19 Lecture 11-9

19.1 Chapter 7 Lagrange’s Equations (con)
19.1.1 Lagrange Multipliers and Constraint Forces

The powerful method of Lagrange multipliers finds applications in several ar-
eas of physics and takes on different appearances in different contexts. Here as
an introduction to the concept, we shall only consider its applications in La-
grangian mechanics. Additionally to keep the discussion relatively simple, we
shall consider two dimensional systems with only one degree of freedom.

One of the main strengths of Lagrangian mechanics is that we don’t need
to know anything about the constraint forces which often results in a dramatic
simplification of the problem. However, there are times when one actually needs
to know these forces. For example, the designer of a roller coaster needs to know
the normal forces of the track on the car in order to design the roller coaster
track safely. In a case where we need to know a constraint force we do not choose
the generalized coordinates qi, - - -, g, all of which can be independently varied.
Instead we use a larger number of coordinates and use Lagrange multipliers to
handle the constraints.

To illustrate this procedure, we’ll consider a system with just two rectangular
coordinates x and y, which are restricted by a constraint equation of the form

f (z,y) = const. (1)

For example, we could consider a simple pendulum with just one degree of
freedom. With the standard Lagrangian approach we would use the general-
ized coordinate ¢, the angle between the pendulum and the vertical, and avoid
any discussion of the constraints. If instead, we chose to use the Cartesian
coordinates x and y, then we must recognize that these coordinates are not
independent. They satisfy the constraint

flay) =va2+y? =1, (2)

where [ is the length of the pendulum. The method of Lagrange multipliers
allows us to accommodate this constraint, determine the time dependence of
z and y, and find the tension in the rod. As a second example, consider the
Atwood machine. In the standard Lagrangian approach we had one generalized
coordinate x, the position of the mass m;. However, we could instead use
coordinates of both masses, z and y, where y is the position of mass mso, while
using the constraint that the length of the string is constant. This constraint is
expressed as

f(z,y)=xz+y=1—7R = const., (3)

where [ is the length of the string and R is the radius of the pulley.
We again start with Hamilton’s principle that the action integral

S = /L(x,a;«,y,y) dt (4)



is stationary when taken along the path of the particle. If the “right” path is
denoted by z (t) and y (¢) then a small displacement to a neighboring “wrong”
path is given by

z(t) = x(t)+0x(t) and y(t) — y(t)+dy(t). (5)

Then, provided the displacement is consistent with the constraint, the action
integral is unchanged and §.5 = 0. Evaluating 5 in the usual way by making a
Taylor’s series expansion about the right path we find

58 = /(5 +8—55 +g—£(s +‘Z‘:5 >dt. (©6)

The second and fourth terms can be integrated by parts (as usual) and taking
into consideration that dx and dy vanish at the endpoints we are left with
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If the displacements dx and dy were arbitrary we would have two Lagrange
equations, one for x and one for y. This is completely analogous to the case
for unconstrained systems or constrained systems using generalized coordinates
that we considered earlier. Now however there are constraints and dx and
0y are related through a constraint equation (1). Via the constraint equation
f (z,y) = const, hence the displacement from the “right” path in equation (5)
which is consistent with the constraint leaves f (x,y) unchanged so
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Since this is zero, we can multiply it by an arbitrary function A (¢), which we
shall call the Lagrange multiplier, and add it to the integrand in equation (7)

without changing the integral. Therefore
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Since our Lagrange multiplier is arbitrary we can choose it so that the first
integral above is zero. Since the small displacement dzx from the correct path is
also arbitrary we know from previous arguments that
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This modified Lagrange equation differs from the usual Lagrange equation only
by the additional A9 f/Ox term on the left hand side. Now since the sum of the
two integrals vanishes, perforce the second integral must also vanish. Since it



is equal to zero for any choice of dy consistent with equation (8) we have the
second slightly modified Lagrange equation
oL 0 d oL
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We now have two modified Lagrange equations for the two unknown func-
tions z (¢) and y (t) as well as the Lagrange multiplier, A (¢). To find three un-
known functions we need three equations. Fortunately there is a third equation,
namely the constraint equation

f (z,y) = const.

These three equations are, in principle at least, sufficient to determine the co-
ordinates z (t) and y (¢) along the particle’s path and the Lagrange multiplier,
A(t).

As an additional note on the constraint, not only is § f = 0, but so is the
quantity f (z,y) —const = 0. So you might be tempted to ask why don’t we just
add the quantity A () (f (z,y) — const) to the Lagrangian initially, as that is also
zero and won’t effect the action integral, yet still provide the necessary constraint
between the deviations dz and §y? You could then derive the Euler-Lagrange
equations for the action integral with this modification to the Lagrangian. In
fact you can do this, and if you did, you would be led to the same modified
Lagrange equations. Additionally, since in the derivation of the Euler-Lagrange
equations we are interested in small displacements from the correct path, the
constant makes no contribution and you only need to add A (t) f (z,y). A few
simple steps by the student verifies that the same modified Lagrange equations
are an immediate consequence of such an approach. From this point forward
when using Lagrange multipliers will always consider the modified Lagrangian

L'=L+ M (z,y)

to obtain our modified Lagrangian equations of motion.
Now the modified Lagrange equations, (10) and (11), are still in the form

d
F; (generalized force) = P (generalized momentum),

hence the components generalized force now takes the form
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Since 0L/0x = —0U/Ox is the & component of the nonconstraint force and

dp,/dt is the sum of all the forces on the particle including both the noncon-
straint and constraint forces, we must have
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with a corresponding result for the y component.

