
3 Lecture 9-30

3.1 Chapter 1 Newton�s Laws of Motion (con)

As �nal example of the concepts from chapter 1, consider a cannon that can
�re shells in any direction with the same speed v0: We wish to show that the
cannon can hit any object inside a surface de�ned by

z =
v20
2g
� g

2v20
r2; (1)

where z is the vertical coordinate and r is the cylindrical radial coordinate. The

EOM in cylindrical coordinates are
�
�
� =

��
� = 0

�
m
d2z

dt2
= �mg and m

d2r

dt2
= 0: (2)

Depending on the angle of elevation, �; vz0 = v0 sin � and vr0 = vo cos �: Inte-
grating the EOM yields

dz

dt
= v0 sin � � gt and

dr

dt
= v0 cos �: (3)

One more integration yields the time dependence for the coordinates of the
projectile,

z = (v0 sin �) t�
1

2
gt2 and r = (v0 cos �) t: (4)

From these two expressions, z as a function of r and � is

z = r tan � � g

2v2o

r2

cos2 �
=

r

2 cos2 �

�
2 sin � cos � � g

v2o
r

�
: (5)

We we see from this solution that z = 0 corresponds to r = 0, the launch point,
and r =

�
v2o sin 2�

�
=g; the range of the projectile. The angle that gives the

maximum value of z (for a given r) is found from

dz

d�
=

r

cos2 �
� g

v2o

r2 sin �

cos3 �
=

r

cos2 �

�
1� gr

v2o
tan �

�
= 0;

tan �max =
v2o
gr
: (6)

Remembering the trigonometric identity,

1

cos2 �
= 1 + tan2 �; (7)

we �nd that zmax (for a given r) is given by

zmax =
v2o
g
� gr2

2v2o

�
1 +

v4o
r2g2

�
zmax =

v2o
2g
� g

2v2o
r2: (8)
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This is the highest value of z for a given radial distance r. Clearly the projectile
can reach any lower value of z. Note that for r = 0! zmax = v

2
o=2g; the correct

answer for a vertical projectile. For the case zmax = 0! r = v2o=g which is the
maximum range of a projectile launched at an angle �=4 above horizontal.

3.2 Chapter 2 Projectiles and Charged Particles

We will now consider projectile motion subject to both gravitational forces and
air resistance. Not only will we learn about the e¤ects of air resistance, but also
learn some valuable mathematical techniques for solving Newton�s equation of
motion. We will assume that the frictional drag due to wind resistance,

�!
f ,

is always opposite to the velocity, �!v . In doing so we will ignore any lateral
component

Figure 2-1. A projectile is subject to two forces, the gravitational force
�!w = m�!g , and the force of drag due to air resistance �!f = �f (v) bv:

or lift as that is not the subject of this discussion. Now as we see in Figure 2-1
the frictional force is of the form

�!
f = �f(v)bv: (9)

At lower speeds we will use the approximation (a good one) that the function
f(v) is of the form

f(v) = bv + cv2 = flin + fquad ; (10)

where flin and fquad are the linear and quadratic terms respectively. As a
question, why would you expect there to be no constant term? Now, folks who
work in �uid dynamics �nd it useful to de�ne a dimensionless parameter called
the Reynolds number, R where R = D�v=�. Here D is a length measurement
that de�nes the size of the object, e.g. for a sphere D is the diameter, � is the
density of the �uid that the object is traveling through, v is the velocity of the
object relative to the �uid, and � is the viscosity of the �uid. As it turns out,
for R << 1 the linear term dominates, while for R >> 1 the quadratic term
dominates.
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3.2.1 Linear Air Resistance

In the presence a gravitational �eld Newton�s equation of motion for a particle
traveling through a �uid when R << 1 becomes

m
���!r = m�!g � b�!v ; (11)

where we are measuring y positive in the downward direction. Since no terms
depend on the location of the particle, �!r , we can write the equation of motion
in terms of �!v and it becomes

m
��!v = m�!g � b�!v : (12)

This is a �rst order di¤erential equation for �!v and being linear in �!v it separates
into component equations as

m
�
vx = �bvx and m

�
vy = mg � bvy: (13)

