Path ①:
$$\begin{cases} (x_{1}, y_{1}) \\ E \cdot ds = \int_{0}^{x_{1}} E_{x}(x, 0) dx + \int_{0}^{y_{1}} E_{y}(x_{1}, y) dy & (0, y_{1}) \end{cases}$$

$$= 0 + \int_{0}^{y_{1}} (3x_{1}^{2} - 3y^{2}) dy = 3x_{1}^{2} y_{1} - y_{1}^{3}$$

$$= \int_{0}^{x_{1}} (3x_{1}^{2} - 3y^{2}) dy + \int_{0}^{x_{1}} E_{y}(0, y) dy + \int_{0}^{x_{1}} E_{x}(x_{1}, y_{1}) dx$$

$$= \int_{0}^{y_{1}} -3y^{2} dy + \int_{0}^{x_{1}} 6xy_{1} dx = -y_{1}^{3} + 3x_{1}^{2} y_{1}$$

$$= \int_{0}^{y_{1}} -3y^{2} dy + \int_{0}^{x_{1}} 6xy_{1} dx = -y_{1}^{3} + 3x_{1}^{2} y_{1}$$

$$= \int_{0}^{y_{1}} -3y^{2} dy + \int_{0}^{x_{1}} 6xy_{1} dx = -y_{1}^{3} + 3x_{1}^{2} y_{1}$$

The electric potential φ , if taken as zero at (0,0), is just the negative of this, since we define φ by $-\int \underline{\mathbb{E}} \cdot d\underline{s}$, or $\underline{\mathbb{E}} = -\nabla \varphi$. That is, $\varphi = y^3 - 3x^2y$

2.4 This is the potential of a spherical charge distribution, more briefly described by

 $\varphi = r^2 \text{ for } r \leqslant a ; \quad \varphi = -a^2 + 2a^3/r \text{ for } r > a.$ For $r = (x^2 + y^2 + z^2)^{1/2} \leqslant a, \quad \nabla^2 \varphi = \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2}$

= 2+2+2=6. Using $\nabla^2 \phi = -4\pi \beta$, we find $\beta = -3/2\pi$ for r < a. [In spherical polar coordinates

 $abla^2 \phi = \frac{1}{r} \frac{d}{dr} r \frac{d\phi}{dr}$ when ϕ is a function of r only. This gives the same answer.] Outside the sphere of uniform charge density ρ is zero, as we find by computing $\nabla^2(1/r)$, or just by recognizing $2a^3/r$ as the potential of point charge $2a^3$ at the origin. The electric field E_r at radius r < a is that of a charge $(4\pi/3) r^3 \rho$ divided by r^2 : $E_r = (4\pi/3) \rho r = -2r$, r < a. This tells us there is a surface charge σ on the sphere: $4\pi\sigma = 2a - (-2a)$. $\sigma = a/\pi$. The total surface charge is $4\pi a^2 \sigma$, or $4a^3$. This is positive

and twice as large as the negative charge -2a3 distributed through the interior of the sphere. Thus

the external field of the sphere as a whole is that of a positive charge $2a^3$.

Assume the diameter is about 1 foot, 30 cm. 1000 volts is 3.3 statvolts. This is
$$Q/r$$
, where $r = 15$ cm. The charge Q is therefore 15×3.3 or -50 esu. The number of extra electrons per cm² is

$$\frac{50}{4\pi \times 15^2 \times 4.8 \times 10^{-10}} = 3.7 \times 10^7$$

2.8

(a) Consider a cylinder of unit length, of radius r < a. Charge contained is $\pi r^2 \rho$. Area of surface is $2\pi r$; flux through surface is $2\pi r E$. Gauss's law says:

 $2\pi r E = 4\pi (\pi r^2 \rho)$, from which $E = 2\pi \rho r$.

