
25 Lecture 11-30

25.1 Chapter 11 Coupled Oscillators and Normal Modes
(con)

Double Pendulum with Equal Lengths and Masses As we did with
the coupled spring mass system, we will simplify our discussion by restricting
ourselves to the case of equal masses m1 = m2 = m and equal lengths L1 =
L2 = L: Additionally we will simplify things with the de�nition !2o = g=L; the
frequency of a single pendulum of length L and a bob of mass m. With these
restrictions and de�nitions the mass and spring matrix become

M = mL2
�
2 1
1 1

�
and K = mL2

�
2!2o 0
0 !2o

�
: (1)

The matrix
�
K�M!2

�
of the eigenvalue equation is therefore

�
K�M!2

�
= mL2

�
2
�
!2o � !2

�
�!2

�!2 !2o � !2
�
: (2)

The normal frequencies are determined by the condition det
�
K�M!2

�
= 0;

which leads to

!4 � 2
�
!2o � !2

�2
=
�
!2 �

p
2
�
!2o � !2

���
!2 +

p
2
�
!2o � !2

��
= 0;

or

!21 =

p
2!2op
2 + 1

=
�
2�

p
2
�
!2o and !22 =

p
2!2op
2� 1

=
�
2 +

p
2
�
!2o: (3)

Now that we know the two normal frequencies we can solve for the normal
modes, by solving the equation

�
K�M!2

�
a = 0: For the �rst normal mode,

! = !1; and

mL2
�
2
�
!2o � !21

�
�!21

�!21 !2o � !21

� �
a1
a2

�
= mL2!2o

�p
2� 1

�� 2 �
p
2

�
p
2 1

� �
a1
a2

�
= 0:

(4)
This implies that a2 =

p
2a1; and writing a1 = A1e

�i�1 we �nd the the �rst
normal mode

� (t) = A1

�
1p
2

�
cos (!1t� �1) [�rst mode] : (5)

With this solution we see that in the �rst normal mode the two pendulums
oscillate in phase with the amplitude of the lower pendulum being

p
2 times

that of the upper pendulum as shown in �gure 11.7.
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Figure 11.7 First normal mode for a double pendulum with equal masses and
equal lengths. The two angles �1 and �2 oscillate in phase with the amplitude

for �2 being larger by a factor of
p
2:

For the second normal mode, ! = !2; and

mL2
�
2
�
!2o � !22

�
�!22

�!22 !2o � !22

� �
a1
a2

�
= �mL2!2o

�p
2 + 1

�� 2
p
2p

2 1

� �
a1
a2

�
= 0:

(6)
The solution to this set of algebraic equations is a2 = �

p
2a1: In an analogous

manner a2 = A2e�i�2 so that the second normal mode is

� (t) = A2

�
1

�
p
2

�
cos (!2t� �2) [second mode] : (7)

Here we see that the two pendulums oscillate exactly out of phase with the am-
plitude of the lower pendulum still being

p
2 times that of the upper pendulum

as shown in �gure 11.8.

Figure 11.8 The second normal mode for a double pendulum with equal
masses and equal lengths. The two angles �1 and �2 oscillate exactly out of
phase, with the amplitude of �2 again being larger by a factor of

p
2:
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The general solution is a linear combination of these two normal modes.

25.1.1 The General Case

We have now studied in great detail the normal modes of two systems, a pair
of masses attached to springs and a double pendulum. With this as a back-
ground we are now ready to discuss the general case of a system with n degrees
of freedom that is oscillating about a point of stable of equilibrium. Since the
system has n degrees of freedom, its con�guration can be speci�ed by n gener-
alized coordinates (we are assuming holonomic systems here), q1; � � �; qn: In a
notation consistent with our previous notation we shall designate the set of all
n coordinates with a single bold faced q. For example in our previous examples
q = (x1; x2) for the coupled springs and q = (�1; �2) for the coupled double
pendulum. It should be noted that in general q is an n dimensional vector in
the n-dimensional space of the generalized coordinates q1; � � �; qn:
We shall assume that the system is conservative, so that the potential energy

is
U (q1; � � �; qn) = U (q) (8)

and the Lagrangian is L = T � U: The kinetic energy in Cartesian coordinates

is of course T =
P

�
1
2m�

��!r
2

�; where the sum over � ranges over all N particles
that comprise the system. This must be rewritten in terms of the generalized co-
ordinates q = (q1; � � �; qn) using the relation between the Cartesian coordinates�!r � and the generalized coordinates