The equation for the x component can be easily separated and integrated viaZ vx

vx0

dvx
vx

= � b
m

Z t

0

dt = � b
m
t

ln (vx=vx0) = �bt=m
vx (t) = vx0e

�t=� ; (14)

where � = m=b: The physics is clear here. The particle starts out at with a
horizontal velocity of vx0 and then exponentially approaches vx = 0 as t !
1. To �nd how the horizontal coordinate depends on time we merely have to
integrate this equation and

x (t) = vx0

Z t

0

e�t=�dt = vx0�
�
1� e�t=�

�
: (15)

Here we have assumed that x (t = 0) = 0: Note that as t ! 1 the position of
the particle approaches vx0� :
The vertical motion satis�es

m
�
vy = mg � bvy; (16)

where the positive vertical velocity is down. Eventually the drag will balance
out the gravitational pull and

�
vy ! 0: When this happens

lim
t!1

vy = mg=b = g� = vter ; (17)

where we see that the terminal vertical velocity is vter : We can now rewrite the
equation of motion as

m
�
vy = �b (vy � vter)
�
vy = � b

m
(vy � vter) = �

1

�
(vy � vter) : (18)
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Again we can easily integrate this equation and �ndZ vy

vy0

dvy
vy � vter

= ln
vy � vter
vy0 � vter

= � t
�

vy � vter = (vy0 � vter) e�t=� , (19)

or
vy = vy0e

�t=� + vter

�
1� e�t=�

�
: (20)

We see from this solution that vy starts o¤ at vy0 and approaches vter as t!1.
Both of these limits were what we anticipated. Of some interest is the solution
where we drop the particle from rest, i.e. vy0 = 0: In that case for small times,
t << � the velocity behaves as vy = vtert=� = (g�) t=� = gt; just as we would
suspect. However for larger times the velocity asymptotically approaches vter .
In general, assuming that the particles starts at x = y = 0; the particle�s

vertical position is given by

y (t) = vtert� � (vy0 � vter)
h
e�t=�

it
0

y (t) = vtert+ (vy0 � vter) �
�
1� e�t=�

�
: (21)

To determine the trajectory of the particle, we need to invert the expression
we found for x (t) to �nd t (x) and then substitute that result into y (t) to
�nd y (x) : Before we do that it is a bit more convenient to de�ne y positive
vertically upward. The original di¤erential equation remains unchanged except
for the term that results from the gravitational acceleration which changes sign.
Since vter = mg=b; this is equivalent to letting vter ! �vter : Using the outlined
procedure we �nd

x=vx0� = 1� e�t=�

t = �� ln (1� x=vx0�) : (22)

Substituting this result into the expression for y (t) yields

y (x) = vter� ln (1� x=vx0�) + (vy0 + vter)x=vx0 (23)

This equation is not particularly enlightening and hence is plotted in Figure 2-2.
Note that y has an asymptote (as shown in the �gure) at x = vx0� .
To solve for the range R, we use the condition y (R) = 0; or

vter� ln (1�R=vx0�) + (vy0 + vter)R=vx0 = 0: (24)

We see that one solution occurs at R = 0: Clearly this corresponds to the
initial starting point and is not of interest here. Since this is a transcendental
equation it cannot be solved analytically for R 6= 0, and in general it must be
solved numerically. That being said physical insight can often be gained by
�nding approximate analytical solutions. We can do that for the case when
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Figure 2-2. The solid line is the trajectory of a projectile subject to linear drag
and the dashed line is the trajectory in a vacuum. Initially the curves are

similar, but they soon diverge as air resistance slows the projectile downwith a
vertical asymptote at x = vxot: The respective ranges are R and Rvac .

R << vx0� which is the case when the drag is small. In this limit we can expand
the natural log function. In case you don�t remember this expansion and don�t
feel like taking the necessary derivatives to form the Taylor�s expansion then
consider the expansion

1

1� x = 1 + x+ x2 + � � �Z
dx

1� x = � ln (1� x) = const+ x+ x2=2 + x3=3 + � � �:

Since the ln (1� x) vanishes at x = 0; the unknown constant must also vanish.
Thus the expansion for ln (1� x) is

ln (1� x) = �
�
x+ x2=2 + x3=3 + � � �

�
(25)

Expanding the log function to third order in R=vx0� and simplifying yields

�vter�
"
R

vx0�
+
1

2

�
R

vx0�

�2
+
1

3

�
R

vx0�

�3#
+ (vy0 + vter)