Considering a cylinder of radius r>a, which contains an amount of charge $\pi a^2 p$, we find

$$2\pi r E = 4\pi (\pi a^2 \beta)$$
, or $E = \frac{2\pi \beta a^2}{r}$

(b) Take
$$\varphi = 0$$
 at $r = 0$:
for $r < \alpha$, $\varphi = \int_{0}^{r} -2\pi \rho r' dr' = -\pi \rho r^{2}$

for
$$r > a$$
, $\varphi = -\pi \rho a^2 - \int_a^r \frac{2\pi \rho a^2 dr'}{r'} = -\pi \rho a^2 - 2\pi \rho a^2 \ln \frac{r}{a}$

2.14
$$f(x,y) = x^2 + y^2$$
 $\nabla^2 f = 2 + 2 \neq 0$
 $g(x,y) = x^2 - y^2$ $\nabla^2 g = 2 - 2 = 0$
 $\nabla g = 2x \hat{x} - 2y \hat{y}$
 $at(1,0) \nabla g = +2 \hat{x}$
 $at(0,1) \nabla g = +2 \hat{y}$

This must vanish for an extremum in U. But q/R_1 is just the potential ϕ_1 of that sphere and $(Q-q)/R_2$ is the potential ϕ_2 of the other sphere. So the condition can be expressed as equality of potential. It is easy to see that the extremum is a minimum in U, not a maximum: if $R_1 = R_2$, equal division of charge involves half as much energy as piling all of Q on one sphere.

total charge Q uniformly distributed.

charge inside radius $r = Q \frac{r^3}{Q^3}$ $E_r = Qr/q^3$, r < a $E_r = \frac{Q}{r^2}$, r > a $\int_0^{\alpha} E_r dr = \varphi(0) - \varphi(\alpha) = \frac{Q}{Q^3} \int_0^{\alpha} r dr = \frac{Q}{2a}$ $\int_0^{\infty} E_r dr = \varphi(a) - \varphi(\infty) = Q \int_0^{\infty} \frac{dr}{r^2} = \frac{Q}{a}$ $\frac{3Q}{2q} = \frac{3 \times 79 \times 4.8 \times 10^{-10}}{2 \times 6 \times 10^{-13}} = 9.5 \times 10^4 \text{ statvolts}$ = 28.5 megavolts

It follows that
$$\bigoplus_{A}^{B} \underbrace{E \cdot d\underline{s}}_{B} = -\bigoplus_{B}^{A} \underbrace{E \cdot d\underline{s}}_{A} = \bigoplus_{A}^{B} \underbrace{E \cdot d\underline{s}}_{A} = QED$$

2.28
$$dr = -4 \frac{\text{esu/cm}^2}{\text{dq}} = \sigma \times 2\pi r dr$$

$$Q = \int \frac{dq}{r} = 2\pi \sigma \int dr = -16\pi \text{ statvolt}$$

Electron's final K.E. = $e\phi = 4.8 \times 10^{-10} \times 16\pi = 2.41 \times 10^{-8}$ erg Electron rest energy mc2 = 81 × 10-8 erg. Since $K.E./mc^2 \approx 0.03$ a non-relativistic calculation should be good enough:

$$U = \left(\frac{2 \text{ K.E.}}{\text{m}}\right)^{1/2} = \frac{2 \times 2.41 \times 10^{-8}}{9 \times 10^{-28}} = 7.32 \times 10^{9} \text{ cm/sec}$$

2.29 Outside both shells the electric field is that of two point charges. Inside each shell the field is that of a point charge at the center of the other shell.

The external field of A alone is that of point charge Q. To move shell B to infinity takes the same amount of work as moving the point charge Q to infinity with B stationary. But that takes just Q²/2a for that point charge Q is initially a distance of 2a from the center of shell B.

2.31
$$\phi = \phi_0 \cos kx e^{-kz}$$
 $\frac{\partial \phi}{\partial x} = -k\phi_0 \sin kx e^{-kz} = -Ex$

$$\frac{\partial^2 \phi}{\partial x^2} = -k^2 \phi_0 \cos kx e^{-kz}$$
 $\frac{\partial \phi}{\partial z} = -k\phi_0 \cos kx e^{-kz} = -E_z$

$$\frac{\partial^2 \phi}{\partial z^2} = k^2 \phi_0 \cos kx e^{-kz}$$

$$\nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0$$

$$Z \leftarrow \pi/k$$

$$\sigma = \frac{1}{2\pi} E_z \text{ at } z = 0$$
 $\sigma = \frac{k}{2\pi} \phi_0 \cos kx$