  



Example: Physical PendulumExample: Physical Pendulum
Consider the physical pendulum as shown in the 
figure.  The center of gravity is a distance l from 
the pivot point. The equation of motion obtained 
from finding the torques about the pivot point is:

This is the same as we obtained earlier, only now the 
momentum of inertia does not necessarily have a simple 
form. In the limit q

 
<<1 the solution is: 

d2
dt2 

mgℓ
I sin  0

t  Acost   with 2  mgℓ/I

Remember in this expression       is the distance from the pivot to the CG.ℓ



Example: Physical Pendulum Example: Physical Pendulum -- HoopHoop
Consider a hoop of mass m and radius R. It is 
oscillating about a thin horizontal rod as shown. 
Find its period of oscillations. 

The moment of inertia of a hoop about an axis 
through its center is Icm = m R2.  From the parallel 
axis theorem if it is rotating about an axis on its 
circumference, I = Icm + mR2 = 2mR2 . 

The angular frequency for small amplitude oscillations is:

  mgℓ/I  mgR/2mR2  g/2R

The period is: T  2/  2 2R/g



Oscillatory Motion and Oscillatory Motion and 
Potential Energy FunctionsPotential Energy Functions

For small displacements from a position of 
stable equilibrium, xo , the potential can 
usually be approximated by an upright 
parabola.  Consider a Taylor series about xo : 

Ux ≃ Uxo  
dUxo 

dx x − xo   1
2

d2Uxo 
dx2 x − xo 2

At the minimum the first derivative of the potential vanishes. Any potential 
energy has an arbitrary constant as it is the change in potential energy that is 
important. As long as the displacement from equilibrium is small we have:

ΔUx ≃ 1
2

d2Uxo 
dx2 x − xo 2 and F  − dU

dx  − d2Uxo 
dx2 x − xo 



Oscillatory Motion and Oscillatory Motion and 
Potential Energy FunctionsPotential Energy Functions

For small displacements from a position of 
stable equilibrium, xo , the potential can 
usually be approximated by an upright 
parabola.  

F  − dU
dx  − d2Uxo 

dx2 x − xo   −kx − xo  with k  d2Uxo 
dx2

This is Hook’s law all over again with an effective spring constant being 
given by the second derivative of the potential at the point of equilibrium. 
So SHO is a very general phenomena. As it turns out it is also very general 
phenomena even in quantum mechanics. Only when the second derivative 
vanishes or when the displacements from equilibrium are large is this not a 
good approximation! 



NewtonNewton’’s Law of Gravitys Law of Gravity

Newton realized that the motion of the falling apple and the motion of 
the moon around the Earth were due to the same force. They were both 
falling toward the Earth due to the force of gravity. 

Fg  − GMm
r2 Universal Gravitation

This force obeys the inverse square law. Also the minus sign 
indicates that this force is attractive.

G is the universal constant of gravitational attraction and is given by 
G = 6.673x10-11Nm2/kg2

Strictly speaking it only applies to point objects. However, for 
spherically symmetrical objects r is the distance between their 
centers. As long as the size of the object is small compared to r, 
then it is simply the distance between them. 



Orbital Motion Orbital Motion 
An object orbiting the Earth (or any other 
object orbiting a large massive object) is 
accelerating toward the center of the Earth. 
The blue lines indicate the path of an object 
in the absence of gravity. From our study of 
circular motion we know that gravity must 
provide the force for radial acceleration. 
This leads to the period for a circular orbit: 

GMm
r2  mv2

r  m2r → 2  GM
r3

42

T2  GM
r3 → T2  42

GM r3

We have proved Kepler’s 3rd law for circular orbits. Note that this expression is 
independent of the object’s mass. This law is the primary way astronomers 
measure the product GM of objects throughout our galaxy. 



Gravitational Potential EnergyGravitational Potential Energy

So the potential energy increases as an object’s distance from the 
Earth (or any massive object) is increased. By convention the 
potential energy is defined to be zero when the object is infinity far 
from the gravitational source. Hence setting r1 to infinity we find

The change in gravitational 
potential that occurs when 
moving an object of mass m 
from r1 to r2 is:

ΔU  −
r1

r2
F  d r  

r1

r2 GMm
r2 dr  −GMm 1

r2
− 1

r1

ΔU  GMm 1
r1
− 1

r2

Ur  − GMm
r



Gravitational EnergyGravitational Energy

The total energy for an object
in a gravitational field is:

For a circular orbit there is only a tangential velocity and it is gravity that 
provides the radial acceleration: 

E  1
2 mv2 − GMm

r

m v2
r  GMm

r2 → 1
2 mv2  1

2
GMm

r

The total energy is then:
E  1

2
GMm

r − GMm
r

E  − 1
2

GMm
r  1

2 U  −K

Higher kinetic energy corresponds to a lower total energy! To get into a faster 
circular orbit a spacecraft must lose energy! To get into a slower circular orbit a 
spacecraft must gain energy! 



Escape VelocityEscape Velocity
To escape the gravitational field the 
spacecraft must have E > 0. It must be in 
a hyperbolic orbit, or at least a parabolic 
orbit for which E = 0. For that case:

Does the direction matter? No!

At the surface of the Earth:

E  1
2 mvesc

2 − GMm
r  0

vesc  2GM/r

vesc  2GME/RE  40km/hr



Black HolesBlack Holes
General Relativity also allows for the possibility of Black Holes. In this case 
the mass of a large star has collapsed to such a small volume that nothing 
can stop it from proceeding to infinite density. A horizon forms about this 
“singularity” that does not allow anything to escape even light. 

The radius of an “event horizon” from 
which inside nothing can escape is:

Rhor  2GM/c2 → RSun ≃ 3km
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