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Lecture 11
* Finish Halzen & Martin Chapter 4
— origin of the propagator
* Halzen & Martin Chapter 5
— Continue Review of Dirac Equation

» Halzen & Martin Chapter 6
— start with it if time permits



Origin of propagator

* When we discussed perturbation theory a few

lectures ago, we did what some call “old fashioned
perturbation theory”.

— |t was not covariant

— We required momentum conservation at vertex but not
Energy conservation

— At second order, we need to consider time ordered
products.

* When you do this “more modern”
— Fully covariant
— 4-momentum is conserved at each vertex

— However, “propagating particles” are off-shell
— This is what you’ll learn in QFT!



Spinless massive propagator

H&M has a more detailed discussion for how to go from
a time ordered 2nd order perturbation theory to get the
propagator. Here, we simply state the result:

1 1

(pA+pB)2_m2 p —m

For more details see Halzen & Martin



H&M Chapter 5
Review of Dirac Equation

Dirac’s Quandery

Notation Reminder

Dirac Equation for free particle

— Mostly an exercise in notation

Define currents

— Make a complete list of all possible currents

Aside on Helicity Operator

— Solutions to free particle Dirac equation are eigenstates of
Helicity Operator

Aside on “handedness’



Dirac’s Quandery

» Can there be a formalism that allows wave
functions that satisfy the linear and quadratic
equations simultaneously:

Hy = (ap + Bm)y

Hy = (P +m")y
* If such a thing existed then the linear equation
would provide us with energy eigenvalues that

automatically satisfy the relativistic energy
momentum relationship



Dirac’s Quandery (2)

* Such a thing does indeed exist:
— Wave function is a 4 component object

o
o = ( - j a is thus a 3-vector of 4x4 matrices
[ with special commutator relationships

] like the Pauli matrices.

While 3 is a diagonal 4x4 matrix as shown.

o R I T A TR



The rest is history

In the following | provide a very limited reminder
of notation and a few facts.

If these things don’t sound familiar, then |
encourage you to work through ch. 5 carefully.



Notation Reminder (1)

» Sigma Matrices:

ol ool Tl Sl

« Gamma Matrices:

) = I 0 123 0 0123 S = 0 7
0 -1/ —0 _113 0 I O

 State Vectors: A

\"/



Notation Reminder (2)

* Obvious statements about gamma matrices

7/(jzo,z,s)T )’(] 025) ,}/(]13)T 7/(]13)
]/(] 0,5)T* )/(] 05) }’(] 1L.23)T% _ 7’(] 12,3)

. Probability density

ww=v"w=#>0
Ty yyy=y 'y

» Scalar product of gamma matrix and 4-vector

/‘(E yuAu = YOA() ~YA -7 A, - 73A3 's again a

4-vector



Dirac Equation of free particle

(ly/lgu _ WI)W: 0 Ansatz:

.y — w=e"u(p)
id, yy' + my=0
Explore this in restframe of particle: (1)
W =V2me™ 8 y, =2me ™
Y,

(O\
1 3
O,

)

Normalization chosen to describe 2E particles, as usual.



Particle vs antiparticle in restframe

(1) (0)
V i) \ -im| 1 ticl
Y,y =V2me ™ 0 W, =V2me ™ 0 ; particle
\Y Y

Recall, particle -> antiparticle means E,p -> -E,-p
Let's take a look at Energy Eigenvalues:

Hu = (aep + Bm)u = Eu
ml 0 for p=0 we get this equation
0 / u=Fu ¥ to satisfy by the energy eigenvectors
—m

It is thus obvious that 2 of the solutions have E < 0, and are the
lower two components of the 4-component object u.



Particle & Anti-particle

(1 ) (O\
—imt O —imt 1
W,y =V2me ol L YL, =V2me 0 ;
\0) )
Vi = V2me™™"

Negative energy solution

b Yo =

Positive energy solution

0
r e—lmt




Not in restframe this becomes:

Hu = (&; + Bm)u = Eu
m op

Hu=| __ P u=FLu
op —-m

The lower 2 components are thus coupled to the upper 2
via this matrix equation, leading to free particle and
antiparticle solutions as follows.



(Anti-)Particle not in restframe

Y,y =Ne™

+ipx

l//+1/2 = Ne

( A (
1 0
_»_»O , l//_1/2 — Ne_ipx _)_)1
\E +m\0 ) \E +m\ 1
—Op —Op
IEI+m(Oj | E |+m
1 b Yoy, = Ne™™ 0
0 1
\ y, \

\

1

|

J

I suggest you read up on this in H&M chapter 5

if you’re not completely comfortable with it.



What we learned so far:

Dirac Equation has 4 solutions for the same p:
— Two with E>0
— Two with E<O

The E<O solutions describe anti-particles.

The additional 2-fold ambiguity describes spin
+-1/2.

