
2 Lecture 9-28

2.1 Chapter 1 Newton�s Laws of Motion (con)

2.1.1 Newton�s Third Law

If you are leaning against a wall, it is clear that the wall is exerting a force back
onto you. This is often stated as, for every action there is an equal and opposite
reaction. To be more precise Newton�s third law is stated as, �if object 1 exerts
a force

�!
F 21 on object 2, then object 2 always exerts an equal and opposite

reaction force,
�!
F 12; on object 1�, or

�!
F 21 = �

�!
F 12 (1)

Think of the gravitational force between the Earth and the Moon.

Figure 1-2. Newton�s third law states that the reaction force exerted on
object 1 by object 2 is equal and opposite to the force exerted by 2 on 1, i.e.

F12 = �F21

As an example we will consider two particles. Assume that an external force
is present, and they interact with each other as well. The net force,

�!
F 1 on

particle 1 is
�!
F 1 =

�!
F 12 +

�!
F ext
1 =

��!p 1; (2)

where
��!p 1 is the rate of change in the momentum of particle 1 and similarly

�!
F 2 =

�!
F 21 +

�!
F ext
2 =

��!p 2: (3)

De�ning the total momentum of the system as
�!
P = �!p 1 +�!p 2; then the rate of

change of the total momentum is

��!
P =

��!p 1 +
��!p 2 =

�!
F 12 +

�!
F ext
1 +

�!
F 21 +

�!
F ext
2 : (4)

Because of Newton�s third law the internal forces cancel and

��!
P =

�!
F ext
1 +

�!
F ext
2 =

�!
F ext ; (5)
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where we have de�ned �!
F ext =

�!
F ext
1 +

�!
F ext
2 : (6)

This is an important result as it asserts that if there are no external forces,
�!
F ext = 0; then

��!
P = 0; and the total momentum for the pair of particles is

conserved. Additionally, the rate of change for the total momentum of the
system is determined only by the external force acting on the pair of particles.
The analysis for a system of N particles is a straightforward extension of

that used for a two particle system. Consider a particle designated by �: The
net force on this particle given by

�!
F � =

NX
� 6=�

�!
F �� +

�!
F ext
� =

��!p �: (7)

Here the sum over � includes all of the particles other than the � particle as it
does not exert a force on itself. This sum is true for any of the N particles in
the multiparticle system. The total momentum for this system is given by the
sum

�!
P =

NX
�=1

�!p �: (8)

The sum here covers all N particles. Di¤erentiating this expression with respect
to time we �nd

��!
P =

NX
�=1

��!p � =
NX
�=1

�!
F � (9)

From equation (7) this sum is given by

NX
�=1

�!
F � =

NX
�=1

NX
� 6=�

�!
F �� +

NX
�=1

�!
F ext
� : (10)

The double sum is a sum over � and � such that all terms in which � = � are
omitted. Imagine a matrix in which you sum over all of the terms except for
those on the diagonal. Since � and � are dummy summation indices we can
exchange them and write

NX
�=1

NX
� 6=�

�!
F �� =

NX
�;� (�6=�)

�!
F �� =

NX
�;� (�6=�)

�!
F ��: (11)

In this last step, interchanging the dummy summation indices amounts to sim-
ply performing the sum in a di¤erent order, but it results in the same total
sum. From Newton�s third law we know that

�!
F �� = ��!F ��: Hence this sum

must vanish. It might add some insight to note that the matrix given by the
components

�!
F �� is an antisymmetric matrix in which

�!
F �� = �

�!
F �� and as in

any antisymmetric matrix the diagonal term,
�!
F ��; vanishes. Summing all of
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the terms in this matrix also vanishes. Since this term vanishes equations (9)
and (10) become

��!
P =

NX
�=1

�!
F � =

NX
�=1

�!
F ext
� : (12)

This is analogous to the result for the two particle system in that the rate of
change for the total momentum of all of the particles is given by the sum of the
external forces. Clearly in the absence of any external force the total momentum
of the N particle system is conserved.

