
20 Lecture 11-13

20.1 Chapter 8 Two Body Central Force Problem

We will now discuss the motion of two bodies which exert a conservative central
force on each other. We will ignore all other external forces on this two body
system. This is often a very good approximation for planets orbiting a star, a
binary star system, the Moon orbiting the Earth, etc. In most cases the true
situation is more complicated. For example, even if we are interested in a planet
orbiting the Sun, we cannot completely ignore the e¤ects of the other planets.
In a similar fashion, we cannot ignore the e¤ects of the Sun when we analyze
the Earth-Moon system.
There are other systems such as the Hydrogen atom or a diatomic molecule

in which oppositely charged particles interact under an attractive conservative
central force. Such atomic scale systems must be treated with a quantum me-
chanical approach. None-the-less some of the ideas developed in this chapter
(concept of a reduced mass and relative coordinate) play a critical role in the
quantum mechanical two-body problem. Thus for many reasons it is a worth-
while goal to understand the two-body central force problem. However from a
mechanics point of view we will only consider the scenario in which two bodies
interact via the gravitational interaction.

20.1.1 Statement Of The Problem

Let us consider two particles with masses m1 and m2 which we will consider
to be point particles. We will denote their positions to be �!r 1 and �!r 2 and the
only forces are the forces

�!
F 12 and

�!
F 21 of their mutual interaction which we will

assume to be central and conservative. In the case of two astronomical bodies
the gravitational force is an attractive force of magnitude Gm1m2= j�!r 1 ��!r 2j2 :
The corresponding potential energy is

U (r12) = �
Gm1m2

r12
where r12 = j�!r 1 ��!r 2j : (1)

We should note that not only is this interaction transitionally invariant but it
is also conservative as it only depends on the magnitude of �!r 1 � �!r 2: To take
advantage of this property we shall de�ne the relative position of the two objects
as

�!r = �!r 1 ��!r 2; (2)

which has a magnitude j�!r j = r (this is the same as r12 in equation (1)). In
terms of this relative coordinate the potential energy takes the form U (r) :
We can now state the mathematical problem that we want to solve is the

motion of two bodies, say the Earth (or any other planet) and the Sun, whose
Lagrangian is

L = 1

2
m1

��!r
2

1 +
1

2
m2

��!r
2

2 � U (r) : (3)
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Of course we could state this problem from the point of view of Newtonian
mechanics (and when it is more convenient to do so we will use the language of
Newtonian mechanics) but for the time being the Lagrangian formalism is more
convenient.

20.1.2 CM and Relative Coordinates, and the Reduced Mass

From our discussions about Lagrangian mechanics, it should be clear that the
�rst thing we need to do is determine the best generalized coordinates to use
to solve our problem. We have already found that the potential energy is most
easily expressed in terms of the relative coordinate �!r : The question then is
what to choose for the other variable. The best choice as it turns out is the
center of mass position

�!
R . For a two particle system this coordinate is de�ned

as
�!
R =

m1
�!r 1 +m2

�!r 2
m1 +m2

=
m1
�!r 1 +m2

�!r 2
M

; (4)

where clearlyM is the total mass given byM = m1+m2: As we saw in chapter 3,
the CM lies on the line joining the two particles with the distances between the
CM and the two particles m1 and m2 being in the ratio, m1=m2 In particular
if m2 >> m1, then the CM lies very close to body 2. In �gure 8.1,

Figure 8.1. The center of mass lies at position
�!
R = (m1

�!r 1 +m2
�!r 2) =M on

the line joining the two bodies.

the ratio of m1=m2 is approximately 1=3 so the CM is a quarter of the way from
m2 to m1.
We also found out in chapter 3 that the total momentum of the two bodies

is the same as if the total mass M were concentrated at the CM such that

�!
P =M

��!
R: (5)

We also know for a system that is transitionally invariant (U = U (j�!r 1 ��!r 2j)
guarantees this) that the total momentum of the system is conserved. This
means that if we choose an inertial reference frame in which the CM is at rest,
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then
��!
R = 0 and will remain so for all time. That means that the CM frame is

an extremely convenient frame in which to analyze the motion.
It is a straightforward exercise to combine equations (2) and (4) algebraically

and solve for �!r 1 and �!r 2: The result is

�!r 1 =
�!
R +

m2

M
�!r and �!r 2 =

�!
R � m1

M
�!r : (6)

