
26 Lecture 12-02

26.1 Chapter 11 Coupled Oscillators and Normal Modes
(con)

26.1.1 Normal Coordinates

When we studied the system with two equal masses and three identical springs
we found that we could replace the two coordinates x1 and x2 by two normal
coordinates

�1 =
1

2
(x1 + x2) and �2 =

1

2
(x1 � x2) : (1)

These coordinates have the property that they always oscillate at just one of
the two normal frequencies, �1 at !1 and �2 at !2: As it turns out we can do
the same thing for any system oscillating about a stable equilibrium (albeit for
nonlinear oscillations, they must have small amplitudes). If the system has n
degrees of freedom, then it is described by n generalized coordinates q1; � � �; qn
(holonomic), and has n normal modes with frequencies !1; � � �; !n: We we shall
now show is that each normal coordinate �i oscillates at just one frequency,
namely the normal frequency !i:
Before we proceed it is useful to review our previous discussion of normal

coordinates. The two equations of motion for the case of two equal masses and
three springs with the outside springs having spring constant k and the middle
spring with spring constant K are

m
��
x1 = � (k +K)x1 +Kx2

m
��
x2 = Kx1 � (k +K)x2

)
(2)

If we add these equations we �nd

m
��
�1 = �k�1; (3)

while subtracting yields

m
��
�2 = � (k + 2K) �2: (4)

These two equations are uncoupled and show that each normal coordinate os-
cillates at a single frequency, �1 at !1 and �2 at !2: In other words the normal
coordinates behave just like the coordinates of uncoupled oscillators and by
going over to the normal coordinates, we have uncoupled oscillations.
Just as the equations for x1 and x2 can be rewritten as a single matrix

equation M
��
x = �Kx; so too can the equations for �1 and �2 be rewritten as

M0
��
� = �K0�: The important di¤erence here is that the two matrices M0 and

K0 are both diagonal.

M0 =

�
m 0
0 m

�
and K0 =

�
k 0
0 k + 2K

�
: (5)
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The transform from the original coordinates to the normal coordinates is said
to diagonalize the matrices M and K. That the new matrices are diagonal
is precisely equivalent to the statement that the equations for �1 and �2 are
uncoupled and will oscillate independently. It should be noted that with our
diagonalization process we have simultaneously diagonalized two separate ma-
trices,M and K. For those of you with some background in linear algebra that
2 is the maximum number of matrices that can be diagonalized simultaneously.
We can de�ne the two normal coordinates di¤erently, and more generally, in

terms of the eigenvectors a that describe the motion of the normal modes and
are determined by the eigenvalue equation

�
K� !2M

�
a = 0. Now we wish to

label each of the column vectors so that

a(1) =

�
1
1

�
and a(2) =

�
1
�1

�
: (6)

Two important points need to be made here. The �rst is that each of these
vectors contains an arbitrary multiplier Ae�i�: However now we will change
this and �x � = 0 and A = 1 which we have done in equation (6). Another
choice and sometimes a better choice is to normalize the vectors with a factor
of 1=

p
2: In our case this does not lead to any simpli�cation and for notational

simplicity we will stay with A = 1: The other point is that each column is made
up of two components, two di¤erent numbers, which we have labeled as a1 and
a2: However, now we are discussing two di¤erent columns, a(1) and a(2); one
for each normal mode. For now we will use the parenthesis in the subscripts to
emphasize this distinction. Just as we could expand the normal coordinates in
terms of the generalized coordinates of the system, we can invert this to expand
the generalized coordinates in terms of the normal coordinates. Speci�cally for
the problem we have been discussing this is expressed as

x = �1a(1) + �2a(2) =

�
�1 + �2
�1 � �2

�
: (7)

The �rst equality de�nes �1 and �2 in terms as the coe¢ cients in the expansion
of x in terms of the eigenvectors a(1) and a(2): The last term in this relation
shows that �1 and �2 are precisely the normal coordinates for this problem. That
is the normal coordinates can be de�ned as the coe¢ cients in the expansion of x
in terms of the eigenvectors a(1) and a(2): We shall now see that this de�nition
carries over naturally to the general case for coupled oscillators with n degrees
of freedom.