2.1.2 Validity of Newton�s Third Law

Within the domain of classical physics, the third law, like the second, is valid
to such accuracy that it is taken to be exact. However, it is implicitly assumed
that

�!
F �� (t) = ��!F �� (t) : That is the action and reaction forces are taken

at the same time. However once relativity becomes important, relative speeds
between two inertial frames becomes a reasonable fraction of the speed of light,
then events that are simultaneous for one observer are not simultaneous for
a di¤erent observer. Therefore, the third law cannot be valid once relativity
becomes important.
Surprisingly, there is a simple example of a well-known force for which the

third law is not true even at nonrelativistic speeds. Consider the two positive
charges moving perpendicular to each other as shown in Figure 1-3. Using the

Figure 1-3. Each of the positive charges q1 and q2 produce magnetic �elds.
These �elds induce forces F12 and F21 that do not obey Newton�s Third Law.

right hand rule the magnetic �eld for charged particle 1 traveling in the positive
x direction produces a magnetic �eld pointing in the positive z direction for
y > 0. Again using the right hand rule this magnetic �eld produces a force
on particle 2 pointing in the positive x direction. A similar analysis shows that
the magnetic force on particle 1 is in the positive y direction. Apparently the
total momentum for the pair of particles is not conserved. What�s up? As it
turns out electromagnetic �elds also carry momentum and the total momentum
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of the particles plus that of the electromagnetic �elds is conserved. Note that
the electrostatic Coulomb force is a central force and does obey the third law.
Additionally, as an exercise for the student, it can be shown that the magnetic
force when compared to the Coulomb force is reduced by a factor of v2=c2:
Thus for nonrelativistic velocities, the Coulomb force will dominate and again
the third law in the nonrelativistic limit is essentially satis�ed.

2.1.3 Newton�s Second Law in Cartesian Coordinates

Newton�s second law, the equation of motion, is expressed as

�!
F = m

���!r (13)

Since the basis vectors have no time (or spatial dependence) this expression
reduces to three separate equations

Fx = m
��
x; Fy = m

��
y; and Fz = m

��
z: (14)

This is a rather elegant result as it shows that Newton�s second law in three
dimensions is equivalent to three one dimensional equations of the same law.
As an example consider again (as I am sure that you have seen this example

previously) the problem of a block sliding down a plane in the presence of

Figure 1-4. A block slides down a slope with incline �. The forces on the block
are the gravitational force, �!w = m�!g , the normal force of the incline, �!N , and

the frictional force of magnitude f = �N:

friction. With the freedom to choose our reference frame, we �nd it convenient
to choose the x axis to point down the slope and the y axis to be perpendicular
to the slope. Note that in this coordinate system the components of the vector
�!g have changed, but the vector itself is unchanged. We will assume that the
block starts from rest at both the spatial origin, x = 0, and the temporal origin,
t = 0. Now there is no acceleration in the y direction, which implies that

Fy = N �mg cos � = 0: (15)
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However the block is allowed to accelerate down the plane so that the equation
of motion in the x direction is

Fx = mg sin � � f = m
��
x: (16)

Assuming that the frictional force is proportional to the normal force, f = �N =
�mg cos �; then the equation of motion in the x direction reduces to

��
x = g (sin � � � cos �) : (17)

Since
��
x is independent of time, the solution for a block starting from rest at the

origin at t = 0 is
�
x = g (sin � � � cos �) t; (18)

and
x =

1

2
g (sin � � � cos �) t2: (19)