�!r � = �!r � (q1; � � �; qn) ; (9)

where we shall take it for granted that this relation has no explicit time depen-
dence. As we saw when we derived the expression for the Hamiltonian

��!r � =
X
i

@�!r �
@qi

�
qi; (10)

so that the kinetic energy is

T =
1

2

X
�

m�

X
j

@�!r �
@qj

�
qj
X
k

@�!r �
@qk

�
qk;

or after regrouping terms

T =
1

2

X
j

X
�

m�
@�!r �
@qj

�
X
k

@�!r �
@qk

�
qj
�
qk =

1

2

X
jk

Ajk (q)
�
qj
�
qk; (11)

where

Ajk (q) =
X
�

m�
@�!r �
@qj

�
X
k

@�!r �
@qk

: (12)
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In general then Ajk can depend on the generalized coordinates. Under our
current assumptions we have determined that the Lagrangian has the general

form L
�
q;

�
q
�
= T

�
q;

�
q
�
� U (q) :

Our �nal assumption on the system is that it is making small amplitude os-
cillations about a con�guration of stable equilibrium. By rede�ning the coordi-
nates, if necessary, we will de�ne equilibrium to occur at q = 0; i.e. (q1 = q2; � � �;= qn = 0) :
Now, since we are only interested in small values of the coordinates q; we can
make Taylor�s expansions for both T and U about q = 0:
This is a particularly simple expansion for the kinetic energy as the sum for

T already contains the factor
�
qj
�
qk which is already second order in q. Therefore

we can ignore everything but the �rst term in the Taylor�s expansion. We de�ne
this term to be Mij = Aij (q = 0) : In this limit the kinetic energy is expressed
as

T
� �
q
�
=
1

2

X
jk

Mjk
�
qj
�
qk: (13)

The expansion for the potential energy is only slightly more complicated and
is of the form

U (q) = U (q = 0) +
X
j

@U (q = 0)

@qj
qj +

1

2

X
jk

@2U (q = 0)

@qj@qk
qjqk;

where we have terminated this expansion at second order in q. Since the �rst
term in merely a constant we can rede�ne the potential energy to include this
basically irrelevant term. Next we have assumed that the system is in equilib-
rium so that the second term in this expansion vanishes. De�ning the second
derivatives @2U=@qj@qk = Kjk (which we should note is symmetric in the indices
j; k) reduces the expansion of U to

U (q) =
1

2

X
jk

Kjkqjqk; (14)

and the Lagrangian is

L = T � U = 1

2

X
jk

Mjk
�
qj
�
qk �

1

2

X
jk

Kjkqjqk (15)

Notice that the approximations used to obtain this expression correspond to
those used in the analysis of the double pendulum. Just as in that case, the
kinetic energy is a homogeneous quadratic function of

�
q and the potential energy

is a homogeneous quadratic functions of q. Just as with the double pendulum
this will guarantee that the equations of motion are solvable linear equations.

Example - Bead on a Wire As an example of our discussion on the general
case consider the case of a bead of mass m on a frictionless wire. The wire is
bent into the shape y = f (x) as shown in �gure 11.9.
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Figure 11.9. A bead on a frictionless wire in the shape of f(x).

The system has just one degree of freedom which we will choose to be the
coordinate x. With this choice the potential energy is just U = mgy = mgf (x) :
We shall con�ne ourselves to small oscillations about the minimum in f (x) :
De�ning our origin to be the location of the minimum in f (x) ; from our discuss
about the general case, the potential energy is

U = mgf (x) ' mgd
2f

dx2
x2: (16)

The kinetic energy is

T =
1

2
m

�
�
x
2
+

�
y
2
�
=
1

2
m

 
�
x
2
+

�
df

dx

�
x

�2!
=
1

2
m

 
1 +

�
df

dx

�2!
�
x
2
:

Since we are evaluating the this derivative at the equilibrium point in f; the
derivative df=dx vanishes and we are left with

T =
1

2
m
�
x
2
: (17)

As expected, the small amplitude oscillation approximation has reduced both
U and T to homogeneous quadratic functions of x and

�
x.