In terms of
�!
R and �!r the kinetic energy can be expressed as

T =
1

2
m1

��!r
2

1 +
1

2
m2

��!r
2

2

T =
1

2
m1

 ��!
R +

m2

M

��!r
!2
+
1

2
m2

 ��!
R � m1

M

��!r
!2

T =
1

2
M

��!
R

2

+
1

2

�
m1m

2
2

M2
+
m2m

2
1

M2

� ��!r
2

T =
1

2
M

��!
R

2

+
1

2

m1m2

M

��!r
2

: (7)

With this result it is natural to de�ne the reduced mass as

� =
m1m2

M
=

m1m2

m1 +m2
: (8)

From this expression you can easily check that � is always less than either m1

or m2, hence the name. In fact if m2 >> m1 then � ' m1. This the case when
considering the planets orbiting the Sun. The reduced mass is very nearly equal
to the mass of the planet. On the other hand if m2 = m1 = m then the reduced
mass is exactly m=2:
Now we can rewrite the kinetic energy in terms of � as

T =
1

2
M

��!
R

2

+
1

2
�
��!r
2

: (9)

This rather remarkable result shows that the kinetic energy is the same as that
of two ��ctitious particles�, one with mass M moving at the speed of the CM
and the other of mass � moving with the speed of the relative coordinate �!r .
This result also allows us to write the Lagrangian as

L =
1

2
M

��!
R

2

+
1

2
�
��!r
2

� U (r) ; (10a)

L = LCM + Lrel: (10b)

We now see that by using the CM and relative positions as the generalized
coordinates, we can separate the Lagrangian into two separate parts each of
which only involves one of the generalized coordinates. This means that we can
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solve for the motions of
�!
R and �!r as two separate problems. Also we have an

additional simpli�cation, in the language of Lagrangian mechanics we would say

that
�!
R is an ignorable coordinate. Since

��!
R is a constant, we can choose the CM

as the origin of our preferred inertial reference frame in which
��!
R = 0; in this

way the ignorable coordinate is truly �ignored�: Now the Lagrangian reduces to
only Lrel, which further simpli�es the problem to that of a one body problem.
Thus, with a judicious choice of generalized coordinates, what started out as a
two-body problem has been reduced to a one-body problem.

20.1.3 Equations of Motion

The Lagrange equation for the relative coordinate �!r is just Newton�s second
law for a reduced mass

�
���!r = �rU (r) ; (11)

which can easily be veri�ed with the use of Cartesian coordinates. With our
de�nition of the reduced mass the interaction itself takes on a slightly di¤erent
form namely

U (r) = �Gm1m2

r
= �G�M

r
: (12)

So from the point of view of the reduced mass, the gravitational interaction is
an attraction to a mass equal to the total mass of both particles, M , and the
acceleration of the relative coordinate is independent of �!
At this point it is worthwhile to take a moment to consider what the motion

looks like in the CM frame (our frame of choice). In �gure 8.2,

Figure 8.2 In the CM frame
�!
R = 0: The relative position �!r is the position of

particle 1 relative to paraticle 2.

we note that the CM is a stationary point which we take to be the origin. Both
particles are moving albeit with equal and opposite momenta. If m2 is much
greater than m1, as is often the case, then the CM is close to m2 which has
a relatively small velocity. It is important to note that �!r is the position of
particle 1 relative to particle 2 and NOT the actual position of either particle.
As shown in �gure 8.2, the position of particle 1 is �!r 1 = (m2=M)

�!r However in
the case where m2 >> m1 then the CM is very close to particle 2 and �!r 1 ' �!r
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The equation of motion in the CM frame is precisely the same as the equation
for a single particle of mass � in a �xed central force �eld of potential energy
U (r) : We will continue to make use of the mass � to remind you that the
equations apply to the relative motion of two bodies. However, you may �nd
it easy to visualize a single body (of mass �) orbiting a �xed force center. In
particular when m2 >> m1; these two problems are for all practical purposes
the same. In any event, any solution for the relative coordinate �!r always gives
the motion of particle 1 relative to particle 2.