R

vx0
' 0

�vter
�
R

v2x0�
+
2

3

R2

v3x0�
2

�
+ 2

vy0
vx0

' 0: (26)

Replacing vter=� with g further reduces this to

R ' 2vy0vx0
g

� 2
3

R2

vx0�
(27)
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The leading term here is the result that you obtain for the range of a projectile
in a vacuum. Since, in our approximation, the next term is a small correction
we can replace R in that term with the vacuum solution, Rvac ; and �nd

R ' Rvac
�
1� 4

3

vy0
g�

�
= Rvac

�
1� 4

3

vy0
vter

�
: (28)

This expression is simple enough that we can make some physical observations.
First the drag always reduces the range when compared to the vacuum result.
This is true even if we consider higher order terms in the expansion for the
log function. The correction depends only on the ratio vy0=vter : In general if
v=vter << 1 throughout the trajectory then the e¤ect of linear drag is also small.
If however v=vter is on the order of 1 or even larger then our approximation is
no longer valid.

3.2.2 Quadratic Air Resistance

While we can �nd examples for which the drag of an object is linear with respect
to its velocity, notably very small objects or for very small velocities, e.g. the
Millikan oil drops, more obvious examples such as baseballs etc. are subject to
quadratic drag. For this case the x and y components of the equation of motion
are not in general separable. Additionally the equations are nonlinear which
are often signi�cantly more complicated than linear di¤erential equations. For
these reasons we shall consider purely horizontal or vertical motion.
In the case of purely horizontal motion, Newton�s equation of motion is given

by

m
dvx
dt

= �cv2x: (29)

This equation is easily separated which allows us to obtain the integrals

m

Z vx

vx0

dvx
v2x

= �c
Z t

0

dt: (30)

These integrals are well known and we �nd

m

�
1

vx0
� 1

vx

�
= �ct:

Solving for vx yields

1

vx
=

1

m
ct+

1

vx0
=

1

vx0
(1 + cvx0t=m)

vx =
vx0

1 + t=�
; (31)

where
� = m=cvx0: (32)
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This is a di¤erent time constant that the one we obtained for the case of linear
drag. Here when t = � the velocity is reduced by a factor of 2 versus e�1. NTL,
both time constants give us a measure of the time required for wind resistance
to slow the motion of the object appreciably.
To �nd the position of the object as a function of time we merely integrate

this solution via

x = x0 +

Z t

0

vx0
1 + t=�

dt

x = x0 + vx0� ln (1 + t=�) : (33)

The velocity still goes to zero as t!1, but in this case it does so much more
slowly. So slow in fact that x increases without limit. Remember however that
when the velocity of the particle becomes small enough the drag becomes linear
and the velocity will begin to fall o¤ exponentially. Thus no real body can coast
to in�nity.
For vertical motion Newton�s equation of motion is

m
dvy
dt

= mg � cv2y; (34)

where we are measuring positive y to be vertically down. Again as in the linear
case it is useful to �nd the terminal velocity. In this situation dvy=dt = 0 (the
same as in the linear case) and

vter =
p
mg=c: (35)

Rewriting the equation of motion in terms of the terminal velocity yields

dvy
dt

=
g

v2ter

�
v2ter � v2y

�
(36)

We will assume that the object (ball) is dropped from rest. Then using the
technique of separation of variables we �ndZ vy

0

dvy
v2ter � v2y

=
g

v2ter

Z t

0

dt: (37)

This integrand can be expanded into partial fractions,

1

v2ter � v2y
=

1

2vter

�
1

vter � vy
+

1

vter + vy

�
; (38)

which enables us to perform the integral in a straightforward fashion. The result
is

ln
vter + vy
vter � vy

=
2gt

vter
: (39)
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Solving for vy leads to

vter + vy = (vter � vy) exp 2gt=vter

vy = vter
e2gt=vt e r � 1
e2gt=vt e r + 1

= vter tanh gt=vter : (40)

For gt=vter << 1 this expression reduces to

vy = gt; (41)

which is what you would expect for a falling object. However, the hyperbolic
tangent rapidly approaches 1 as gt=vter increases beyond 1, so that the velocity
of the object quickly reaches its terminal velocity. To �nd the distance the
object has fallen we simply integrate the vertical velocity to �nd

y =
v2ter
g
ln cosh gt=vter (42)

8


