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SO(3)

SO(3) is the group of 3-dimensional spatial rotations. Its
elements are 3× 3 real orthogonal matrices.

A 3× 3 matrix A has in general 9 independent parameters, but
the orthogonality condition AAT = 1 brings 6 extra conditions
since the matrix AAT is symmetric and therefore depends on 6
independent numbers. So we are left with 3 independent
parameters to characterize any rotation.

Any rotation can be characterized by an axis (2 parameters)
and an angle of right-handed rotation around that axis (1
parameter).



SU(2)

SU(2) is the group of 2× 2 complex unitary matrices U with
determinant 1. If we introduce 3 Pauli matrices by

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
which satisfy

{σi , σj} = 2δij [σi , σj ] = 2iεijkσk

then it can be shown that any element of SU(2) can be written
as

B = exp
(
−i~σn̂φ

2

)
where n̂ is a unit vector in 3 dimensions and φ is an angle.



SO(3)vs.SU(2)

Elements of SU(2) are

B = exp
(
−i~σn̂φ

2

)
To each element of SU(2) corresponds an element of SO(3)
which is the right-handed rotation by angle φ around the axis n̂.
This correspondence is not one-to-one since a rotation by 2π is
equivalent to no rotation in SO(3), i.e. the identity element of
SO(3), however this does not correspond to the identity
element in SU(2). The smallest nonzero value of φ that gives
the identity element of SU(2) is 4π. This means the
correspondence is two-to-one.
However, to each infinitesimal element of SO(3) corresponds a
unique infinitesimal element of SU(2), so locally the two
groups are the same.



Topology of SO(3)

Consider the ball of radius π in 3 dimensional space. To each
point of the ball corresponds an element of SO(3) in the
following way. To the center of the ball corresponds the identity
element of SO(3), i.e. no rotation. Every other point can be
uniquely characterized by the direction n̂ to that point from the
center and the distance φ from the center, so we put it into
correspondence with the right-handed rotation around n̂ by
angle φ. Thus we get all possible rotations, and each rotation
only once, except the rotations by angle π since a right-handed
rotation by π around n̂ is identical with the right-handed rotation
by π around −n̂. This means that the antipodal points on the
boundary of the ball correspond to identical rotations.
We may picture the topology of SO(3) by considering the ball
with the antipodal point on boundary glued together.



Topology of SO(3)

The colored points are on the boundary, and the same colored
points are identified (glued together), which applies to all of the
antipodal points of the boundary.



Topology of SO(3), two types of loops
Now consider loops in SO(3) starting at identity, i.e. we start
with no rotation, then continuously do some rotations and come
back to no rotation. Let us first consider the loop
0→ 1→ 2→ 0 in the picture, where we do not hit the
boundary. Clearly this loop can be continuously deformed to
doing nothing, i.e. this loop is contractible.
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Topology of SO(3), two types of loops
Now consider the loop 0→ 1→ 0 below (recall that the green
points are identical) which is equivalent to doing a 360◦ rotation
around that axis. Although we again come back to no rotation,
there is no way we can continuously deform this loop to doing
nothing, we cannot unwind the loop, so this loop is
non-contractible. Although after a 360◦ rotation we come back
to no rotation, the history of doing that rotation cannot be
erased!



Topology of SO(3), two types of loops
Imagine now doing a 360◦ rotation twice, i.e. doing the loop
0→ 1→ 0→ 1→ 0 below. This one in fact can be unwound,
i.e. continuously transformed to doing nothing, in the following
way. Continuously rotate the second (blue) loop to become the
inverse of the first loop.
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Topology of SO(3), two types of loops

Now we can continuously cancel the two loops against each
other.



Topology of SO(3), two types of loops

The loop is continuously transformed from 0→ 1→ 0→ 1→ 0
to 0→ 1→ 2→ 1→ 0.



Topology of SO(3), two types of loops

Then to 0→ 1→ 0.



Topology of SO(3), two types of loops

Then to 0→ 3→ 0.



Topology of SO(3), two types of loops

And finally to doing nothing!



Simply connected spaces and covers

A space that does not have non-contractible loops is called
simply connected. Under some assumptions, non-simply
connected spaces can be covered by bigger spaces that are
locally the same as the original space. A cover that is simply
connected is called the universal cover in the sense that it
cannot be covered by anything bigger.
An example of non-simply connected space is the circle, the
universal cover of which is the infinite line.



Covering SO(3)
SO(3) is non-simply connected because of the existence of
non-contractible loops. So we may cover it by a bigger space,
while still keeping the local structure. Now instead of identifying
the antipodal points of the boundary, we consider them as
different points and allow going further by another π.

Consider a line from the center to the boundary. Since this is a
cover of SO(3) we may project this line down to SO(3), where it
becomes a 2π rotation around the same axis. But in SO(3) this
corresponds to the identity element, so the endpoint of our line
must correspond to the same point in SO(3) independent of the
direction. So we must identify all of the points of the boundary
of our new space together!



Topology of SU(2)

The new space that we obtained is in fact SU(2) which is a
double cover of SO(3). There are no non-contractible loops in
this space, so it may not be covered by anything bigger. A full
2π rotation in SO(3), which corresponds to the identity element
of SO(3), does not correspond to the identity element in SU(2),
it corresponds to the green boundary. However, two such
rotations do bring us back to the identity element in SU(2).



Representations of SU(2)

A representation of the group is a correspondence of the group
elements to some linear operators. In quantum mechanics,
these operators act on the states and give the change of the
state under the symmetry operation of the group. To the identity
element of the group must correspond the identity operator!