The General Case We will now consider the case with n generalized coor-
dinates q1; � � �; qn; and n normal modes. In the ith mode the column vector q(i)
oscillates sinusoidally at the normal mode frequency !i;

q(i)= a(i) cos (!it� �i)

where the column vector satis�es

Ka(i) = !
2
iMa(i): (8)
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The columns a(i) are n independent real n � 1 column vectors and any n � 1
column vector can be expanded in terms of them. That is the column vectors
a(i) for a complete set for the space of n� 1 vectors. Thus any solution of the
equations of motion q (t) can be expanded as

q (t) =
X
i

�i (t)a(i): (9)

Now the column vector q (t) satis�es the equation of motion

M
��
q = �Kq:

If we replace q (t) with the expansion in equation (9) the equation of motion
becomes X

i

��
�i (t)Ma(i) = �

X
i

�i (t)Ka(i) = �
X
i

�i (t)!
2
iMa(i); (10)

where the last step follows from equation (8). Now the n column vectors a(i)
are independent and this property is unchanged when the operated on by M,
therefore the coe¢ cients on each side of this equation must also be equal. That
is

��
�i = !

2
i �i (t) : (11)

Hence the normal coordinates for a system with n degrees of freedom do in-fact
oscillate at their normal mode frequencies independently of each other.

Normal Coordinates for Double Pendulum As another example of nor-
mal coordinates we will examine the double pendulum for the case we have been
studying with m1 = m2 = m and L1 = L2 = L: For this problem we found the
equations of motion to be

2mL2
��
�1 +mL

2
��
�2 = �2mgL�1; (12a)

mL2
��
�1 +mL

2
��
�2 = �mgL�2: (12b)

For convenience we divide both of these expressions by mL2 and �nd

2
��
�1 +

��
�2 = �2!2o�1; (13a)

��
�1 +

��
�2 = �!2o�2; (13b)

where !2o = g=L: The eigenfrequencies for the normal modes were found to be

!21 =
�
2�

p
2
�
!2o and !22 =

�
2 +

p
2
�
!2o (14)

with corresponding eigenvectors

a(1) =

�
1p
2

�
and a(2) =

�
1

�
p
2

�
: (15)
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From our discussion of normal coordinates

� (t) =
X
i

�i (t)a(i) = �1 (t)

�
1p
2

�
+ �2 (t)

�
1

�
p
2

�
: (16)

Substituting this result into the equations of motion results in

2

�
��
�1 +

��
�2

�
+
p
2

�
��
�1 �

��
�2

�
= �2!2o (�1 + �2) ; (17a)

��
�1 +

��
�2 +

p
2

�
��
�1 �

��
�2

�
= �

p
2!2o (�1 � �2) (17b)

Regrouping terms yields�
2 +

p
2
� ��
�1 +

�
2�

p
2
� ��
�2 = �2!2o (�1 + �2) ; (18a)�

1 +
p
2
� ��
�1 +

�
1�

p
2
� ��
�2 = �

p
2!2o (�1 � �2) : (18b)

Solving for
��
�1 and

��
�2 we �nd

��
�1 = � 1

2
p
2
det

�
�2!2o (�1 + �2) 2�

p
2

�
p
2!2o (�1 � �2) 1�

p
2

�
= �

�
2�

p
2
�
!2o�1; (19a)

��
�2 = � 1

2
p
2
det

�
2 +

p
2 �2!2o (�1 + �2)

1 +
p
2 �

p
2!2o (�1 � �2)

�
= �

�
2 +

p
2
�
!2o�2: (19b)

As expected these equations of motion are decoupled with the normal coordi-
nates oscillating at their respective normal mode frequencies. It should be noted
that for this problem the normal coordinates are given by

�1 =
�1 + �2=

p
2

2
and �2 =

�1 � �2=
p
2

2
; (20)

demonstrating that the normal coordinates depend on the expressions for the
eigenvectors for each individual scenario.

26.1.2 Three Coupled Pendulums

To further demonstrate some of these concepts we will now consider three iden-
tical pendulums coupled by two identical springs as shown in �gure 11.10
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Figure 11.10. Three identical pendulums of length L and mass m are coupled
by two identical springs of spring constant k. The natural lengths of the

springs are equal to the separation of the supports of the pendulums, so that
at equilibrium �1 = �2 = �3:

As generalized coordinates it is natural to use the three angles �1; �2; and
�3 with equilibrium occurring at �1 = �2 = �3 = 0. We now need to �nd the
Lagrangian at least for small displacements. The systematic approach is to write
down the exact expressions for T and U and then make the small amplitude
approximations. In the present case, �nding the potential energy of the springs
for any arbitrary angle can be cumbersome. So, as it often happens, we will
make the small amplitude approximation for T and U directly and save a lot of
tedious algebra.
The kinetic energy of the three pendulums is the same independent of the

small angle approximation and is

T =
1

2
mL2

�
�
�
2

1 +
�
�
2

2 +
�
�
2

3

�
: (21)

