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Lecture 11

• Finish Halzen & Martin Chapter 4
– origin of the propagator

• Halzen & Martin Chapter 5
– Continue Review of Dirac Equation

• Halzen & Martin Chapter 6
– start with it if time permits



Origin of propagator
• When we discussed perturbation theory a few

lectures ago, we did what some call “old fashioned
perturbation theory”.
– It was not covariant
– We required momentum conservation at vertex but not

Energy conservation
– At second order, we need to consider time ordered

products.
• When you do this “more modern”

– Fully covariant
– 4-momentum is conserved at each vertex
– However, “propagating particles” are off-shell
– This is what you’ll learn in QFT!



Spinless massive propagator
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For more details see Halzen & Martin

H&M has a more detailed discussion for how to go from 
a time ordered 2nd order perturbation theory to get the
propagator. Here, we simply state the result:



H&M Chapter 5
Review of Dirac Equation

• Dirac’s Quandery
• Notation Reminder
• Dirac Equation for free particle

– Mostly an exercise in notation
• Define currents

– Make a complete list of all possible currents
• Aside on Helicity Operator

– Solutions to free particle Dirac equation are eigenstates of
Helicity Operator

• Aside on “handedness”



Dirac’s Quandery
• Can there be a formalism that allows wave

functions that satisfy the linear and quadratic
equations simultaneously:

• If such a thing existed then the linear equation
would provide us with energy eigenvalues that
automatically satisfy the relativistic energy
momentum relationship
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Dirac’s Quandery (2)
• Such a thing does indeed exist:

– Wave function is a 4 component object
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α is thus a 3-vector of 4x4 matrices
with special commutator relationships
like the Pauli matrices.
While β is a diagonal 4x4 matrix as shown.



The rest is history

In the following I provide a very limited reminder
of notation and a few facts.

If these things don’t sound familiar, then I
encourage you to work through ch. 5 carefully.



Notation Reminder (1)
• Sigma Matrices:

• Gamma Matrices:

• State Vectors:
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Notation Reminder (2)
• Obvious statements about gamma matrices

• Probability density

• Scalar product of gamma matrix and 4-vector
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Dirac Equation of free particle
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Ansatz:
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Explore this in restframe of particle:
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Normalization chosen to describe 2E particles, as usual.



Particle vs antiparticle in restframe
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Recall, particle -> antiparticle means  E,p -> -E,-p
Let’s take a look at Energy Eigenvalues: 
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 for p=0 we get this equation 
to satisfy by the energy eigenvectors

It is thus obvious that 2 of the solutions have E < 0, and are the
lower two components of the 4-component object u.
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Particle & Anti-particle
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Negative energy solution

Positive energy solution



Not in restframe this becomes:
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The lower 2 components are thus coupled to the upper 2 
via this matrix equation, leading to free particle and 

antiparticle solutions as follows. 



(Anti-)Particle not in restframe
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I suggest you read up on this in H&M chapter 5 
if you’re not completely comfortable with it.



What we learned so far:
• Dirac Equation has 4 solutions for the same p:

– Two with E>0
– Two with E<0

• The E<0 solutions describe anti-particles.
• The additional 2-fold ambiguity describes spin

+-1/2.
– You will show this explicitly in Exercise H&M 5.4,

which is part of HW next week.
• We thus have a formalism to describe all the

fundamental spin 1/2 particles in nature.



Helicity Operator
• The helicity operator commutes with both H

and P.
• Helicity is thus conserved for the free spin 1/2

particle.
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The unit vector here is the axis with
regard to which we define the helicity.

For (0,0,1), i.e. the Z-axis, we get
the desired +-1/2 eigenvalues.
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Dirac Equation for
particle and anti-particle spinors
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H&M Equation (5.33) and (5.34)

It’s sometimes notationally convenient to write the 
antiparticle spinor solution (i.e. the -p,-E) as an explicit
Antiparticle spinor that satisfies a modified dirac equation: 

particle

antiparticle

The v-spinor then has positive energy.
We won’t be using v-spinors in this course. 



Antiparticles
• We will stick to the antiparticle description we

introduced in chapter 4:

e-

e-

p,E

-p,-E

Initial state e+e- is an initial state
e-e- with the positron being an electron

going in the “wrong direction”, 
i.e. “backwards in time”.



Some more reflections on γµ

• There are exactly 5 distinct γ matrices:

• Where
• Every one of them multiplied with itself gives

the unit matrix.
• As a result, any product of 5 of them can be

expressed as a product of 3 of them.
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Currents
• Any bi-linear quantity can be a current as long

as it has the most general form:

• By finding all possible forms of this type, using
the gamma-matrices as a guide, we can form
all possible currents that can be within this
formalism.
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The possible currents
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Chapter 6

Electrodynamics of Spin-1/2 particles.



Spinless     vs     Spin 1/2
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We basically make a substitution of the vertex factor:
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And all else in calculating |M|2 remains the same.



Example: e- e- scattering
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For Spinless (i.e. bosons) we showed:
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For Spin 1/2 we thus get:

Minus sign comes from fermion exchange !!!



Spin Averaging
• The M from previous page includes spinors in

initial and final state.
• In many experimental situations, in particular

in hadron collissions, you neither fix initial nor
final state spins.

• We thus need to form a spin averaged
amplitude squared before we can compare
with experiment:
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Spin Averaging in non-relativistic limit

• Incoming e- :

• Outgoing e- :
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Reminder:



Invariant variables s,t,u
Example: e- e- -> e- e-

• s = ( pA + pB )2

•    = 4 (k2 + m2)

• t = ( pA - pC )2

•    = -2 k2 (1 - cosθ)

• u = ( pA - pD )2

•    = -2 k2 (1 + cosθ)

k = |ki|= |kf|        m = me      θ = scattering angle, all in com frame. 
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Invariant variables s,t,u
• s = ( pA + pB )2

•    = 4 (k2 + m2)

k = |ki|= |kf|        m = me      θ = scattering angle, all in com frame. 

A

B

C

D

B,D are antiparticles!
pB thus “negative”, leading 
to the + in (pA+pB).



M for Different spin combos
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M for Different spin combos
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And alike for the other permutations.








