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(a) Solving the Schrodinger equation for U with E=0 gives

(&)

hz
u_(z—m) v

2 2 2
Ify= Ae"‘z/  then f—%’- = (4AJ:3 - 6AxL? (_1_4_)2_,1/ r yUs= h 3 -4x7— 61.
dx L 2mL* \ L

—3n?
mL?

(b) U(x) is a parabola centered at x =0 with U(0) = <0:

Au

\/ L ‘:x
.......... mLZ

y(x)= Acoskx + Bsinkx
¥ — _kAsinkx+kBcoskx

ox
2
OV o —k?Acoske-k*Bsinkx
ox
-2 -2mE .
(—r;zﬂ)(E—U)ym( h': )(Acoskx+Bsmkx)

. C . Oy (-2m
The Schrodinger equation is satisfied if Fy =\7 E-U)y or
x

—kz(Acoskx+Bsinkx)=(:%T—E)(Acoskx+Bsinkx).

212
Therefore E = Wk .
2m

Since the particle is confined to the box, Ax can be no larger than L, the box length. With
22
h

n =0, the particle energy E, = g is also zero. Since the energy is all kinetic, this implies

mL?
(p,f) =0. But (p,) =0 is expected for a particle that spends equal time moving left as right,

giving Ap, = ,/(pf) —(p,)? =0. Thus, for this case Ap,Ax=0, in violation of the uncertainty
principle.
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CHAPTER 6 QUANTUM MECHANICS IN ONE DIMENSION

n’h? . 8mL’E my? .  4mi[*v? 2mLv
7 —n"=—7s—. But E=—son”= 3 orn= .
8mL h 2 h h

v=0.10 nm/year=3.17x10""® m/s.So

Now

E=

317x107® m/s

1 =2(0.005 kg)(0.2 m =9,6x10"2,
A &X ) 6.63x107 Js
212 2
n“h 3h
B AR,
2
AE=(3) (1240 eV nny/c) =6.14 MeV

8(938.28x10° eV/c?)(10® nm)*
A=— =" —202x107 nm
This is the gamma ray region of the electromagnetic spectrum.
B nZ hZ
" 8mL?
n (6.63x107 Js)*
8mL*  8(9.11x107" kg)(10™ m)

5=603x107" J=377 eV

(@) E,=37.7 eV
E, =37.7x2%=151 eV
E, =37.7x3%*=339 eV
E,=37.7x4* =603 eV

(b) hf=%'c"=En, —En,

A= he - 1240 eV -nm

E, -E,, E, -E,

Forn;=4,n,=1,E, —E, =603 eV -377 eV=565eV, 1=219 nm
n,=4,n;=2, A=275 nm

n,=4,n;=3,A=470 nm

n,=3,n;=1, A=412 nm

n,=3,n;=2, A=659 nm

n,=2,n;,=1, A=109 nm

6-11  In the present case, the box is displaced from (0, L) by % Accordingly, we may obtain the

wavefunctions by replacing x with x—-% in the wavefunctions of Equation 6.18. Using

(T2 el ol ) )oe(5)
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L
2

p1(x)= (L) cos(Tx), P(x) =(%)cosz(—l'{)
¥a(0)= (%) z_;f—')' Py(x)= (%)sinz(l:i)

(2] 25 o (o252

2 1/2
612 aE=2E_[ ——[22-1*]and L= [(3/8)”"] =793x10"" m=7.93 A,
8mL mc
613 (@  Protoninabox of width L=0.200 nm=2x10"" m
2 6.626x107 J.5)? '
L ( J's) 7 =822x1072 ]
8m,L”  8(1.67x10% kg)(2x107* m)
22
- 82107 ] _513x102 ev
1.60x107" J/eV
) Electron in the same box:
2 6.626x10 J5)°
Ey=—t 7= ( J-s) >=1506x10""* J=9.40 eV .
8meL”  8(9.11x107 kg)(2x 107 m)
© The electron has a much higher energy because it is much less massive.
ni h nh
14 ill, ==L sop=—r=—r
6- @) Still > S0 1L
K= [c p? +(mc?) ] (mc?)=E—mc?
b nhe 232
E~=[(2—L) +(me’) ]
1hc)? 2 V2
K, =[(—2—L—-) +(mc?) ] —mc?
(b)  Taking L=10"2 m, m=911x10" kg, and n=1 we find K; =4.69x107 J. The

nonrelativistic result is

B (663x10°%].s)"