Fm =\ (1) (13)



Atwood Machine As an example of how these ideas work we will use the
concepts of Lagrange multipliers applied to the Atwood machine in figure 7.7.
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Figure 7.7 Atwood machine (again).

In terms of unconstrained coordinates the Lagrangian is
1 21 .2
L=T-U= §m1£17 + imzy + migx + magy. (14)

The constraint equation is simply
f(z,y) =z +y = const. (15)
The modified Lagrange equation for z is
5 A0 = o
and similarly the modified Lagrange equation for y is
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From the constraint equation we know that y = —z. Then subtracting the
equation for the y coordinate from that for the x coordinate eliminates the
Lagrange multiplier with the result

(m1 —ma)g = (m1+ma)x — x=(mg —ma)g/(mi+ma). (18)

To better understand the two modified Lagrange equations, (16) and (17), it
is useful to compare them with the two Newtonian equations. Newton’s second
law for m is

mlg—szlﬁf, (19)



where T is the tension in the string. Similarly for mo Newton’s law reads
mog — T= m2iy.7 (20)

where again T is the tension in the string. These are precisely the two modified
Lagrange equations, (16) and (17), with the Lagrange multiplier identified as
the negative of the constraint force,
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Note that minus sign occurred because we measured both z and y to be positive
in the downward direction while the tension on the string was directed upward.

In general the constraint force is given by F¢'" = X (t) 0 f/Ox, but in this simple
example f /0z = 1.

Fetr =\ (¢) T (21)

Catenary Before we leave this section on Lagrange multipliers we should note
that this technique can be applied to a variety of variational problems. As an
example we might wish to determine the shape of a hanging rope of length L,
see figure 7.8. The approach would be to minimize the potential energy of
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Figure 7.8 A rope of length L hanging between (z4,¥y.) and (xp, yp)-

the rope subject to the constraint that its length is fixed. If we define p to be
the mass per unit length of the rope, 1 = m/L, then the potential energy of the
rope (relative to the z axis) is

b b
U=ug/ yds:ug/ yV/1+y2de, (22)

subject to the constraint that

b b
L:/ ds:/ V1+y?de. (23)

Simply adding the function f,

f-A(/b\/ler’?dzL), (24)



where X is a Lagrange multiplier to the potential energy results in

b b
Uzﬂg/ y\/1+y’2dm+)\/ V1+y?de, (25)

where we have dropped the constant L since it will not effect the resulting Euler
Lagrange equations. Redefining the Lagrange multiplier via A = —pugyo results
in the functional U being expressed as

b
U= ug/ (y —yo) V1 +y"dz. (26)

Changing variables to z = y — yo, we find 2’ = 3 and

b
U= ,ug/ 2V 1+ 2%dx. (27)

This is exactly the integrand that we analyzed while discussing the soap film
problem in which we minimized the surface area of revolution. As the great
physicist Feynman proclaimed, "The same equations have the same solutions".
So the solution to this problem is the catenary, z = ccosh [(x — zg) /c] or

Yy = Yo + ccosh (x_w()),
c

where ¢, xg, and yo are determined by the requirements that the rope passes
through (z4,y,) and (zp,yp) while holding the length of the rope fixed.

Another interesting problem that can be solved by the method of Lagrange
multipliers is that of finding the curve that provides maximum area under a
rope of length L This is left as an exercise for the student.

19.1.2 Conclusion

As we have noted the Lagrangian version of classical mechanics has three main
advantages over the Newtonian version. In particular when there are constraints
one can greatly simplify the problem with the appropriate choice of independent
generalized coordinates. The next task is to determine the kinetic and potential
energies in an inertial frame in terms of these coordinates and write down the
Lagrangian. The equations of motion then follow automatically as the Lagrange
equations which are
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[i=1,--+,n]. (28)

These equations take the same form independent of the generalized coordinates.
However, there is no guarantee that these equations can be solved, and in most
real problems they are not, requiring numerical solution or at least some ap-
proximations before they can be solved analytically.



Even in the examples that we have considered which were only moderately
complicated, finding the equations of motion by Lagrange’s method is remark-
ably easier than by using Newton’s second law. Indeed, some purists object
that the Lagrangian approach makes life too easy, removing the need to think
about the physics behind the problem.

Often the physics can be formulated from a Hamiltonian point of view where
the Hamiltonian is defined as

H=> pig;— L. (29)
=1

This will be considered in more detail in Chapter 13. For now it is useful to know
that the Hamiltonian is conserved as long the the Lagrangian has no explicit
time dependence. Additionally if the relation between the Cartesian coordinates
and the generalized coordinates is time independent then the Hamiltonian and
the total energy are equal. But if they are not, then the Hamiltonian will still
be a constant of the motion while the energy may not bel!

Finally, although the Lagrange equations eliminate then need to determine
constraint forces, it is possible in those special cases to determine them using
the method of Lagrange multipliers



