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' Quantum Mechanics in Three
- Dimensions

' 2 2 2
g1 E-ET (11-) 4|t +("—3)
am \L,) \L,) T\,

2,2
L,=L,L,=L,=2L.Let g—m%= Ey. Then E=Ey(4n} +n% +n3). Choose the quantum
numbers as follows:
m " 3 £
Eo
1 1 1 6 ground state
1 2 1 9 * first two excited states
1 1 2 9 *
2 1 1 18
1 2 2 12 * next excited state
2 1 2 21
2 2 1 21
2 2 2 24
1 1 3 14 * next two excited states
1 3 1 14 *

Therefore the first 6 states are ¥/111, Y121, Y112/ V122, Y113, and 35, with relative energies

—EI:i =6,9,9, 12, 14, 14. First and third excited states are doubly degenerate.

0

8"2 (a) n1=1,n2=1,n3=1

22 a2 3(6.626 107 Js)”
=3h Itz - 3’12: ( I) z_.=4_52><1()‘m]=28,2eV
2mL"  8mL'  §(9.11x107 kg)(2x107° m)

0

()] ny=2,n,=1,n3=1or
n=1,n,=2,n3=1or
n=1,n,=1,n3=2

6h*
E, =
1 8mI?

=2E, =56.4 eV
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n2

(@

(b)

()

(a)

(b)

(@)

(b)

©

po( 7t ) 2 L[ W2
2ml2 2\ mI?

MmN, M

1 1 3

1 3 1 3-folddegenerate
3 1 1

= Asind ZX \inl ¥ i __3’")
Vs = Asin 7 )s L )sm( L

NEZAW Bﬂy) in(”z)

=A _— —_— —_
Vi =43 L)s‘"( L )™

. (3rxY Ity) . nz)
= Asin| —~ ad-4 hidnd
Vo =4SN )sm( L) MT

v(x, y)=y;(x)y2(y). In the two-dimensional case, y = A(sink; x)sin k,y) where
ny7

no
k=M% and k, =
1= andk =T

_ W (nd +n%)
T 2mlI? .

Ifwelet E; = -h—ZTz, then the energy levels are:
m

ny n; E

Ep
1 1 1 - V1
1 2 5 - V12

2 :ldoubly degenerate
2 1 5 - ¥a

2
2 2 4 - Vo

342 3(6.63x10°%4)*

ny=ny=ny=1and Ejy; = =247x1073 ] =154 MeV

smZ  8(167x107 ax10%)

(22 +12+1%)n?
8mL?

(22 +2% +1%)1?
8mL?

States 211, 121, 112 have the same energy and E= =2E;; =3.08 MeV

and states 221, 122, 212 have the energy E= =3Ey;; =463 MeV.,

Both states are threefold degenerate.
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L=[d+1)]¥?*n

4.714x107* Js=[I( +1)]1/2(

I(d+1)=

sol=4.

6.63x107* Js
y3, 4

(4714x107%)* (272

=1996x10' =20 =4(4+1)
(6.63x10)*

n=4,1=3,and m; =3.

(@
(b)
(@)

(b)

p(r)= (

@

(b)

L=[I0+1)]V?n=[3(3+1)]Y2r =23 =365x10"# Js
L,=mh=30=316x10">*Js
L=[I(+1)]¥2h; 4.83%10% Js ={I(1 +1)]Y%h, s0

483x10% Js)? ,
Fai= (f 055 : 10'3“]2)2 (4581091

1~458x10%

With L~k we get AL~ and %=%=2.18x10‘“

32
LYY
V4 aq

Wr)

r

The probability of finding the electron in a volume element dV is given by |y{>dV .
Since the wave function has spherical symmetry, the volume element dV'is identified
here with the volume of a spherical shell of radius r, 4V = 4zr2dr . The probability of
finding the electron between r and r + dr (that is, within the spherical shell) is
P=|yi*dV = anri|ydr.
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(© P

r=4qa, r

@ |¢4’dV=4:rnv42r2dr=4,z(lIi3]‘fe—2r/«»rzdr=(-‘§-)]"e-2r/a»r=ar
T ao 0 ap Jo

Integrating by parts, or using a table of integrals, gives
aY (o V(2
gy =| = z(i) =1 |=1.
”M (“g I 2/ \ag

. .
(e) P= 47tf|w|2r2dr where r; =£Z°— and r, =3%
n

\p
P=(-§3—) r2e2% gy letz=-2i
) ap Jr, g
3
= lj zle~?dz
23
= _%(z2 +2z+ z)e"]: (integrating by parts)

17 3 5 4
——e +—e" =0.496
2° T2

Z =2 for He*

(a) For n=3, ] can have the values of 0, 1, 2

]

0 - m,=0
1 - m=-10,+1
2 - m=-2,-1,0,+1,+2

I
1
1

®) All states have energy E, = _?zzi(13.6 eV)
E,=—6.04 eV,

Z=3 for Li®*

() n=1-1=0-m=0

n=2-1=0->m =0
and I=1-m;=-1,0, +1
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2 .
Forn=1,E = {3—](13.6) =-122.4 eV

2
Forn=2,E, =—(;— 13.6)=-30.6 eV

2

2
E,= (kc; —) from Equation 8.38. But 4, = h so with m, —» u we get
m

Zao e 2
24
En='*/§T |
’ 2h n
2 4 2
Forn=3-2,E; - Ez———-‘%(—%—i) with 2=656.3 nm forH (Z=1,
AT o \22 32

k=m,).For He*, Z=2,and y=m,,s0, A= 6263

For positronium, Z=1 and s= % 50, A =(6563)(2) =1312.6 nm (infrared).