= =6.03x107
8mL*  8(9.11x107 kg)(10™# m?) 107

E1=

Comparing this with K;, we see that this value is too big by 29%.
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615 (a)
®)
©
(d)

616 (a)
(b)

()

( é 11 (<7/3)e* (-7/3)kez
) R MEE RS st

22 K
8mx9d*> 36md*

K=ZEI=

2 2
E=U+K and %:0 for a minimum [(+7/3)e k]— h

& | emd®
= 347 ord= K

(7)(18ke?m) 42mke?
_ (6.63%10°% J.5)’

(42)(9.11x10™" kg)(9x10° N-m?-C2)16x10"" C)*

=05%x10"° m=0.050 nm

Since the lithium spacing is 2, where Na® =V and the density is ﬂv'l’. where m is the
mass of one atom, we get

3 v
a =(V_"') =" | =|166x107 kgx
Nm density

=0.28 nm

m=28x10""m

7
530 kg/m>
(2.8 times larger than 24)

y(x)= Asm( I ) L =3 A. Normalization requires
L L 2
1=I|Mzdx=jAzsinz(ﬂ)dx=—LA—
0 ) L 2
2 1/2
A==
50 (L)
us 2\ . a(mx), 27 2[z_(3)2
p= de=(_) i 2(__),1,=_ in?pdp=2{T_ B "I 01955,
gIV’l L{sm 3 ﬂgsm¢d¢”6 -
12
w=A m(lOOrrx) =(2)

1007/3
{ (1007:x)dx=3(1016 ) { sinzw(t___gol_’;[mﬂn_lsi 2007:)]

‘"[z_ooTn] m(z”)-—_-—=o.3319

Yes: For large quantum numbers the probability approaches %
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. . . . . nrx
Likewise, P(x) is a minimum when —=0, #, 27, 37, ...=mx or when

x=— m=0,1,2,3,...,n

n’a?h?  n’h?
The allowed energies for this system are given by Equation 6.17, or E,, = lE T
m m

Using E, =107 J, m=107 kg, L=10"? m and solving for n gives
-3 2 \2{1n-3 n1Y?
{8(10 kg)10 m)*(107® 1)}

n= = =4.27x10%.
6.63x107 J-s

The excitation energy is AE=E,,, —E,, or

K 2 [ L (2n+1Y 2
8mL2{(n+1) -n }-(Sm[,z {2n+1}—E,,( 2 )~;1_E" forn>>1.

2)(10°
Thus, AE = 5)(—2 =469x1072 .
4.27x10

2
The Schrédinger equation, after rearrangement, is M = (i—T){U(x) ~E}y(x). In the well

dx?
interior, U(x) =0 and solutions to this equation are sin kx and coskx, where k= ZT";E— The

waves symmetric about the midpoint of the well (x =0) are described by

w(x)= Acoskx ~L<x<+L

In the region outside the well, U(x) =U, and the independent solutions to the wave equation
are ¢*** with a2 =(i—?)(U-E).

(a) The growing exponentials must be discarded to keep the wave from diverging at
infinity. Thus, the waves in the exterior region, which are symmetric about the
midpoint of the well are given by

y/(x)=Cez“”IJlrl x>Lorx<-L.

At x =L continuity of y requires AcoskL =Ce L. For the slope to be continuous

here, we also must require —Aksin kL = —Ce™*". Dividing the two equations gives the
desired restriction on the allowed energies: ktankL=¢c.

(b) The dependence on E (or k) is made more explicit by noting that k ‘ta’= thzu ¢

ZZIZU _k2}1/2 )

which allows the energy condition to be written ktankL = {

Multiplying by L, squaring the result, and using tan® 8+1 = sec? 9 gives
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wavenumber k = (——
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(kL)? sec?(kL) = szL

J2mu
h

from which the desired form follows immediately,

ksec(kL)=

energy. For electrons in a well of height U =5 eV and width 2L =0.2 nm, we
calculate

. The ground state is the symmetric waveform having the lowest

2mtIL? (2)(511><103 eV/c?)(5 eV)(0.1 nm)?
K’ (197.3 eV -nmy/c)?

=13127.