The gravitational potential energy of each pendulum has the form Ui = mgL (1� cos�i)
and in the small angle approximation becomes Ui = 1

2mgL�
2
i : Hence the total

gravitational potential energy is

Ugrav =
1

2
mgL

�
�21 + �

2
2 + �

2
3

�
: (22)

To �nd the potential energy of the two springs requires us to �nd how much
each is stretched (or compressed). For arbitrary angles this is a messy a¤air,
but for small angles the only appreciable stretching comes from the horizontal
displacements of the pendulum bobs each of which moves a horizontal distance
given by L�: With this in mind the total spring potential energy is

Uspr =
1

2
kL2

h
(�2 � �1)

2
+ (�3 � �2)

2
i

Uspr =
1

2
kL2

�
�21 + 2�

2
2 + �

2
3 � 2�1�2 � 2�3�2

�
: (23)

Before we proceed it saves a lot of algebra to choose a set of units such that
the uninteresting parameters have the value of 1, a process sometimes described
as choosing natural units. In this problem we choose the unit of mass to be m
and the unit of length to be L. With this choice both m and L disappear from
the calculation and simpli�es the trivial details of the calculation. Then once
the calculation is complete, if it is of interest, we can use the required units of
the results to reinsert these quantities. For example we will �nd that one of the
normal modes will be !2 = g: However the quantity g=!2 has the units of length
which we had predetermined to be L. Hence g=!2 = L and the normal mode
frequency is !2 = g=L: Thus we can put this quantity back into the �nal results
if so required. It should be noted that in special relativity it is often convenient
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to de�ne the speed of light to be unity, c = 1: Then all velocities become some
fraction less than one commonly denoted as �: It is a straightforward procedure
when the calculation is �nished to reinsert c where required.
With this in mind we will choose units such that m = L = 1, and our kinetic

and potential energies become

T =
1

2

�
�
�
2

1 +
�
�
2

2 +
�
�
2

3

�
(24)

and

U =
1

2
g
�
�21 + �

2
2 + �

2
3

�
+
1

2
k
�
�21 + 2�

2
2 + �

2
3 � 2�1�2 � 2�3�2

�
: (25)

We could now write down the Lagrangian followed by the equations of motion,
but there is actually no need to do this. We already know that the result will
be in the matrix form

M
��
� = �K�; (26)

where in this case � is a 3� 1 column vector with components �1; �2; and �3.
The components for M and K can be read directly from T and U and are

M =

24 1 0 0
0 1 0
0 0 1

35 and K =

24 g + k �k 0
�k g + 2k �k
0 �k g + k

35 : (27)

The normal modes of our system have the familiar form � (t) = Re z (t) =
Reaei!t; where a and ! are determined by the eigenvalue equation�

K� !2M
�
a = 0: (28)

The �rst step is to �nd the normal frequencies from the characteristic or secular
equation det

�
K� !2M

�
= 0: The matrix K� !2M is

K� !2M =

24 g + k � !2 �k 0
�k g + 2k � !2 �k
0 �k g + k � !2

35 : (29)

The determinant is easily determined to be

det
�
K� !2M

�
=

�
g + k � !2

�2 �
g + 2k � !2

�
� 2k2

�
g + k � !2

�
det

�
K� !2M

�
=

�
g + k � !2

� ��
g + k � !2

� �
g + 2k � !2

�
� 2k2

�
det

�
K� !2M

�
=

�
g + k � !2

� h�
g � !2

�2
+ 3k

�
g � !2

�i
det

�
K� !2M

�
=

�
g + k � !2

� �
g � !2

� �
g � !2 + 3k

�
so that the three normal frequencies are

!21 = g; !22 = g + k; !22 = g + 3k: (30)
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For those that are concerned about such issues, in units where m and L are not
unity these three frequencies are

!21 = g=L; !22 = g=L+ k=m; !22 = g=L+ 3k=m: (31)

Knowing the three normal frequencies we can now �nd the corresponding
three normal modes. Substituting !1 into the eigenvalue equation (28) yields24 k �k 0

�k 2k �k
0 �k k

3524 a1
a2
a3

35 =
24 0
0
0

35 ;
which has as solutions a1 = a2 = a3 = A1e

�i�1 : That is, in the �rst normal
mode

�1 (t) = �2 (t) = �3 (t) = A1 cos (!1t� �1) ; (32)

and the three pendulum oscillate in phase and amplitude as shown in �gure
11.11(a).