The Equation of Motion for the General Case With our generalized
approximate Lagrangian

L = T � U = 1

2

X
jk

Mjk
�
qj
�
qk �

1

2

X
jk

Kjkqjqk; (18)

we can easily write down the equations of motion. Since there are n generalized
coordinates, there are n corresponding equations

d

dt

@L
@
�
qi
=
@L
@qi

[i = 1; � � �; n] : (19)
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In a manner analogous to our work in chapter 7, when we derived the conditions
for the Hamiltonian to be equal to the energy, we must be careful when eval-
uating these derivatives. First we will carefully consider the partial derivative
@L=@qi: This derivative only involves the potential energy and is expressed as

@L
@qi

= �@U
@qi

= �1
2

@

@qi

X
jk

Kjkqjqk = �
1

2

X
jk

Kjk
@qj
@qi

qk �
1

2

X
jk

Kjk
@qk
@qi

qj :

(20)
The generalized coordinates form an independent set, hence @qj=@qi = �ij ,
where �ij is the Kronecker delta that by de�nition is zero except when i = j
and in that case it is 1. We can now rewrite equation (20) as

@L
@qi

= �1
2

X
jk

Kjk�jiqk �
1

2

X
jk

Kjk�kiqj

@L
@qi

= �1
2

X
k

Kikqk �
1

2

X
j

Kjiqj : (21)

Since the summation indices are dummy indices and since (as we noted previ-
ously) Kik is symmetric in its indices we can simplify this expression to

@L
@qi

= �1
2

X
k

Kijqj �
1

2

X
j

Kijqj = �
X
j

Kijqj [i = 1; � � �; n] : (22)

A similar analysis of the kinetic energy yields analogous results and the n La-
grange equations areX

j

Mij
��
qj = �

X
j

Kijqj [i = 1; � � �; n] : (23)

These n equations can be immediately grouped into a single matrix equation

M
��
q = �Kq; (24)

where q is the n� 1 column matrix (vector)

q =

24 q1
��
qn

35 (25)

and M and K are the n � n mass and spring matrices comprised of Kij and
Mij respectively.
The matrix equation is the n dimensional equivalent of the two-dimensional

for the coupled mass and double pendulum that we have already considered. It
is solved in exactly the same way. We �rst �nd the normal modes with the form

q (t) = Re z (t) ; where z (t) = aei!t (26)
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and a is a n� 1 column matrix. This leads to the eigenvalue equation�
K� !2M

�
a = 0; (27)

which has a solution if and only if ! satis�es the �characteristic�or �secular�
equation that is the result of

det
�
K� !2M

�
= 0: (28)

This determinant is an nth degree polynomial in !2, so equation (28) has n
solutions, which determine the n normal frequencies of the system. With ! set
equal to each of the normal mode frequencies in turn, equation (26) determines
the motion of the system in the corresponding normal mode. Finally, the general
motion of the system is given by an arbitrary sum of corresponding normal mode
solutions.
This general procedure that we have just outlined is just a generalization of

the procedure we have already discussed in some detail for the two masses and
double pendulum. Before we �nish our discussion of normal mode problems we
will discuss a system with three degrees of freedom. Now, however, we shall
discuss the general case of normal coordinates

25.1.2 Normal Coordinates

When we studied the system with two equal masses and three identical springs
we found that we could replace the two coordinates x1 and x2 by two normal
coordinates

�1 =
1

2
(x1 + x2) and �2 =

1

2
(x1 � x2) : (29)

These coordinates have the property that they always oscillate at just one of
the two normal frequencies, �1 at !1 and �2 at !2: As it turns out we can do
the same thing for any system oscillating about a stable equilibrium (albeit for
nonlinear oscillations, they must have small amplitudes). If the system has n
degrees of freedom, then it is described by n generalized coordinates q1; � � �; qn
(holonomic), and has n normal modes with frequencies !1; � � �; !n: We we shall
now show is that each normal coordinate �i oscillates at just one frequency,
namely the normal frequency !i:
Before we proceed it is useful to review our previous discussion of normal

coordinates. The two equations of motion for the case of two equal masses and
three identical springs were

m
��
x1 = �2kx1 + kx2

m
��
x2 = kx1 � 2kx2

)
(30)

