4 Lecture 10-2

4.1 Chapter 2 Projectiles and Charged Particles (con)
4.1.1 Quadratic Air Resistance

While we can find examples for which the drag of an object is linear with respect
to its velocity, notably very small objects or for very small velocities, e.g. the
Millikan oil drops, more obvious examples such as baseballs etc. are subject to
quadratic drag. For this case the x and y components of the equation of motion
are not in general separable. Additionally the equations are nonlinear which
are often significantly more complicated than linear differential equations. For
these reasons we shall consider purely horizontal or vertical motion.

In the case of purely horizontal motion, Newton’s equation of motion is given

by p
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This equation is easily separated which allows us to obtain the integrals
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These integrals are well known and we find
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Solving for v, yields
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This is a different time constant that the one we obtained for the case of linear
drag. Here when ¢ = 7 the velocity is reduced by a factor of 2 versus e~!. NTL,
both time constants give us a measure of the time required for wind resistance
to slow the motion of the object appreciably.

To find the position of the object as a function of time we merely integrate
this solution via
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The velocity still goes to zero as t — oo, but in this case it does so much more
slowly. So slow in fact that z increases without limit. Remember however that



when the velocity of the particle becomes small enough the drag becomes linear

and the velocity will begin to fall off exponentially. Thus no real body can coast
to infinity.

For vertical motion Newton’s equation of motion is

dv,
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where we are measuring positive y to be vertically down. Again as in the linear

case it is useful to find the terminal velocity. In this situation dv,/dt = 0 (the
same as in the linear case) and
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Rewriting the equation of motion in terms of the terminal velocity yields
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We will assume that the object (ball) is dropped from rest. Then using the
technique of separation of variables we find
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This integrand can be expanded into partial fractions,
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which enables us to perform the integral in a straightforward fashion. The result
is
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Solving for v, leads to
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For gt/vier << 1 this expression reduces to
vy = gt, (13)

which is what you would expect for a falling object. However, the hyperbolic
tangent rapidly approaches 1 as gt/uvi., increases beyond 1, so that the velocity
of the object quickly reaches its terminal velocity. To find the distance the
object has fallen we simply integrate the vertical velocity to find

2
Y= Bter 1, cosh gt/ Vter (14)
g



If the particle has both horizontal and vertical velocity components then the
equations of motion are
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These equations are both nonlinear and coupled and cannot be solved analyt-
ically. Our only choice is to choose a set of initial conditions for v, and v,

and numerically integrate these equations. Since v, (t + §t) = v, (t) +v,0t, and
vy satisfies a similar expression, the numerical integration of these equations
is straightforward. An example for a baseball thrown off of a cliff is shown in
figure 2-3.

Figure 2-3. Trajectory of a baseball thrown off of a cliff subject to quadratic
air resistance. The initial velocity is 30m/s at 50° above the horizontal. The
terminal speed is 35m /s with a vertical asymptote just beyond z ~ 100m. The
dashed line the trajectory in a vacuum. The dots show the position of the ball
at one-second intervals.

Note that, as with the case for linear resistance, there is a vertical asymptote
for the horizontal range. This can be seen by examining the EOM that as
Uy — Vger >> Uy, the horizontal velocity approaches v, o exp (—kt), where
k = cvier/m. Integrating this expression easily demonstrates that there is an
asymptotic limit to the range.

4.1.2 Motion of Charge in a Uniform Magnetic Field

Again to introduce some important mathematical methods, we will consider the



motion of a charged particle in a magnetic field. The net force on a particle
moving in a magnetic field is

?:q(ﬁxﬁ). (16)
This leads to an equation of motion given by

mv = q (7 X ﬁ) (17)
Since the magnetic field is uniform (spatially and temporally) we will let it define

the z direction. With this definition the three components of the equation of
motion are

mv, = qu,B (18a)
mv, = —qu,B (18b)
mv, = 0. (18¢)

Clearly the z component of the velocity is a constant of the motion and will be
ignored for the moment in this problem. Alternately we could choose an inertial
frame in which v, = 0, however in general, that will not be the laboratory frame
from which we observe the orbit defining the motion of the charge. NTL, we will
now only concern ourselves with v, and v,. Before we proceed it is convenient
to define the cyclotron frequency as
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With this definition the equations of motion become
Ve = wuy (20a)
vy = —Wu. (20Db)

These two relatively simple first order differential equation can be solved in
several different ways. One of the more obvious methods might be to differenti-
ate the equation for v, and then substitute for v,. While this would clearly work,
the solution to the resulting second order differential equation has two unknown
constants of the motion. A similar approach used to solve for v, introduces once
again two undetermined constants of integration. The point here is that differ-
entiating these equations introduces new unknown constants of integration. To
resolve this issue requires that you substitute the solution for v, back into the
original first order differential equation for v,. That is, you must ensure that
your solutions solve the original coupled first order differential equations. This
eliminates all but two of the unknown constants. The other two are determined
by the initial conditions.