Let us consider possible representations of SU(2). The 4π
rotation in SU(2) is the identity element of SU(2), so its
representing operator must be the identity. 2π rotations do not
satisfy this requirement, however, after rotating by 2π we must
clearly come back to the same physical state, i.e.
measurements should not be affected, so it may at most
correspond to a multiplication by a phase factor eiφ. However,
doing this twice gives a 4π rotation which must correspond to
the identity, so (eiφ)2 = 1 which implies eiφ = ±1. The
representations for which eiφ = 1 are integer spin states, those
with eiφ = −1 are half-integer spin states.



Representations of SU(2)

Note that if we restricted ourselves to SO(3), we would get only
integer spin states, such as orbital angular momentum. The
possibility of extending it to a bigger group allowed for the
possibility of half-integer states.

Since SU(2) is the biggest cover, we are not able to go any
further and get states like 1/4 integer spin states and so on!
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Reason for antiparticles (following Feynman’s Dirac
Memorial Lecture in 1986)

Let us consider spin-zero particles for the moment (which are
not affected by any rotation). Consider a particle which is
initially in state |φ0 >. Consider a disturbing potential U1 at time
t = 0 which acts for a very short time. Then the amplitude to
end up in another state |φ > is given by

A(φ0 → φ) = −i < φ|U1|φ0 >



Reason for antiparticles

Now suppose that after some time t has passed another
disturbing potential U2 acts. We are interested in the amplitude
to end up in the initial state |φ0 >. We calculate the amplitude
by perturbation theory and always keep terms up to second
order in both disturbances. Assuming for simplicity that each
one of the disturbances does not take the particle back to |φ0 >
we get two possibilities up to second order, either the particle is
not affected by either of the disturbances or it is taken to some
intermediate state |p > by the first one, then back to the original
state by the second one. We consider the complete set of free
eigenstates with momentum p and energy E to account for the
free motion of the particle between the two disturbances.



Reason for antiparticles

The total amplitude is then given by

A(φ0 → φ0) =< φ0|φ0 >

+

∫
d3p(−i < φ0|U2 exp(−iĤt)|p > (−i < p|U1|φ0 >)

= 1−
∫

d3pe−iEt < φ0|U2|p >< p|U1|φ0 >

= 1−
∫

d3x d3y
∫

d3pe−iEt−ip(y−x)φ∗0(y)U2(y)U1(x)φ0(x)



Reason for antiparticles

We can represent the two terms in the amplitude
diagrammatically



Reason for antiparticles
Now let us consider the requirement of causality. We would
expect that the second term in the amplitude would give no
contribution for x and y separated by a spacelike interval.
However, this turns out not to be the case, even if we use the
relativistic expression for the energy (or even any other
reasonable function of momentum)!



Reason for antiparticles
If x and y are spacelike separated then by boosting to another
frame we see that y happens earlier then x , and our second
diagram looks like

So what we see is that at point y a pair of particles is created,
one of which travels backwards in time, hits the initial particle at
point x later on and both are destroyed!



Antiparticles, CPT

We see that for quantum mechanics and relativity to
consistently work together, particles “going back in time” are
required. We identify these to be the antiparticles of the original
particles. So a particle going from x to y backwards in time is
equivalent to a particle going forward in time from y to x . So if
we invert the space (operation P) and the time (operation T )
then the result will be to change the particles to their
antiparticles, which we call charge conjugation (operation C). If
we do all these operations together then we must come back to
our initial state, in other words

CPT = 1

A virtual particle in one reference frame may become a virtual
antiparticle in another!



Causality

If we allow the existence of antiparticles, then the causality
violation problem observed above can be solved in the
following way. Although a virtual particle can travel between two
spacelike points, an antiparticle is also allowed to travel in the
opposite direction. It can be shown that the amplitudes of these
two processes exactly cancel each other, which means that no
measurement can detect any causality violation!
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Spin-half particles, time reversal
Let us now consider spin-half particles. We denote the spin up
eingenstate in the z direction by | ↑> and the spin down
eigenstate by | ↓>. We know from quantum mechanics that the
spin eingenstates in the x direction are given by

|x ↑>=
1√
2
(| ↑> +| ↓>)

|x ↓>=
1√
2
(| ↑> −| ↓>)

Time reversal flips the spins, however there may be some
additional phase. By the corresponding choice of the arbitrary
phase difference between | ↑> and | ↓> we may always
assume that T | ↑>= | ↓>. However, in order to get a flip of the
spin in the x direction as well, we must take T | ↓>= −| ↑>. So
applying T twice on | ↑> (and similarly on any other state) we
get back the same state but with an extra minus sign!



Spin-half particles, loops, exchange
If we consider Feynman diagrams, then any loop with a fermion
involves two time reversals, which means that it gains an extra
minus sign!

The fact that an exchange of two identical fermions must be
accompanied by a minus sign is a direct consequence of the
minus sign of the loops (the proof involves some technical
details)!
It follows directly that two Fermions may not be found in the
same state, which is the Pauli exclusion principle!
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Summary

I Half integer spin states are allowed because of the
presence of non-contractible loops in SO(3), and the
possible extension of SO(3) to SU(2).

I Since SU(2) is the biggest allowed extension of SO(3),
states with smaller spin (such as 1/4) are not allowed.

I Fermions get a minus sign after a 360◦ rotation, as well as
two time reversals. As a result, fermionic loops get a minus
sign.

I The exchange of two fermions brings a minus sign. Two (or
more) fermions are not allowed to be in the same state.
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