Figure 11.11. The three normal modes for three coupled pendulums. (a) The
pendulums swing in unison and the springs remain in equilibrium. (b) The
two outer pendulums oscillate exactly out of phase with equal amplitudes
while the middle pendulum is stationary. (c) The outer pendulums swing in
unison while the middle pendulum swings exactly out of phase with twice the

amplitude of the outer pendulums.

In this mode the springs are not stretched (nor compressed) and do not play a
role in determining the frequency.
Substituting !2 into the eigenvalue equation (28) yields24 0 �k 0

�k k �k
0 �k 0

3524 a1
a2
a3

35 =
24 0
0
0

35 ;
which has as solutions a2 = 0 and a1 = �a3 = A2e�i�2 : That is, in the second
normal mode

�2 = 0 and �1 (t) = ��3 (t) = A2 cos (!2t� �2) ; (33)
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and the two outer pendulums oscillate exactly out of phase with equal ampli-
tudes as shown in �gure 11.11(b). Finally substituting !3 into the eigenvalue
equation (28) yields24 �2k �k 0

�k �k �k
0 �k �2k

3524 a1
a2
a3

35 =
24 0
0
0

35 ;
which has as solutions a2 = �2a1 = �2a3 = A3e

�i�3 : That is, in the third
normal mode

�1 (t) = �3 (t) = ��2 (t) =2 = A3 cos (!3t� �3) ; (34)

and the two outer pendulums oscillate in phase with equal amplitudes while the
middle pendulum oscillates exactly out of phase with twice the amplitude as
shown in �gure 11.11(c). The general solution is an arbitrary linear combination
of all three modes.

Normal Modes for Three Coupled Pendulums The equations of motion
for the three coupled pendulums were

m
��
�1 = � (g + k)�1 + k�2; (35)

m
��
�2 = k�1 � (g + 2k)�2 + k�3; (36)

m
��
�3 = k�2 � (g + k)�3: (37)

Again expanding the three angular coordinates in normal coordinates;

� (t) =
X
i

�i (t)a(i) =
�1 (t)p
3

2411
1

35+ �2 (t)p
2

24 10
�1

35 :+ �3 (t)p
6

24 1�2
1

35 : (38)

The �rst thing to notice is that these eigenvectors all had di¤erent magnitudes,
hence it was necessary to normalized them. Substituting these expansions into
the equations of motion we �nd�

��
�1=
p
3 +

��
�2=
p
2 +

��
�3=
p
6

�
= �g �1p

3
� (g + k) �2p

2
� (g + 3k) �3p

6
; (39)�

��
�1=
p
3� 2

��
�3=
p
6

�
= �g �1p

3
+ 2 (g + 3k)

�3p
6
; (40)�

��
�1=
p
3�

��
�2=
p
2 +

��
�3=
p
6

�
= �g �1p

3
+ (g + k)

�2p
2
� (g + 3k) �3p

6
: (41)

Solving for
��
�1 yields

��
�1 = �det

24�g�1=p3� (g + k) �2=p2� (g + 3k) �3=p6 1=
p
2 1=

p
6

�g�1=
p
3 + 2 (g + 3k) �3=

p
6 0 �2=

p
6

�g�1=
p
3 + (g + k) �2=

p
2� (g + 3k) �3=

p
6 �1=

p
2 1=

p
6

35 = �g�1:
(42)
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Solving for
��
�2 yields

��
�2 = �det

241=p3 �g�1=
p
3� (g + k) �2=

p
2� (g + 3k) �3=

p
6 1=

p
6

1=
p
3 �g�1=

p
3 + 2 (g + 3k) �3=

p
6 �2=

p
6

1=
p
3 �g�1=

p
3 + (g + k) �2=

p
2� (g + 3k) �3=

p
6 1=

p
6

35 = � (g + k) �2:
(43)

Finally solving for
��
�3 yields

��
�3 = �det

241=p3 1=
p
2 �g�1=

p
3� (g + k) �2=

p
2� (g + 3k) �3=

p
6

1=
p
3 0 �g�1=

p
3 + 2 (g + 3k) �3=

p
6

1=
p
3 �1=

p
2 �g�1=

p
3 + (g + k) �2=

p
2� (g + 3k) �3=

p
6

35 = � (g + 3k) �3:
(44)

Again as (as expected) the normal coordinates are decoupled from each other
and oscillate at their respective normal mode frequencies. The one di¤erence
to note here is that it was necessary to normalize the eigenvectors prior to
expanding � (t) in terms of the eigenvectors.
This completes our study of normal modes as well as any new material for

Physics 110A for the fall quarter. Hope you found at least some of it interesting.
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