If we add these equations we �nd

m
��
�1 = �k�1; (31)
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while subtracting yields

m
��
�2 = �3k�2: (32)

These two equations are uncoupled and show that each normal coordinate os-
cillates at a single frequency, �1 at !1 and �2 at !2: In other words the normal
coordinates behave just like the coordinates of uncoupled oscillators and by
going over to the normal coordinates, we have uncoupled oscillations.
Just as the equations for x1 and x2 can be rewritten as a single matrix

equation M
��
x = �Kx; so too can the equations for �1 and �2 be rewritten as

M0
��
� = �K0�: The important di¤erence here is that the two matrices M0 and

K0 are both diagonal.

M0 =

�
m 0
0 m

�
and K0 =

�
k 0
0 3k

�
: (33)

The transform from the original coordinates to the normal coordinates is said
to diagonalize the matrices M and K. That the new matrices are diagonal
is precisely equivalent to the statement that the equations for �1 and �2 are
uncoupled and will oscillate independently.
We can de�ne the two normal coordinates di¤erently, and more generally, in

terms of the eigenvectors a that describe the motion of the normal modes and
are determined by the eigenvalue equation

�
K� !2M

�
a = 0. Now we wish to

label each of the column vectors so that

a(1) =

�
1
1

�
and a(2) =

�
1
�1

�
: (34)

Two important points need to be made here. The �rst is that each of these
vectors contains an arbitrary multiplier Ae�i�: However now we will change
this and �x � = 0 and A = 1 which we have done in equation (34). Another
choice and sometimes a better choice is to normalize the vectors with a factor
of 1=

p
2: In our case this does not lead to any simpli�cation and for notational

simplicity we will stay with A = 1: The other point is that each column is made
up of two components, two di¤erent numbers, which we have labeled as a1 and
a2: However, now we are discussing two di¤erent columns, a(1) and a(2); one
for each normal mode. For now we will use the parenthesis in the subscripts to
emphasize this distinction. Just as we could expand the normal coordinates in
terms of the generalized coordinates of the system, we can invert this to expand
the generalized coordinates in terms of the normal coordinates. Speci�cally for
the problem we have been discussing this is expressed as

x = �1a(1) + �2a(2) =

�
�1 + �2
�1 � �2

�
: (35)

The �rst equality de�nes �1 and �2 in terms as the coe¢ cients in the expansion
of x in terms of the eigenvectors a(1) and a(2): The last term in this relation
shows that �1 and �2 are precisely the normal coordinates for this problem. That

8



is the normal coordinates can be de�ned as the coe¢ cients in the expansion of x
in terms of the eigenvectors a(1) and a(2): We shall now see that this de�nition
carries over naturally to the general case for coupled oscillators with n degrees
of freedom.

The General Case We will now consider the case with n generalized coor-
dinates q1; � � �; qn; and n normal modes. In the ith mode the column vector q(i)
oscillates sinusoidally at the normal mode frequency !i;

q(i)= a(i) cos (!it� �i)

where the column vector satis�es

Ka(i) = !
2
iMa(i): (36)

The columns a(i) are n independent real n � 1 column vectors and any n � 1
column vector can be expanded in terms of them. That is the column vectors
a(i) for a complete set for the space of n� 1 vectors. Thus any solution of the
equations of motion q (t) can be expanded as

q (t) =
X
i

�i (t)a(i): (37)

Now the column vector q (t) satis�es the equation of motion

M
��
q = �Kq:

If we replace q (t) with the expansion in equation (37) the equation of motion
becomes X

i

��
�i (t)Ma(i) = �

X
i

�i (t)Ka(i) = �
X
i

�i (t)!
2
iMa(i); (38)

where the last step follows from equation (36). Now the n column vectors a(i)
are independent and this property is unchanged when the operated on by M,
therefore the coe¢ cients on each side of this equation must also be equal. That
is

��
�i = !

2
i �i (t) : (39)

Hence the normal coordinates for a system with n degrees of freedom do in-fact
oscillate at their normal mode frequencies independently of each other.
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