Conservation of Angular Momentum With a central force, we already
know that the total angular momentum is conserved. However, like so many
things, this condition takes an especially simple form in the CM frame. In any
frame, the total angular momentum is

�!
L = �!r 1 ��!p 1 +�!r 2 ��!p 2 (13)
�!
L = m1

�!r 1 �
��!r 1 +m2

�!r 2 �
��!r 2: (14)

In the CM frame we know from equation (6) that

�!r 1 =
m2

M
�!r and �!r 2 = �

m1

M
�!r : (15)

Substituting this result into the expression for the angular momentum we �nd

�!
L = ��!r �

��!r 1 � ��!r 2 �
��!r 2

�!
L = �!r �

�
��!r : (16)

So the total angular momentum in the CM frame is exactly the same as the
angular momentum of a single particle with mass � and position �!r :
For our present purposes, the important point is that, because angular mo-

mentum is conserved, we see that �!r �
��!r is conserved. This implies that both

�!r and
��!r remain in a �xed plane. That is, in the CM frame, the whole motion

remains in a �xed plane which we will take to be that normal to the z axis, the
x � y plane. So we have yet another reduction in the complexity of the two-
body problem with central conservative forces, it is reduced to a two-dimensional
problem.

The Two Equations of Motion To set up the equations of motion for
the remaining two-dimensional problem, we need to choose coordinates in the
plane of motion. The obvious choice is the polar coordinates r and � (equivalent
to the usual spherical polar coordinates with � = �=2). In these coordinates the
Lagrangian is

L = 1

2
�

�
�
r
2
+ r2

�
�
2�
� U (r) : (17)
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Since this Lagrangian is independent of �; the � coordinate is ignorable, and
the Lagrange equation for � is just

@L

@
�
�
= �r2

�
� = L; (18)

where L is conserved. Since �r2
�
� is the angular momentum L normal to the

plane of motion, the � equation and is a statement of the conservation of angular
momentum for this problem.
The Lagrange equation corresponding to r (usually called the radial equa-

tion) is
@L
@r

=
d

dt

@L
@
�
r
;

or

�r
�
�
2

� dU
dr

= �
��
r: (19)

This equation has the form of Newton�s second law in one dimension with an

additional term �r
�
�
2

: This term is the ��ctitious� outward centrifugal force,
an e¤ective force that occurs due to the transformation to polar coordinates. In
other words the particle�s radial motion is exactly the same as if the particle
were moving in one dimension subject to the actual force �dU=dr plus the
centrifugal force.

20.1.4 The Equivalent One-Dimensional Problem

The two equations that we have to solve are the � equation (18) and the radial
equation (19). The solution to the � equation depends on the initial conditions
which determines the angular momentum, L. For the radial equation it is
helpful to write the centrifugal force term as a function of the conserved angular

momentum, L; rather than
�
� which is not a constant of the motion. With this

substitution the radial equation becomes

L2

�r3
� dU
dr

= �
��
r (20)

We now de�ne a potential energy, Ucf ; associated with the �centrifugal force�
so that �dUcf=dr = L2=�r3: This potential energy term is

Ucf (r) =
L2

2�r2
: (21)

In terms of Ucf the radial equation can be rewritten as

�
��
r = � d

dr
(U (r) + Ucf (r)) = �

d

dr
Ueff (r) ; (22)
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where the e¤ective potential energy Ueff (r) is the sum of the actual potential
energy and the term that arises from the centrifugal force Ucf (r) :

Ueff (r) = U (r) + Ucf (r) = U (r) +
L2

2�r2
: (23)

So according to equation (22), the radial motion of the particle is exactly the
same as if the particle were moving in one dimension with an e¤ective potential
energy Ueff (r) = U (r) + Ucf (r) :
It is useful at this point to stop and review what we have accomplished.

Initially we started with a two-body problem in three dimensions. Even though
the interaction in this problem was a conservative central force, it sill contained
6 independent coordinates. The �rst thing we did was to �nd generalized coor-
dinates that would reduce the complexity of this problem. The �rst change was
prompted by the dependence of the potential energy on the relative positions of
the particles, �!r 1��!r 2: So de�ning a relative coordinate, �!r = �!r 1��!r 2; along
with the coordinate of the CM,

