Physics 214 UCSD/225a UCSB

Lecture 13
* Finish H&M Chapter 6
« Start H&M Chapter 8



Result worthy of discussion

. 0 o< 1/s must be so on dimensional grounds

. 0 0? two vertices!

. At higher energies, Z-propagator also
contributes:



More discussion

4. Calculation of e+e- -> g gbar is identical as
long as sqrt(s) >> Mass of quark.

o(e’e —>qq)=73- 2€§G(€+€_ —>UU)

/ q— flavor

Charge of quark
# of flavors

Sum over quark flavors

Measurement of this cross section was very important !!!



Measurement of R

R = G(f f %zq? =3 Zez
O(e'e = U )
Below charm threshold: R =3[ (2/3)? + (1/3)? + (1/3)? ] =2

Between charm and bottom: R = 2 + 3(4/9) = 10/3

Above bottom: R = 10/3 + 3(1/9) = 11/3

Measurement of R was crucial for:

a. Confirm that quarks have 3 colors
b. Search for additional quarks

c. Search for additional leptons



Experimental Result

0

J/¥ | p(28)




Ever more discussion

5. do/dQ « (1 + cos?0)

5.1 0 is defined as the angle between e+ and
mu+ in com. cos’0 means that the outgoing
muons have no memory of the direction of
iIncoming particle vs antiparticle.

Probably as expected as the e+e- annihilate
before the mu+mu- is created.

5.2 Recall, phase space is flat in cos6. cos?6
dependence thus implies that the initial state
axis matters to the outgoing particles. Why?



Helicity Conservation in relativistic limit

* You showed as homework that u, and uy, are
helicity eigenstates in the relativistic limit, and

thus:
uy'u=(u, +uy)y" (u, +ug)

 We'll now show that the cross terms are zero,
and helicity is thus conserved at each vertex.

* We then show how angular momentum
conservation leads to the cross section we
calculated.



Let’ do one cross product explicitly:

uy'u=(u, +uy )y (u, +ug)

ﬁL=uf*70:“T*%(1—7’5)7’0=ﬁ%(1+75)
uR=%(1+y5)u
U,y ug :ﬁi(1+ };)Vu(1+ 7’5)“:5’}’”%(1—)/5)(1+ 7;)”:0

Here we have used:

Helicity conservation holds for all
vector and axialvector currents as E>>m.




e"egr’ ->mu - -mugt J,+1 ->+1
e-eg’ ->mug mu* J,+1 ->-1
eg e’ ->mu -mugt J,-1 ->+1
eg e’ -=>mugmu*  J,-1 ->-1
Next look at the rotation matrices:

1 — 1 l/t
4,(0) = ( +00s6) = s Cross products cancel in
_ Spin average:
d', (0)= %(1 +cos0) = = - ’
; _: M| o (1+cos®6)
d.,,(6) =5 (1=cos) =
\)
dJ
d_(0)= 1(1 cosf) = ~ 1-1

Initial J, final J,



Conclusion on relativistic limit

* Dependence on scattering angle is given
entirely by angular momentum conservation !!!

» This is a generic feature for any vector or
axialvector current.

* We will thus see the exact same thing also for
V-A coupling of Electroweak interactions.



Propagators

Spinless:
pz _ m2
Massive Vector Bosons:
o UV 1%
See H&M Ch.6.10ff ’( g +p'p’ /M )
for more details. pz _ M?
Spin 1/2, e.g. electron:
ZZMM Photon: —iguv
(p y‘u T m) 2

p—m2 p-—m’



Compton Scattering: e- gamma -> e- gamma

7 * . K
\\g 8 //
\‘u v/
N i((p+k)“7/u+m) e
\\ (p+k)y—m’ //
y iey" iey’ T



Compton Scattering: e- gamma -> e- gamma

k , ¥ K’
.\\\S,LL 8‘/”/
le)/ o~ T _ ey
1 i((p—Kk)'y, +m) u
(p_k/)z_mZ
- p’
P e 242
\) u

Where we neglect the electron mass, and refer to H&M
Chapter 6.14 for details.



Pair annihilation via crossing

 Like we've done before: s <->1t

M| =M, +M,| —25‘(5 i)
[ U

= - = .2 pp’
u=-2Kkp =-2Kp Ignoring the electron mass.



First step towards chapter 8

* In chapter 8 we investigate the structure of
hadrons by scattering electrons of charge
distributions that are at rest in the lab.

 As an initial start to formalism review e- mu-
scattering with the initial muon at rest.

» Let's start with what we got last time,
neglecting only terms with electron mass:
—> 8¢

M =2 (K9 ko) + (k) k) - MK



F =S [k kp) + (k) k)~ 7k

As we will want frame for which p = (M,0), it's worth rewriting
this using g =k - k.

As we won't care for the muon recoil p’, we eliminate p’ via:
p =k-k +p.

As we ignore the electron mass, we’ll drop terms with k?, or k2,
and simplify g2 = -2kk’ .

We then get:
A gl2 834_ 1, / / | R 2_
M == 5|75 (k) + 2Kp)(kp)+5 Mg

I'll let you confirm this for yourself.