With this value, the equation for =kL

% _@327)¥*=11457
cos@

can be solved numerically employing methods of varying sophistication. The simplest
of these is trial and error, which gives 8 =0.799 From this, we find k =7.99 nm!, and
an energy

_#%2 _ (1973 eV-nayc)*(7.99 nm™)*
- 2m 2(511x10° eV/c?)

(VANDAY
D VARV

=2432eV.

" IMZO L
WATATAAS

Note that the n = 4 wavefunction has three nodes and is antisymmetric about the midpoint of

See Multimedia Manager

Inside the well, the particle is free and the Schrodinger waveform is trigonometric with

2mE 1/2.
n )

w(x)=Asinkx+Bcoskx 0<x<L.
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The infinite wall at x =0 requires y(0)=B =0. Beyond x =L, U(x)=U and the Schrédinger
2

equation %TW = (Z—m){u — E}y(x), which has exponential solutions for E <U
x

'Y
w(x)=Ce ** + De™*, x>L
_p)v2
where a=[w] . To keep y bounded at x = we must take D=0.At x=L,
N dy
continuity of ¥ and I demands

AsinkL = Ce™%"
kAcoskL = —aCe™ %"

Dividing one by the other gives an equation for the allowed particle energies: kcotkL =—a.
2mU

The dependence on E (or k) is made more explicit by noting that k* + a® = PO which
all - . _ 2mU kz Y2 . . b
ows the energy condition to be written kcotkL =— read . Multiplying by L,

2
Z":fL from which we

squaring the result, and using cot?@+1=csc?@ gives (kL)? csc®(kL) =

V!
) . Since nd is never smaller than unity for any value of €, there
sin

ImUL?

can be no bound state energies if ——<1.
h

2
After rearrangement, the Schrédinger equation is % = (%:—;—){U(x) ~ E}yp(x) with
x

U(x) =-;-ma)2x2 for the quantum oscillator. Differentiating y(x) = Cxe gives

av _ =2axyp(x)+C -axt
x

d
and
2
%—ffg%iz‘za W) - (2ax)Ce™ =(2ax)* px)-6ap().
X

ma))z 2 2mE
X
hz

Therefore, for y(x) to be a solution requires (2@x)* - 6a = 2?';1--{11(90 -E}= (T
Equating coefficients of like terms gives 2a = mTw and 6= E;—';E Thus, a= %‘f— and

_3ak® 3

E = Eha). The normalization integral is 1= “w(x)lzdx =2C%f ¥%¢2%% gx where the

m
second step follows from the symmetry of the integrand about x = 0. Identifying a with 2ain

12 3\V4
the integral of Problem 6-32 gives 1=2C 2(—1—X—”—) orC= 320 .
8a\2a b4
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At its limits of vibration x=+A the classical oscillator has all its energy in potential form:

E=—1—ma)2A2 or A=( 2E
2 me

12
5 ) . If the energy is quantized as E,, = (n +—;—)hw, then the

@n+1)h ]1/2

corresponding amplitudes are A, =[
mw

P,(x)dx is proportional to the time that the particle spends in the interval dx. This time 4t is
inversely related to its speed v as df = F—x—, so that P,(x)dx=Cdt or P.(x)= E But the speed of
v v

the oscillator varies with its position in such a way as to keep the total energy constant:

E=lmv2 +—1-ma)21t2 or v? =Z—E—w2x2.
2 2 m

Writing E in terms of the classical amplitude as E =%ma)2A2 gives v = (u(A2 - x? )1/2 and

P.(x)= %(A2 -x? )_1/2. The constant C is a normalizing factor chosen to ensure a total

probability of one:

A A
1= [P,oodr =S [(A2 -x2) "ax.
-A D4

- The integral is evaluated with the trigonometric substitution x = Asin§ (so that

z/2
dx=Acos@if) toget1 e d0=f£. Thus, < is just 1 and PAx):——ﬂ—l/—z- fora
%2 @ z (A% -2%)

classical oscillator with amplitude of vibration equal to A.
See Multimedia Manager

A particle within the well is subject to no forces and, hence, moves with uniform speed,
spending equal time in all parts of the well. Thus, for such a particle the probability density is
uniform. That is, P.(x) =constant. The constant is fixed by requiring the integrated probability

L
to be unity, that is, 1= [ P(x)dx=CL or C= —;—' To find (x} we weight the possible particle
0

L 2\-
positions according to the probability density P, to get (x) = [xP,(x)dx = %(}2_)
0

=L
o 2 '
Similarly, <x2> is found by weighting the possible values of x? with P,:

The classical and quantum results for (x} agree exactly; for <x2> the quantum prediction is
2
smaller by an amount

% which, however, goes to zero in the limit of large quantum
z

numbers 11, where classical and quantum results must coincide (correspondence principle).