An interesting approach that does not introduce new unknown constants is
to make use of complex numbers. Here we define the complex variable

1N = Uy + 10y, (21)



where ¢ denotes the square root of —1. The two coupled differential equations
can then be reduced to a single first order differential equation as

n=uv,+ ii)y = WUy — WV = —iw (Vg + 1vy) = —iwn (22)
This equation can be immediately integrated with the solution
n= Ae ™t (23)

It now appears that there is only one unknown constant, whereas we should
expect two (one for each variable). The answer to this question is that in
general A is also complex. We could assume that A = a + ib. However, it is
more useful to take advantage of Euler’s formula, €’ = cos + isinf. We can
now define a phase angle so that

A =wve? =wv(cosd +isind), (24)
where v is the magnitude of the transverse velocity, v? = v2 + vg, which as
we see for this problem is a constant. With this definition the solution for our
variable 17 becomes

n = ve!@=%Y =y (cos(§ — wt) 4 isin (§ —wt)), and (25)
vy = wvcos(d—wt), v, =wvsin(d— wt) (26)

It is useful to see that Euler’s formula implies the complex number e* lies on

A=qel®
il

sin f : a

cos

—_—

= Ae-iol

(a) (b)

Figure 2-4. (a) Euler’s formula implies that the complex number e lies on the
unit circle center at the origin. (b) The complex function A = ae® lies on a
circle of radius a with polar angle §. The function 7 (t) = Ae~*? lies on the

same circle with with polar angle (6 — wt).

the unit circle in the complex plane and the solution for 7 lies on a circle of
radius v where the polar angle (6 — wt) rotates in a clockwise direction as ¢
advances. Both of these descriptions are shown in Figure 2-4.



Integrating the solutions for v, and 7 are straightforward with the results
Z = 2o+ Uyt (27)

£ = z+iy= /ndt — Dei=t) 4 o) 4y, (28)
w
Defining the origin so that z, = y, = 0, the solutions become

Z = 2o+ Uyt (29)
£ = otiy= gei(6+7r/27wt). (30)

Hence the orbit for the charged particle is also defined by its z and y positions
lying on a circle, this time with a radius given by
v mu
r=-= B (31)
In general the motion is helical as the particle can propagate in the £z direction
depending on the sign of v,,.

For the special case of v,, = 0, the motion of the particle lies on the circle
defined above. In a cyclotron, the particles are slowly accelerated by the timed
application of an electric field. Ignoring relativistic effects, the frequency of the
particle orbiting in a uniform magnetic field remains fixed and as the particle
gains energy and momentum it proceeds to the outer radius of the field where
it emerges and can be used in scattering experiments.

4.2 Chapter 3 Momentum and Angular Momentum
4.2.1 Conservation of Momentum

In chapter 1 we found that as long as all the internal forces in a system of NV
particles obeyed Newton’s third law, the rate of change of the system’s total

e
linear momentum, P = P’y + - - -+ P, is determined only by the eaternal
forces on the system, i.e.
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P = F%", (32)

In particular if the system is isolated (no external forces), then we have

Principle of Conservation of Momentum

N
If the net external force F'®*' on an N-particle system is zero, the
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system’s total mechanical momentum P =Y m, v, is constant.

As an example consider two masses with mass m; and mg with velocities v’y
— . . o ey .
and v’y respectively. Their initial total momentum is then

?i = m171 + mgﬁg. (33)



If the collide and stick together (a perfectly inelastic collision) the final momen-

>
tum is given by P = (mq +mq) ¥’ as both particles are moving with the
same velocity v ¢- Now from the conservation of momentum we can find this

velocity v" by noting that in the absence of any external forces P; = P ¢, and

MU+ me v
V= T2 (34)
mi + Mo

An important special case is when one of the bodies is initially at rest, as
when a speeding car rear ends a stationary car at a stop light. Conservation of

momentum then tells us

V= —L B (35)

mq + mao

We see that in this case the final velocity is in the same direction as ©'; but
at a reduced speed determined ratio of the masses. (This final velocity can be
found from the skid marks of the combined wreck.) This sort of analysis of
collisions, using the conservation of momentum, is an important tool in solving
many problems ranging from nuclear reactions to the collisions of galaxies.

4.2.2 Rockets

A nice example that makes use of the conservation of momentum is the propul-
sion of a rocket. For a rocket there is nothing to push against, so how does
it get itself moving? By ejecting the propellant out through the thrusters, it
is accelerating the mass of the propellant in the opposite direction. Then by
Newton’s third law, the fuel pushes the rocket forward.

To analyze this problem we must examine the total momentum. Since the
rocket is ejecting mass, the rocket’s mass is steadily decreasing. At time t the
momentum of the rocket is P (t) = mv (We will ignore vector notation as the
only direction of interest is that along which the rocket is traveling.) A short
time later, ¢t + dt, the rocket’s mass is m + dm, where dm is negative, and its
momentum is (m + dm) (v + dv). If the fuel is ejected at a velocity u relative
to the rocket, then the momentum of the ejected fuel (which has mass —dm) is
(=dm) (v —u) . The total momentum at time ¢ + dt is

P(t+dt) = (m+dm)(v+dv) +dm(u—v) =mv+ mdv+ udm, (36)

where we have neglected the second order term dmdv. The change in momentum
during the time dt is

dP = P (t+dt) — P (t) = mdv + udm. (37)

Now if there is an external force, e.g. gravity, then the change in momentum
during the time dt is F®*'dt and dividing by dt we find

dv dm — md—v = —ud—m + FoXt, (38)
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Here we shall assume no external forces and leave it as an exercise for the student
to consider the effects of gravity. Hence dP = 0 and mdv = —udm. Dividing
this by dt and we can rewrite this expression as

dv dm

Moy = U (39)
Here —dm/dt is the rate at which the rocket’s engine is ejecting mass. This
equation looks just like Newton’s second law except that the product —udm/dt
plays the role of the force. For this reason this product is often called the thrust.
Using the technique of separation of variable that we employed successfully
when we examined projectiles in the presence of drag allows us to solve this

equation as well. We find

d
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m
v—v, = uln&, (40)
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where v, and m, are the initial velocity and mass respectively. This result puts
a significant restriction on the maximum speed of the rocket. For example, even
if the original mass is 90% fuel and all of this fuel is exhausted the quantity
Inm,/m = In10 = 2.3. So the speed gained cannot exceed 2.3u. This means
rocket engineers try to make u as large as possible and also design multistage
rockets which can jettison the heavy fuel tanks of the early stages to reduce the
total mass of the later stages.