— You will show this explicitly in Exercise H&M 5.4,
which is part of HW next week.

We thus have a formalism to describe all the
fundamental spin 1/2 particles in nature.



Helicity Operator

* The helicity operator commutes with both H

and P.

* Helicity is thus conserved for the free spin 1/2

particle.

1

2

(El;
\O

0

Gp)

The unit vector here is the axis with
regard to which we define the helicity.
For (0,0,1), i.e. the Z-axis, we get
the desired +-1/2 eigenvalues.



Dirac Equation for

particle and anti-particle spinors

It's sometimes notationally convenient to write the
antiparticle spinor solution (i.e. the -p,-E) as an explicit

Antiparticle

(V'Pu=m,
(Y'p,+m

spinor that satisfies a modified dirac equation:
u=0 particle
v=0 antiparticle

The v-spinor then has positive energy.

We won't

be using v-spinors in this course.

H&M Equation (5.33) and (5.34)



Antiparticles

* \We will stick to the antiparticle description we
introduced in chapter 4:

going in the “wrong direction”,
e -p,-E l.e. “backwards in time”.

e P,E Initial state e*e- is an initial state
\‘\ ee- with the positron being an electron



Some more reflections on

There are exactly 5 distinct y matrices:

) = I 0 123 0 0123 S = 0 7
0 -/ —0 _113 0 I 0

0r,1~,24,3

Where 7’ =1y YYy

Every one of them multiplied with itself gives
the unit matrix.

As a result, any product of 5 of them can be
expressed as a product of 3 of them.



Currents

* Any bi-linear quantity can be a current as long
as it has the most general form:

y(4x4)y

* By finding all possible forms of this type, using
the gamma-matrices as a guide, we can form
all possible currents that can be within this
formalism.



The possible currents

l/_/l// scalar
— seudo-scalar
e p

a’

vy 'y o axialvector
— 1 Vv Vv

vo (XY =rry tensor

vector



Chapter 6

Electrodynamics of Spin-1/2 particles.



Spinless vs  Spin 1/2

. o —\ —ip , x"

i) ene ()=
J, =—ie(¢"(9,0 )~ 3,09 ) J* = —eyy'y

T,=~i _[ J]‘;Aud“x +0(e”) T, =—i J J};Aud4x +0(e?)

We basically make a substitution of the vertex factor:
(pf T pi)u — Uury,u,

And all else in calculating |M|? remains the same.



Example: e e scattering

For Spinless (i.e. bosons) we showed:

M = —¢2 (pA + pc)u(pB jpD)u + (PA + PD)M(PB ‘l‘pc)u
(pA_pC) (pA_pD)

For Spin 1/2 we thus get:

M =—¢? (ECY”MA)(EDYSMB)@(EDQ/”MA)(ﬁcyg%)
(pA_pC) (pA—pD)

Minus sign comes from fermion exchange !!!



Spin Averaging

 The M from previous page includes spinors in
initial and final state.

* In many experimental situations, in particular
In hadron collissions, you neither fix initial nor
final state spins.

* We thus need to form a spin averaged
amplitude squared before we can compare
with experiment' p -

— a_ N

M _(2SA-I—1)(2SB+1 2|M[ Z‘M‘ /.\

B

spm spm




Spin Averaging in non-relativistic limit

* Incoming e : n Reminder:
I O
(=02 0 7/0:[0 _1]
O =123 0 Gj=1,2,3
' - - 0 U 0
° OUthlng e . "/ =123

=" =2m0 1 0 0)

ﬁfyuui:<2m f (‘u:O)/\Si:Sf

O otherwise



Invariant variables s,t,u
Example: e- e- -> e- e-
* S=(pptpg)
« =4 (k°+ m?) A C
* t=(pa-Pc ) (]
« =-2k?(1-cosb)
B/ N

* U= (pa-Pp)°
« =-2k?(1+ cosb)

k = |ki|= |kl m=m, 0O = scattering angle, all in com frame.



Invariant variables s,t,u

* S=(pptPg)
. =4(k2+m2) A C
\‘/

SN

B,D are antiparticles!
pg thus “negative”, leading
to the + in (pAtpg)-

K = |ki|= [kl m=m, 0 = scattering angle, all in com frame.



M for Different spin combos

M =
[ u

_e{wﬂ“um(ul)n%) ) <uDy”uA><ucnuB>]

:(ﬁc’}/luA)(ﬁD?/uuB )]J/TAJ/T =4m

:(EDYLLMA)(ECY#MB ]TJ/%\LT — 4m2

:(ﬁc’}/uuA)(ﬁDy‘uuB )]T\L%\LT = O

elc.




M for Different spin combos

M = —¢° ((L_‘CYHMA )(L_tDy“uB) - (L_tD)/“uA )(’/_tcyMuB)]

[ u
ABCD 1
it , _
ABCD And alike for the other permutations.

1)
ABCD (1 lj

el

I U