Before we proceed we should stop to examine this solution as a function of
�; the slope of the incline. For angles greater than � = tan�1 �; the block
accelerates at ever increasing rates reaching a maximum with an acceleration
of g when � = �=2: When tan � = � then the frictional force exactly balances
the force due to gravity and the block is in equilibrium and remains stationary.
What happens when the angle is further reduced so that tan � < �? Since
the role of the frictional force is to retard the motion, it cannot force the block
to accelerate back up the incline. This means that the block will remain in
equilibrium as the slope is reduced below tan�1 � and the frictional force in this
regime is given by f = mg sin � < �N: Another way of stating this, is that the
frictional force ranges from zero (when the incline plane is level, perpendicular
to the gravitational force) to a maximum given by f = mg sin � < �N; when
� < tan�1 �: Thus our solution is only valid for � � tan�1 �:

2.1.4 Newton�s Second Law in 2D Polar Coordinates

For circular motion it is often preferable to use polar coordinates which satisfy
the coordinate transformation

x = r cos�; y = r sin�

r =
p
x2 + y2 � = tan�1 y=x

; (20)

where we have to be a little careful with the tan�1 function as it is not single-
valued. Just as with Cartesian coordinates it is convenient to make use of a
orthonormal basis set. These are de�ned as

br = �!r =r = cos�bx+ sin�by = (xbx+ yby) =r; (21a)b� = � sin�bx+ cos�by: (21b)

From these de�nitions, it is clear that our usual position vector �!r is unchanged,
and br is a unit vector pointing in the same direction as �!r : The unit basis vector
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b� is normal to br and points in a direction of increasing � tangent to a circle of
radius r centered at the origin. From these de�nitions it is clear that this basis
set depends on �; which implies that if � is time dependent then the basis setbr and b� are time dependent as well.
Now Newton�s second law is still expressed as

�!
F = m

���!r : (22)

To see what form Newton�s equation takes in these coordinates we must �rst

�nd
��!r . Since this involves the time derivative of both r and br; we �rst note

from the de�nitions of the basis vectors that

d

dt
br = � sin�bxd�

dt
+ cos�by d�

dt
=

�
�b�: (23)

Thus
��!r is given by

��!r = �
rbr + r ��b�: (24)

Now
���!r will involve the time derivative of both basis vectors. In a similar manner

from the de�nition of the basis vectors we can determine the time derivative ofb� as
d

dt
b� = � cos�d�

dt
bx� sin�d�

dt
by = � �

�br: (25)

The acceleration in terms of a polar coordinate basis is then

�!a =
���!r = ��

rbr + 2 �r ��b�+ r ���b�� r ��2br: (26)

The component form of Newton�s second law then takes the form

Fr = mar = m

�
��
r � r

�
�
2�
; (27)

and

F� = ma� = m

�
r
��
�+ 2

�
r
�
�

�
: (28)

These equations in polar coordinates are much more complicated (messy)
than those in Cartesian coordinates. You may be thinking that there might not
be any reason to use Newton�s law in these coordinates. However let�s consider
the example of a skateboard (or a ball) in semicircular trough, Figure 1-5. In
this geometry r = R the radius of the trough and

�
r =

��
r = 0: Newton�s equations

then reduce to

Fr = mar = �mR
�
�
2

; and F� = ma� = mR
��
�: (29)

The equation of interest for this geometrical con�guration is in the � direction
(much as with the inclined plane where we were interested in the x direction).
The force in the � direction comes from the weight of the skateboard and is
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Figure 1-5. A skateboard in a semicircular tourgh of radius R whose position
is determined by the angle � as measured from the bottom. The forces on the

skate board are its weight, �!w = m�!g , and the normal force �!N .

given by F� = �mg sin�: Newton�s equation then takes the form

R
��
�+ g sin� = 0: (30)

The solution to this di¤erential equation cannot be expressed in terms of elemen-
tary functions (trigonometric functions, exponential functions, etc.). However
in the limit of small angular displacement, � << 1; sin� ' �: In this limit our
di¤erential equation describing the motion of the skateboard is

��
�+ !2� = 0; (31)

where !2 = g=R: By inspection it can be seen that the solution to this equation
is given by