For a d state, I = 2. Thus, m, can take on values -2,-1,0, 1, 2. Smce L,=mh, L, canbe
12h, + R, and zero.

(a) For adstate, [=2

L= +1)]V*n=(6)"%(1.055x 107 Js) = 2.58 x 10 Js
) For an fstate, [ =3

L=[I(1+1)]¥*h = (12)¥%(1.055 x 10" Js) = 3.65x10™ Js
The state is 6g
(a) n=6
(b) n =_13.:2ev E = 13 6 ev=-0378ev
(© For a g-state, [ =4

L=[I+1)]V*h = (4x5)Y2h=V20n = 4.47h

(d) m; canbe -4,-3,-2,-1,0,1,2, 3, 0r4

L
L = h; 0:—*———-——— =——
2 S O = = i+ 12 Jﬁ

m -4 -3 2 -1 1 2 3 4
L, -4 -3 -2n -h o A 21 3 4n
6 1534° 1321° 1166° 1029° 90° 771° 634° 479° 266°

105
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CHAPTER 8 QUANTUM MECHANICS IN THREE DIMENSIONS

When the principal quantum number is , the following values of ! are possible:
1=0,1,2,..., n-2, n-1.For a given value of ], there are 2I+1 possible values of m;. The

maximum number of electrons that can be accommodated in the n level is therefore:

n-1 n-1

QCO)+D+M+D+...+2I+D+..+2n-1)+1)= 221+ Y= ZZl+n
=0 =0  I=0
£ _kk+1) . ; .
But Zl = so the maximum number of electrons to be accommodated is
M +n= nz .
2
L G P Zke? -
The total electron energy in a circular orbit is (as given) E = ——-————. Substituting the
r
[ 4
- 2 11 e1yn2 Z*\(ke*
quantization rules for angular momentum [If* =I(I+1)#* and E=—{—- T and using the
n 0
2 2 27,2
Bohr result r == gives ——X ) z l(l +DA 7 _Z 2"‘ . Remembering that 2y = ——
2a, n 2, 0) n‘a, m ke
I+ 1)

and cancehng common factors in each term leaves —:—lz— = —1. Thus, any orbital quantum

number / greater than l,,, =n~1 will produce a total energy larger than that prescribed by n,
(Z%/n?)ke?

ie,E, =- =
0

32
1 1
a r)= ————— 2—— g% Atr=a —0529x10'l°mweﬁnd
@ V2 42m"? (“o) ( ”o) =

1 1 32 2 1 32
pute=gam(z,) @ -emof L]

3/2
= (OB%)[W] =9.88x ].01‘t m'3/2
B X m

®  |wa(@o)? =(9.88x10% m¥2)* =9.75x10% m™

(4) Using the result to part (b), we get P, (ap) = 4m2|y,, (a,)* =3.43%x10'° m
( g P get ;14 01¥25\4p

1

= Are~"12% _—
Ryp(r)=Are where A 2(6)1/2a(5,/2

P(r)= r2R§P (r)=Alrte™

()= [rP(r)dr = A% [rPe "% dr = A%a§5!=5a, = 2.645 A
0 0
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6.63x107 Js)(3x10® mys
828 (1) L=TC. ( Js) k) 5 =137.036
a 27(9x10° Nm?/C?)(16x107 C)
b oo Mme ke 2T orxiz
rn ké*/mct kit a
© ay _M[mke* 1 hc 1 _137
A,  MWmge 27mke* 27a 2%
1 (mke*Y 4nch® \_dzmhc_4x
d =—=47(137
@ Rao (hz Im,k%“) ke? @ 37

2
824 P,(r)= %rze‘z’/ % for hydrogen ground state, U(r) = ke is potential energy (Z=1)
ap r

(= [U(r)Pls(r)dr --E— [re 2%y

“o 0
2
= _ik;__(ao ) [z¢7*dz  wherez ¥
ag \ 2 ag
2
= ke =-2(13.6 eV)=-27.2 eV.
4
ke? ke?
To find (K), we note that (K)+{U)=(E)= o= -13.6 eV s0, (K)=—=+136 eV.

ap a4

8-25  The most probable distance is the value of r which maximizes the radial probability density
P(r)= |rR(r)|2. Since P(r) is largest where rR(r) reaches its maximum, we look for the most

probable distance by setting w equal to zero, using the functions R(r) from Table 8.4.

