
Small Amplitude Fluctuations About Equilibrium

Problem 7.47 (b,c).

(b) The equation of motion for a system with a single generalized coordi-
nate was shown to be of the form

A (q)
��
q = �dU

dq
� 1
2

dA

dq

�
q
2
: (1)

Given a potential energy function (1-D) we have previously shown that the
points of equilibrium occur whenever

dU

dq
= 0:

This may occur for a set of qo�s for which dU=dq = 0; or whenever U is at a
maximum or a minimum. Given an equation of motion such as that in equation
(1), equilibrium implies that

�
q =

��
q = 0: Hence, consistent with our earlier

conclusions, equilibrium still requires dU=dq = 0:

(c) Now an important aspect of being at equilibrium is whether it is a
position of stable or unstable equilibrium. Earlier in the class we demonstrated
that a stable equilibrium occurs at a minimum in the potential energy function.
From basic calculus this requires

d2U (qo)

dq2
> 0;

where the second derivative is evaluated at a position of equilibrium, q = qo:
For small amplitude �uctuations about equilibrium the potential energy can be
expanded in a Taylor�s series via

U (q) ' U (qo) +
dU (qo)

dq
(q � qo) +

1

2

d2U (qo)

dq2
(q � qo)2 : (2)

Since the �rst derivative vanishes this expansion reduces to

U (q) ' U (qo) +
1

2

d2U (qo)

dq2
(q � qo)2 :

This expression is analogous to that for a spring stretched (or compressed) from
it equilibrium position qo with an e¤ective spring constant, keff ; being given by

keff =
d2U (qo)

dq2
:

Clearly if the curvature of the potential energy function is positive then keff > 0
and the equilibrium position at qo is stable.

1



Now consider the equation of motion, equation (1), for small amplitude
�uctuations from equilibrium. In that case q = qo + �; where � is small. Since
qo is a constant the equation of motion is linearized and reduces to

A (qo)
��
� = � dU (q)

dq

����
q=qo+�

:: (3)

To determine the quantity
dU (q)

dq

����
q=qo+�

for small � we could simplify di¤erentiate the Taylor�s expansion, equation (2),
above. However it is straightforward to note that a �rst order Taylor�s expansion
of dU=dq about qo yields

dU (q)

dq

����
q=qo+�

=
dU (qo)

dq
+
d2U (qo)

dq2
(q � qo) =

d2U (qo)

dq2
�:

Substituting this result into the equation of motion for small amplitude �uctu-
ations, equation (3), yields

A (qo)
��
� = �d

2U (qo)

dq2
�: (4)

This equation is analogous to Hook�s law and harmonic oscillations occur as long
as the curvature of the potential energy function at the equilibrium position qo
is greater than zero, keff > 0: That is the forcing function on the right hand
side is negative corresponding to a restoring force.
The equation of motion has an additional property in that we can obtain the

frequency of small amplitude oscillations. From equation (4) these are given by

!2 =
1

A (qo)

d2U (qo)

dq2
=
keff
meff

;

where the e¤ective mass is meff = A (qo) : So the analogy with Hook�s law
is complete. For small amplitude oscillations about equilibrium the angular
frequency is found from the e¤ective spring constant divided by the e¤ective
mass.

Problem 8.13(b,c)

(b) Consider two orbiting particles of reduced mass � which interact via
the potential energy function

U (r) =
1

2
kr2;

where r is the relative distance between them. The e¤ective interaction for two
orbiting particles is

Ueff (r) = U (r) +
1

2

L2

�r2
:
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Their equilibrium position for a circular orbit is found from

dUeff (ro)

dr
= kro �

L2

�r3o
= 0; (5)

which has a solution

r4o =
L2

�k
:

(c) To determine frequency of small amplitude oscillations about ro; we
consider the equation of motion for the relative coordinate

�
��
r = �dUeff (r)

dr
:

As we saw in the solution for 7.47, for small amplitude oscillations, r = ro + �;
this becomes

�
��
� = �dUeff (ro + �)

dr
= �

dU2eff (ro)

dr2
�: (6)

The curvature or second derivative of the potential energy function at equilib-
rium is

dU2eff (ro)

dr2
= k + 3

L2

�r4o
:

From equation (5) we can substitute for k with the result.

dU2eff (ro)

dr2
=
L2

�r4o
+ 3

L2

�r4o
= 4

L2

�r4o
:

First we note that this expression is positive de�nite, hence we must have a stable
equilibrium with harmonic oscillations about equilibrium. Dividing equation (6)
by the reduced mass yields

��
� = � 1

�

dU2eff (ro)

dr2
� = �4 L

2

�2r4o
�: (7)

Hence the frequency of radial oscillations is

!r = 2
L

�r2o

Since the angular momentum for a circular orbit is L = �r2o
�
�; we see that

!r = 2
�
�:

This means that the period of radial oscillations and the orbital period are
related via

�ang = 2� rad:

Hence the orbit is closed.
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