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Lecture 13
• Finish H&M Chapter 6
• Start H&M Chapter 8



Result worthy of discussion
1. σ ∝ 1/s  must be so on dimensional grounds
2. σ ∝ α2   two vertices!
3. At higher energies, Z-propagator also

contributes:



More discussion
4. Calculation of e+e- -> q qbar is identical as

long as sqrt(s) >> Mass of quark.
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Measurement of this cross section was very important !!!



Measurement of R
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Below charm threshold:  R = 3 [ (2/3)2 + (1/3)2 + (1/3)2 ] =2 

Between charm and bottom: R = 2 + 3(4/9) = 10/3

Above bottom: R = 10/3 + 3(1/9) = 11/3

Measurement of R was crucial for:
a. Confirm that quarks have 3 colors
b. Search for additional quarks
c. Search for additional leptons



Experimental Result



Ever more discussion
5. dσ/dΩ ∝ (1 + cos2θ)

5.1 θ is defined as the angle between e+ and
mu+ in com. cos2θ means that the outgoing
muons have no memory of the direction of
incoming particle vs antiparticle.
Probably as expected as the e+e- annihilate
before the mu+mu- is created.

   5.2 Recall, phase space is flat in cosθ. cos2θ
dependence thus implies that the initial state
axis matters to the outgoing particles. Why?



Helicity Conservation in relativistic limit

• You showed as homework that uL and uR are
helicity eigenstates in the relativistic limit, and
thus:

• We’ll now show that the cross terms are zero,
and helicity is thus conserved at each vertex.

• We then show how angular momentum
conservation leads to the cross section we
calculated.
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Let’ do one cross product explicitly:
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Here we have used:

Helicity conservation holds for all
vector and axialvector currents as E>>m.



• eL
- eR

+  -> muL
- muR

+      Jz +1  -> +1
• eL
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• Next look at the rotation matrices:
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Spin average:
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Conclusion on relativistic limit
• Dependence on scattering angle is given

entirely by angular momentum conservation !!!
• This is a generic feature for any vector or

axialvector current.
• We will thus see the exact same thing also for

V-A coupling of Electroweak interactions.



Propagators
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Spinless:

Photon:

Spin 1/2, e.g. electron:

Massive Vector Bosons:

See H&M Ch.6.10ff
for more details.



Compton Scattering: e- gamma -> e- gamma
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Compton Scattering: e- gamma -> e- gamma
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Where we neglect the electron mass, and refer to H&M
Chapter 6.14 for details.



Pair annihilation via crossing
• Like we’ve done before:  s <-> t
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t  = -2 kk’ = -2 pp’
u = -2 kp’ = -2 k’p Ignoring the electron mass.



First step towards chapter 8
• In chapter 8 we investigate the structure of

hadrons by scattering electrons of charge
distributions that are at rest in the lab.

• As an initial start to formalism review e- mu-
scattering with the initial muon at rest.

• Let’s start with what we got last time,
neglecting only terms with electron mass:
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As we will want frame for which p = (M,0), it’s worth rewriting
this using q = k - k’ .
As we won’t care for the muon recoil p’, we eliminate p’ via: 
p’ = k - k’ + p.
As we ignore the electron mass, we’ll drop terms with k2, or k’2, 
and simplify q2 = -2kk’ .
We then get: 
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I’ll let you confirm this for yourself.
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Now got to muon restframe: p = (M,0)
This means kp = EM and k’p = E’M .
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q2 = -2kk’ = -4EE’sin2θ/2 

q2 = -2pq = -2M(E-E’) 



Aside on scattering angle

θk

k’

-2kk’ = -2 (EE’ - kk’ cosθ) = -2EE’ (1-cosθ) = -4EE’ sin2θ/2 

Recall: We eliminated any need to know p’ in favor of 
a measurement of the labframe angle between k and k’



Aside

q2 = (k-k’)2 = (p-p’)2 
q2 = -2kk’ = -2pp’ 

However, we already know that p’ = q + p, 
and thus:

q2 = -2p(q+p) = -2pq + 2m2 = -2pq

Always neglecting terms proportional to the electron mass.
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Now recall how to turn this into dσ in the labframe:
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What do we do about this ?

Recall, we are heading towards collissions between 
electron and hadron. The hadronic mess in the final 
state is not something we care to integrate over !!!

Exercise 6.7 in H&M:
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Putting it all together:
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Now we perform the E’ integration by noticing:
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Exercise 6.7 H&M

We then finally get:

This is completely independent of the target’s final state !!!



Experimental importance
• You measure only initial and final state electron.
• You have a prediction for electron scattering off a

spin 1/2 point particle with charge = -1.
• Any deviation between measurement and prediction

indicates substructure of your supposed point
particle !!!

• Next: How does one describe scattering off a charge
distribution, rather than a point particle?

=> Beginning of chapter 8 !



Probing the Structure of Hadrons
with electron scattering

• All you measure is the incoming and outgoing
electron 3 momentum.

• If you had a static target then you can show that this
gives you directly the fourier transform of the charge
distribution of your target:
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Once the target is not static,
we’re best of using e-mu
scattering as our starting point.



e-proton vs e-muon scattering
• What’s different?
• If proton was a spin 1/2 point particle with

magnetic moment e/2M then all one needs to
do is plug in the proton mass instead of muon
mass into:

• However, magnetic moment differs, and we
don’t have a point particle !!!
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e-proton vs e-muon scattering
• Let’s go back to where we started:

– What’s the transition current for the proton ?
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We need to find the most general parametrization for [???],
and then measure its parameters.



What is [???]

• This is a two part problem:
– What are the allowed 4-vectors in the current ?
– What are the independent scalars that the dynamics can

depend on ?
• Let’s answer the second first:
        M2 = p’2 = (p+q)2 = M2 +2pq + q2

• I can thus pick either pq or q2 as my scalar variable
to express dependence on kinematics.



What are the 4-vectors allowed?
• Most general form of the current:

• Gordon Decomposition of the current: any term with
(p+p’) can be expressed as linear sum of
components with γµ and σµν (p’-p).

• K4 must be zero because of current conservation. 
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Gordon Decomposition
• Exercise 6.1 in H&M:

• I leave it as a future homework to show this.
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Current Conservation
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because of relativistic limit.

As a result, K5 must be zero.
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Proton Current
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We determine F1, F2, and kappa experimentally, with 
the constraint that F1(0)=1=F2(0) in order for kappa to 
have the meaning of the anomalous magnetic moment.

The two form factors F1 and F2 parametrize our ignorance 
regarding the detailed structure of the proton. 