For clarity, we measure distances in bohrs, so that — becomes simply 7, etc. Then for the 2s
a4
state of hydrogen, the condition for a maximum is

d . 1 -1
0=d—r{(2r -r)e?} = {Z—Zr—E(Zr -rz)}e /2

or 0=4-6r +r2. There are two solutions, which may be found by completing the square to

get 0=(r —3)2 -5 or r =35 bohrs. Of these r = 3++/5 =5.2364, gives the largest value of

P(r), and so is the most probable distance. For the 2p state of hydrogen, a similar analysis

gives 0= di{rze"/z} = {Zr —%rz}e"/2 with the obvious roots r =0 (a minimum) and r =4 (a
r

maximum). Thus, the most probable distance for the 2p state is r = 44, in agreement with the

simple Bohr model.



108

8-26

8-27

8-28

8-29

8-30
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The probabilities are found by integrating the radial probability density for each state, P(r),
from r =0 to r =44, . For the 2s state we find from Table 8.4 (with Z =1 for hydrogen)

.V Y say( L \2 Y
Py (r) = |rRos () =(8a0)'1(-—) (2——) e and P=(8ap)! | (-—) (2——) ey,
a, ay 0 \4o 4

4
Changing variables from r to z= ;r_ gives P=871[(42% — 42% + z*)e *dz. Repeated integration
0 0

by parts gives

P=871{(422 - 42 + 2*)~ (82~ 1227 + 42°) - (8- 2 +122%) — (-24+ A2) - (W)}e 7|,
=87{(64+96+104+ 72+ 24)e™* +8} = 0176

4
For the 2p state of hydrogen P, ()= |rR2,, (r)|2 =(244, )‘l (aL) e and
o

4ﬂo 4 4
P=(24ay)7 | (L) e dr =247 [ z%¢™*dz. Again integrating by parts, we get

0 \4 0
P=247"{-2* - 42> ~122% - 24z~ 24}e"*|] = 2471 {~824¢™* + 24} = 0.371. The probability for the

2s electron is much smaller, suggesting that this electron spends more of its time in the outer
regions of the atom. This is in accord with classical physics, where the electron in a lower
angular momentum state is described by orbits more elliptic in shape.

See Multimedia Manager

See Multimedia Manager

To find Ar we first compute (r2> using the radial probability density for the 1s state of
hydrogen: Py,(r) =—4?r2e’2'/ % . Then (r2 ) =[r2P,(rydr = %— frie¥/%dr With z= EL, this is
ag 0 a4y o a4
500 o
(r*)= —43—(%0) [z%¢"*dz. The integral on the right is (see Example 8.9) | z*¢™%dz = 4! so that
ay 0 0
5
(r*)= —43—(%’) (4 =3aj and Ar=({r?) -(r)z)v2 =[34 —(1.5110)2]1/2 =0.8664,. Since Ar is an
&g
appreciable fraction of the average distance, the whereabouts of the electron are largely
unknown in this case.

The averages (r) and (rz) are found by weighting the probability density for this state

3

P.(r)= 2z r2e~22"% with r and r2, respectively, in the integral from r =0 to r =
1s a P y gl'
0

{r)= IrPl s(r)dr= _z?) J’ r3e~22r/n g,
0 4 Jo

(r*) =[Py (rydr = 4(13) rte ¥ gy
0 ap Jo
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Substituting z = Eaz_r gives
]

1/2
and Ar = ((rz) - )1/2 D [3 —%:I = 0.866(“70). The momentum uncertainty is deduced

from the average potential energy

o 3 2 2
(U)=—kZe* [ =Py (r)dr = —4kZe2( ) [re22l% = —4kZe2( z ) ( 4o ) =Kz
of ay 2Z a,

2 S 2
‘Then, since E = —E(ZL) for the 1s level, and g, = —hk7, we obtain -
m

2a, .

2mk(Ze)* _ (@)z

2\ = - =
(p*)=2m,(K)=2m (E-U) e o

With (p) =0 from symmetry, we get Ap= ((pz))l/z ZR ond ArAp=0.866h for any Z,
: 4
consistent with the uncertainty principle.

831  Outside the surface, U(x)= _4A (to give F= —%xli = ——), and Schrodinger’s equation is
x

2
_( 2m
10 S . . I+ 1)h2
Schrédinger equation with effective potential U 4 (r) =U(r) + 5
m

de

. With I =0 (s states)

e
2

and U(r)= —ﬁ the equation for g(r) has the same form as that for y/(x). Furthermore,
r

(0)=0 if no electrons can cross the surface, while g(0) =0 since R(0) must be finite. It

follows that the functions g(r) and y(x) are the same, and that the energies in the present

Z2ke?

2a,

h2 mA®Y 1
kez,wegetE,,= (th)( 2) n=1,2,.

€

case are the hydrogenic levels E, = —( Xiz) with the replacement kZe? — A.
n

Remembering that a;, =

8-32  See Multimedia Manager
8-33  See Multimedia Manager

8-34  See Multimedia Manager
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2
)d_y/ + (— —%)w(x) = Ey(x). From Equation 8.36 g(r) = rR(r) satisfies a one-dimensional