- 4
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Now got to muon restframe: p = (M,0)
Thismeans kp=EMand kp=E'M .

g M(E-E)

— 4
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(kp~Kp)+ 2(kp)(kp) + M’
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g M(E-E)
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sin® 5 + cos® —
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4EE'

0

+1—sin*—=

92
:

|

g? = -2pq = -2M(E-E’)

= -2kk’ = -4EE’sin20/2



Aside on scattering angle

-2kk’ = -2 (EE’ - kk’ cos8) = -2EE’ (1-cos@) = -4EE’ sin26/2

Recall: We eliminated any need to know p’ in favor of
a measurement of the labframe angle between k and k’



Aside

q° = (k-K')* = (p-p’)?
g? = -2kk’ = -2pp’

However, we already know that p’ = g + p,
and thus:

g2 = -2p(q+p) = -2pq + 2m? = -2pq

Always neglecting terms proportional to the electron mass.



- 2
M| = 8izigEM cos*? 4 sng
g 2 2M® 2

Now recall how to turn this into do in the labframe:

do = 1 6(4)(171) + D — Pa — DPg) ‘Mf dpchD

641 (VaELE, E E,
=1 / (slide 15 lecture 10)

kd3 /
ED,

4)
64r EM

M| 8V (p+k-p'—K) EdEAQ d*p’

47° 4EM 2 2p




- M| §Y(p+k-p' —k) EA’EdQ &’ p’
Ar’ 4EM 2

d

What do we do about this ?

Recall, we are heading towards collissions between
electron and hadron. The hadronic mess in the final
state is not something we care to integrate over !!!

Exercise 6.7 in H&M:

’

o d’
f5(4)(p+q—p)2lf =

Po




Putting it all together:

_‘M‘z 5(4) d3 ,
dEdQ  4n? 81~:Mj (p+aq- p) 2p!

- :

2
M| = 8izigEM cos*2 4 sng
. g’ U2 2MP T 2

3_7
99 4o I ) [50peg-p L2
dE'd() g 2D,

2,2 2 | 2
d,G 4E4 cos’ Y- 9 il Eo g 4
dEAQ g 2 2 2 oM




Now we perform the E’ integration by noticing:

A (RO

2M M

A=1+ 2_Esm2 0 Exercise 6.7 H&M
M 2

We then finally get:

s> E| 0 & ..,0
= cos?~——1 gin2Z

w aptant? EL 2 2M° 2.

2

do
d€2

This is completely independent of the target’s final state !!!



Experimental importance

You measure only initial and final state electron.

You have a prediction for electron scattering off a
spin 1/2 point particle with charge = -1.

Any deviation between measurement and prediction
indicates substructure of your supposed point
particle !l

Next: How does one describe scattering off a charge
distribution, rather than a point particle?

=> Beginning of chapter 8 !



Probing the Structure of Hadrons
with electron scattering

o

* All you measure is the incoming and outgoing
electron 3 momentum.

* If you had a static target then you can show that this
gives you directly the fourier transform of the charge
distribution of your target: ;5 45 )

= *|F(q)

point

Once the target is not static, dQ)  d€)
we’re best of using e-mu J‘ o
scattering as our starting point. ¥’ (@)= ] p(x)e™d x



e-proton vs e-muon scattering

 \What's different?

* If proton was a spin 1/2 point particle with
magnetic moment e/2M then all one needs to
do is plug in the proton mass instead of muon
mass into:

d 10> E| 0 & . ,0
O _ * cos” 9 _¢in22

10y o o 2
Q| , 4Ezsin4§E_ 2 2M 2

 However, magnetic moment differs, and we
don’t have a point particle !!!



e-proton vs e-muon scattering

» Let's go back to where we started:
— What's the transition current for the proton ?

T = —eti(k')y" u( k)ei(k’—k)x electron

JH = —eﬁ(p')[???] u(p)ei(p'—p)x proton

We need to find the most general parametrization for [??77],
and then measure its parameters.



What is [?7?7]

* This is a two part problem:
— What are the allowed 4-vectors in the current ?

— What are the independent scalars that the dynamics can
depend on ?

 Let's answer the second first:
M2 =p’2 = (p+q)? = M2 +2pq + g7

* | can thus pick either pq or g2 as my scalar variable
to express dependence on kinematics.



What are the 4-vectors allowed?

* Most general form of the current:

J* =—eu(p)[7?7?Nu(p)e™” "
177?]=v'K, +ic" (p"~p) K, +ic™ (p'+ p) K, +

+(p'—p)”K4 +(p'+ p)"LK5
* Gordon Decomposition of the current: any term with
(p+p’) can be expressed as linear sum of
components with y* and c* (p’-p).

« K, must be zero because of current conservation.



Gordon Decomposition
* Exercise 6.1 in H&M:

u(p)y'u(p)=u(p)|(p’'+ p)+ic" (p'- p), |ulp)

* | leave it as a future homework to show this.



Current Conservation
q,J" =0
0=q,u(p)| 7K, +ic" (p'~ p), K, +(p'+ p)'K; |u(p)

q,YWv=my=0 pecause of relativistic limit.

q,0"q, =0 because sigma is anti-symmetric.

As a result, K; must be zero.

JH = —eﬁ(p’)[if” F(q*)+ic"q, ﬁFz(qz)}u(p)e"p'”x



Proton Current

J' =—eu(p’) y“Fl(qz) +ioc"'q, ﬁFz(qz) u(p)ei(p'_p)x

We determine F1, F2, and kappa experimentally, with
the constraint that F1(0)=1=F2(0) in order for kappa to
have the meaning of the anomalous magnetic moment.

The two form factors F1 and F2 parametrize our ignorance
regarding the detailed structure of the proton.









