Solutions Assignment 3

7. Choosing
oth lie in this

3.27 (a) The angular momentum of an object is 7T =7 x
the orbit of the planet to lie in the  — y plane then 7 and p b
plane as well. In polar coordinates we find that

7 = L@y, 24,
T w T w T ade
7 = I+ rép.

From the expressions for 7 and gAb we find ?xa = 2. Thus the angular momentum
is
T =7x P =mrléz = mriwz,
where w = d¢/dt.
(b) For a differential angular displacement, d¢, the area inside the triangle
is 1
dA = §r2d¢.

Dividing by dt we find
14
rlw =

1
" w T Y T oy

dA 1 ,do _
d

Since angular momentum is conserved for central forces, we see that dA/dt is
constant. Thus an orbiting planet sweeps out equal areas in equal times.

3.32 The moment of inertia of a uniform solid sphere of mass M and radius
R rotating about an axis (taken to be the z axis) that passes through its center
is found from

2m
I:/rﬁszp/pidV— i R3/ / / r2r? sin Odgdodr.

where r, is the perpendicular distance from the z axis. In spherical coordinates
r, = rsinf and the momentum of inertia is

2m
I = 47TR3/ / / rsin® 0dgdOdr = 2R3’/ / (1 — cos® 0) sin fdfdr,

3M R®
I = p 7M 2
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3.35 (b) The torque about the point P, the point of contact between the
disc and the inclined plane, for a disk of mass M and radius R is

T et - Fal ~ : ~ F
e =7 x F = Ry x Mg (sinyx — cosvy),



where 7 is the angle of the plane relative to horizontal. Note that both the

normal force and the frictional force pass through the point P and contribute

no additional torques. We have defined the = axis to point down the inclined

plane and the y axis normal to the plane. Performing the cross product we find
= Dent o

L =T%"=—-MgRsinvz.

The minus sign comes from defining the z axis to point out of the plane and

from the right hand rule, the disc rotates in the negative z direction. The rate
of change for the magnitude of the angular momentum is

L =1Iw= MgRsin~.

As stated in the problem, the momentum of inertia for a disk rotating about its
circumference is I = 3M R?/2, thus

3 : .
§MR2w = MgRsiny — w =

2sin-y
3R

From the no slip condition

. . 2
= R — —gi .
v w 3 sin ~y

(¢) The torque about the CM for the disc is
Tt = 7 x F = —Rj x Fy (—7) = —RF}Z,

where F is the magnitude of the frictional force. From the x component of
Newton’s second law

Mv = Mgsiny — Fy — Fy = Mv — Mgsin~.

Since the momentum of interia for the disc about its CM is I = M R?/2 we have
(including the no slip condition, Rw = v)

: . 1 . .
Pt = L=l = SMR% =R (MU—Mgsim)
1 . .
in = —Mv+ Mgsiny
Vo= gsin
= 3 ’y'

Note that in keeping track of signs, w is defined to be positive when the disk is
rotating so that it proceeds up the plane (think of the right hand rule).



3.37 The derivation of
d
%f (about CM) = Text (about CM),

was done in the discussion session, but is repeated here for reference. Defining

— Iy . . —

r'7, as the position of mass particle « relative to the center of mass, '), =
—

7 o — R, the rate of change of the angular momentum about the center of mass

(CM) is expressed as

d — — =
%LCM = %:?;XFOZ(Z’ITLQ?/a) x R.

It is very straightforward to show that from the definition of the CM that

> Ma T4 = 0. Thus the expression reduces to

—

d_) —/ _>cxt
aLCM :Za: T X Fo=T¢y

-
Note that this is true even if the CM is accelerating, R # 0!

4.3 (a) First consider the line intergal for F = —yZ + xy along the path
POQ. This path integral is expressed as

Q_, 0 1
W:/ F~d?’:7/ (y:O)d:r+/ (= 0)dy = 0.
P 1 0

b) Now consider the line intergal for F — —yZ + zy along the path PQ.
g g
This path integral is expressed as
Q_,

(0,1)
w = / F-d?z/ (Fp (z,y) dx + Fy (z,y) dy),
P (1,0)

(0,1)
W = / —ydx + xdy.
(

0,1)

Along this path, y =1 — x, so that

0 0 0
W:/ —(l—m)d:c—/xdx:—/ dx = 1.
1 1 1



(c) Now consider the line integral for F = —yZ + 2y along the circular path
PQ. First we will rewrite the force in polar coordinates along the unit circle.
In these coordinates = cos¢ and y = sing; and ¥ = cos ¢ — sin¢¢ and
y = sin ¢ + cos ¢¢ so that
F = —yZ +xy = —sin ¢ (cos @r — sin ¢$) + cos ¢ (sin @7 + cos ¢$> ,