�!
R; we found that the Lagrangian separated

into two independent terms, one describing the motion of the CM and the other
the motion of the relative positions of the particles. Since the potential energy
only depended on the magnitude of the relative positions, U = U (r) ; the CM
coordinate was an ignorable coordinate. De�ning the origin of our inertial ref-
erence frame to be the CM of the two particles allowed us to truly ignore this
coordinate and we were left with the three coordinates of the relative position
vector. For a central force, we have already found that the angular momentum
is conserved, and that meant that the motion of the two particles resided in
a single plane which we de�ned to be the x � y plane. So at this point we
have reduced the problem from that of 6 independent coordinates to just a two
dimensional problem. Finally, again due to the conservation of angular momen-
tum, we were able to de�ne a potential energy, Ucf (r) ; that represented the
e¤ects of the �centrifugal force� that included the conserved angular momen-
tum. One should remain aware however that this term is actually the angular
kinetic energy that, due to the conservation of angular momentum, is a function
of only the radial coordinate. Adding this potential to the potential energy of
the interaction force reduced the problem to just a one dimension problem, the
radial dimension.
There is an additional point to be made here which results in an additional

simpli�cation of the equation of motion (22). If we note that the angular mo-

mentum due to the reduced mass, L = �r2
�
�; is directly proportional to the

reduced mass �; then we can de�ne the angular momentum per unit relative
mass as ` = L=�: The equation of motion then becomes

�
��
r = � d

dr

�
�G�M

r
+
�2`2

2�r2

�
= �� d

dr

�
�GM

r
+
`2

2r2

�
��
r = � d

dr

�
�GM

r
+
`2

2r2

�
= �GM

r2
+
`2

r3
: (24)
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Hence we see that any resulting orbit is independent of the reduced mass and
only depends on the gravitational �eld due to the total mass of the system and

the angular momentum per unit reduced mass, ` = r2
�
�: Even in the case where

a small satellite with a mass on the order of 100kg is orbiting the Earth, which
has a mass of 6 � 1024kg; both the satellite and the Earth are orbiting their
common center of mass, and their orbit is described by the relative coordinate
of the satellite and the Earth. In this case the center of mass lies extremely
close to the center of the Earth, the total mass of the system is essentially the
mass of the Earth, and the relative mass is basically the mass of the satellite.
But conceptually this is no di¤erent than two nearly equal mass neutron stars
orbiting each other about their common center of mass with their orbit being
described by their relative coordinate which is independent of the reduced mass.
With this in mind, equation (24) is the equation of motion that we will analyze in
our discussion of the gravitational interaction between two objects. Additionally
when we extend our discussion to determine the orbit equation, r (�) ; we will
begin with this reduced equation of motion that is independent of �: However,
when we discuss potential, kinetic, and total mechanical energy of the system
we will continue to include the reduced mass.

E¤ective Potential for a Comet (or Planet) It is now time to examine
the e¤ective potential energy for a comet or planet moving in the gravitational
�eld of the Sun in some detail. Since planetary motion was �rst described
mathematically by the German astronomer Johannes Kepler, this problem of
the motion of a planet or comet around the Sun is often called the Kepler
problem. As we have seen the actual gravitational potential of a particle in the
Sun�s gravitational �eld is simply

U (r) = �Gm1m2

r
= �G�M

r
: (25)

The potential energy associated with the centrifugal force is given in equation
(21) so that the total e¤ective potential is

Ueff (r) = �
G�M

r
+

L2

2�r2
: (26)

The general behavior of this potential is shown in �gure 8.3
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Figure 8.3. The e¤ective potential that governs the radial motion is the sum of
U = �GM=r and Ucf = `2=2r::

where we have plotted three potential energies Ueff (r) ; Ucf (r) ; and U (r) :
For large r, the centrifugal term, L2=2�r2; becomes negligible compared to
the gravitational term, �G�M=r; and the e¤ective potential energy, Ueff (r) ;
is negative and approaching the U = 0 axis asymptotically with a positive
slope. From the equation of motion for the radial coordinate, in this region the
acceleration of a particle is always inward.
When r is small, the centrifugal term L2=2�r2 dominates (unless L = 0) and

Ueff (r) is positive with a negative slope. Hence the radial acceleration is toward
larger r. Thus as an unbounded comet approaches the Sun it eventually reaches
a turning point and then begins to move away from the Sun. The exception to

this is when L = 0 which implies that
�
� = 0: That means � = �o; so that the

comet is moving exactly radially and the only potential energy it experiences is
due to the attraction of the Sun. The comet is on a collision course with the
Sun and will eventually be destroyed.

9