631

MODERN PHYSICS 87

£

x
| 6* cos 2n0d0=—ljosinZnodoz(—lf)ocos 2nag =—”T'
ny 2n 2n

{2 =) 12 I
L= = " L
Then (x >— Piat { 3 an} 3 2(nx)?

The symmetry of |y(x)]* about x =0 can be exploited effectively in the calculation of average
values. To find (x)

()= [ w0l

We notice that the integrand is antisymmetric about x =0 due to the extra factor of x (an odd
function). Thus, the contribution from the two half-axes x>0 and x <0 cancel exactly,

leaving (x) = 0. For the calculation of <x2), however, the integrand is symmetric and the halif-
axes contribute equally to the value of the integral, giving

This equation is for <x*2>, not (x)= szlvilzdx = ZCZsze'z"/""dx.
<x> as they have written. 0 0

6-32

3
Two integrations by parts show the value of the integral to be 2(322) . Upon substituting for

3 .2 2\l/2
¢t weiget (s7) =2 Lo 2] -2 and sx=((x2)-7)"* <( 2] 22 n cacinting
the probability for the interval —Ar to +Ax we appeal to symmetry once again to write
+Ax Ax Ax
P= “Mzdx =202 Ie'zx/x“dx = -ZCz(fz‘l)e‘z"/"n =1~ e-./i =0.757
—Ax 0 0

or about 75.7% independent of x;.

e . . N 2 2 -ax® . a Y4 mao
The probability density for this case is |y (x)]* =Cge™ with Cy = > and a= e For the

calculation of the average position (x) = [ 2y (x)}?dx we note that the integrand is an odd

function, so that the integral over the negative half-axis x <0 exactly cancels that over the
positive half-axis (x > 0), leaving {(x) = 0. For the calculation of (xz), however, the integrand

x2|yo|* is symmetric, and the two half-axes contribute equally, giving

(x*)= 2C3£x2e dx = Ig(;)(;) .

. V2
Substituting for C, and a gives (xz) S and Ax «x2) _(x)z)l/z = (5.—:_5) '


dvanorden
Text Box
This equation is for <x^2>, not <x> as they have written.
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Normalization requires

1= [¥Pdx=C? [{y] + i Hy1 + v, }dx
=C2{j|y/1|2dx+“y/2|2dx+fy/'zylldx+]y/;y/2dx}

The first two integrals on the right are unity, while the last two are, in fact, the same
integral since y, and y, are both real. Using the waveforms for the infinite square

well, we find
{ ()7}
cos| — |~ cos| —— |idx
L L

o2 o

where, in writing the last line, we have used the trigonometric exponential identities
of sine and cosine. Both of the integrals remaining are readily evaluated, and are zero.

© Sy

Thus, 1=C2{1+0+0+0}=2C%,0or C =%z. Since y, , are stationary states, they

develop in time according to their respective energies E, , as ¢B/® Then
Y(x, t)= C{l//le'iE"/ by er—iszl/ "}.

¥(x, t) is a stationary state only if it is an eigenfunction of the energy operator
[E]:ih%. Applying [E] to ¥ gives

[E]¥ =C {ih( zEl )'/’ ot/ +ih( —~iE, )'I’ e-.s,:/»} = C{Eyy,e B 4 By}

Since E, # E,, the operations [E) does 7ot return a multiple of the wavefunction, and
so 'V is not a stationary state. Nonetheless, we may calculate the average energy for
this state as

(E) I\P [E]\de CZI{W. +HE /R + W;e-H'Ez!/h}{El Wle-iEll/h + Ezwze-iEzl/ﬁ }dx
= Cz{£1”'/’1|2dx+ Ez“'/’z|2dx}

with the cross terms vanishing as in part (a). Since y, , are normalized and C? =—;—

we get finally (E) =£1~1E2—.

The average position at any instant is given by

(x)= I A¥Pdx=C? I x{% HE 4y e+ﬂ»:,c/n}{,/,1 B Ly e-is,:/»}dx

=C2{[x|y/,|2dx+ [rwo P dx+e ™ [xpiw dx+et™ jxy/'zwldx}

—o0
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