� = A cos!t+B sin!t: (32)

The two unknown constants are determined by the initial conditions � (t = 0) =

�o and
�
� (t = 0) = 0: They are A = �o and B = 0 so that our �nal solution is

� = �o cos!t: (33)

Using these initial conditions we could have also directly integrated this
equation by using the chain rule

��
� =

�
d

d�

�
�

�
d�

dt
=

�
�
d

d�

�
� =

1

2

d

d�

�
�
2

: (34)

Now integrating equation (31), yields

�
�
2

= �2!2
Z �

�o

�d� = !2
�
�2o � �2

�
: (35)

Using the technique of separation of variables we can rewrite this equation as

d�q
�2o � �2

= �!dt;

Z �

�o

d�q
�2o � �2

= �!
Z t

0

dt = �!t: (36)
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Note that we chose the minus sign when we took the square root as � is initially
decreasing from �o: Now this integral is easily performed with the substitution
� = �o cos � which leads to d� = ��o sin �d�; and the integral becomes

�
Z �

0

��o sin �d�
�o sin �

= �� = �!t: (37)

Since � = �o cos �; we �nd the same solution

� = �o cos!t: (38)

There are several points to be made in this approach. The �rst is the useful trick
with the chain rule shown in equation (34). A similar trick, see problems 2.12
and 2.13, is often used to integrate Newton�s equation of motion in one dimen-
sion whenever the forcing term in independent of both the time and velocity.
The second point is that the initial conditions are employed in a natural way as
limits in the integration. Additionally, since the solution required two integra-
tions, there were two constants of integration to be determined. In general, the
solutions to a second order di¤erential equations (at least all of the ones that
we shall encounter in this course) contain precisely two independent constants
to be determined by the initial conditions or other constraints determined by
the relevant physics of the problem.
As �nal example of the concepts from chapter 1, consider a cannon that can

�re shells in any direction with the same speed v0: We wish to show that the
cannon can hit any object inside a surface de�ned by

z =
v20
2g
� g

2v20
r2; (39)

where z is the vertical coordinate and r is the cylindrical radial coordinate. The

EOM in cylindrical coordinates are
�
�
� =

��
� = 0

�

m
d2z

dt2
= �mg and m

d2r

dt2
= 0: (40)

Depending on the angle of elevation, �; vz0 = v0 sin � and vr0 = vo cos �: Inte-
grating the EOM yields

dz

dt
= v0 sin � � gt and

dr

dt
= v0 cos �: (41)

One more integration yields the time dependence for the coordinates of the
projectile,

z = (v0 sin �) t�
1

2
gt2 and r = (v0 cos �) t: (42)

From these two expressions, z as a function of r and � is

z = r tan � � g

2v2o

r2

cos2 �
=

r

2 cos2 �

�
2 sin � cos � � g

v2o
r

�
: (43)
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We we see from this solution that z = 0 corresponds to r = 0, the launch point,
and r =

�
v2o sin 2�

�
=g; the range of the projectile. The angle that gives the

maximum value of z (for a given r) is found from

dz

d�
=

r

cos2 �
� g

v2o

r2 sin �

cos3 �
=

r

cos2 �

�
1� gr

v2o
tan �

�
= 0;

tan �max =
v2o
gr
: (44)

Remembering the trigonometric identity,

1

cos2 �
= 1 + tan2 �; (45)

we �nd that zmax (for a given r) is given by

zmax =
v2o
g
� gr2

2v2o

�
1 +

v4o
r2g2

�
zmax =

v2o
2g
� g

2v2o
r2: (46)

This is the highest value of z for a given radial distance r. Clearly the projectile
can reach any lower value of z. Note that for r = 0! zmax = v

2
o=2g; the correct

answer for a vertical projectile. For the case zmax = 0! r = v2o=g which is the
maximum range of a projectile launched at an angle �=4 above horizontal.
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