~

F = 4

The path integral then becomes
Q w/2
W:/ Tw’-d?’:/ de = /2.
P 0

4.4 (a) Since it is a radial force, the angular momentum is conserved so

that , )
— 2 — 2 _ _ T
L=mriw, =mr wows=— g = .
(b) From lecture 2, we know that (assuming r is small) the force on the
string is F' = ma, = mrw?. The work pulling on the string is then
1 1
rz  r2)’

we [ " T2 1271 1 1
— _ 2 _ _ o 4 2
—/roFdT——[omTw dr = — TOWWSdT_Qm(’]"z—’{‘g>_2mTOwO

where the minus sign comes from F' being in the opposite direction of dr.
(c) The change in KE is

12 /1 1 1
AKE = -— ( — ) = —mriw?

2m \r2 r2

which is the same as the work done as it had to be.

4.7 (a) The force of gravity on Planet X is F = —m~yy?y. The work done
by gravity moving the mass m from 7, to 7 s is

?2 7>2 Y2
W(71—Ts) = / Fd7 = —/ myy’dy = —/ myy?dy,
?1 ?)1 Y1
1
w (7)1 - ?2) = —gmy (yg’ - y?) .

3

Since the work done only depends on the end points, it is a conservative force.
The potential energy for this gravitational field is

1
Uly) = 3mry’
(¢) The energy for a stationary mass at a height h is
1 1 .2 1
E = gm'yh?’ = §my + gmvy?’,

4



where y is measured from the ground. When y = 0, the velocity is
y = \/27h3/3.

4.18 (a) From equation (4.35) in the text df = Vf-d7 . If the differential
displacement vector d7 lies in a surface defined by f = const. then df = 0.
From that we see

Vf-dr =0,
when d7 lies in a surface defined by f = const., thus Vf is L to a surface of
constant f.

(b) Now let d7 = €t where ¢ is small and @ is a unit vector that points in

an arbitrary direction. Thus

df =Vf-d7 =eVf-i=e|Vf|coso,

where df is the change in f in the direction of . This is a maximum when
cos @ = 1 which occurs when ¥ points in the direction of V f.

4.19 (a) A surface defined by f = 22 + 4y? = const. is a elliptic surface.
The intersection of any plane orthogonal to the z axis with this surface will form
a ellipse with the semimajor axis, which is parallel to the x axis, being twice
that of the semiminor axis, which is parallel to the y axis.

(b) The unit normal to this surface is in the direction of V f which yields

sz 2$§+8y@\—>n:

Moving in the direction of 7 will maximize the rate of change in f.

4.23 First all three forces only depend on position. It only remains to
—
check V ><_>F .
(a) If F = kax + 2kyy + 3kzZ, then

—  (OF. OF,\. (0F, OF.)\. (0F, OF\ .
VXF_(@y 8z)x+(8z 8m>y+<3x 3y>2_0'

This force is conservative. The corresponding potential is

1
U=—-k <2z2 + 1y + §z2> .

F = kyZ + kxy, then

— oF, OF, oF, OF oF, OF,

F = 2 _ 7Y\ s r z |~ Yy z \ ~
VX (83/ 3z>x+<8z 8x>y+<8x 8y>z’

= Jdr Oy .
F = - — = = .
V x k ( y> z=0




This force is conservative. The potential is

(c) If F= —kyZ + kzy, then

—  (OF. 0F,)\. (0F, OF.\. (0F, 0F..
VxF (8y 8z>m+ 0z 8x) +<8x 8y>z7
vxF = (k219 2o oz 20

oz oy

This force is not conservative.

4.34 (a) The vertical distance that the mass hangs down on a pendulum
of length ¢ is £cos¢. Since at equilibrium it is a length ¢ below the pivot the
potential energy measured above equilibrium is

U (¢) = mgl (1 —cos¢).

The total energy is
1 -\
E= 3m (€¢> + mgl (1 —cos ).
(b) Differentiating this expression wrt ¢ yields

mé%ﬁé}g + mgl sin (b(}b =0,

or
ml%¢ +mglsing =0 — [a = —Flsing = — |- 7 x mgy| =T.

(c) If ¢ << 1 then sin ¢ ~ ¢ and our EOM becomes
S
¢ =0.
6+ 50
This differential equation has as solutions
¢ = Asinwt + B coswt,

where w? = g// or a period of T = 2m\/(/g.



