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Nonlinear gyrokinetic equations play a fundamental role in our understanding of the long-time
behavior of strongly magnetized plasmas. The foundations of modern nonlinear gyrokinetic theory are
based on three pillars: �i� a gyrokinetic Vlasov equation written in terms of a gyrocenter Hamiltonian
with quadratic low-frequency ponderomotivelike terms, �ii� a set of gyrokinetic Maxwell
�Poisson-Ampère� equations written in terms of the gyrocenter Vlasov distribution that contain
low-frequency polarization �Poisson� and magnetization �Ampère� terms, and �iii� an exact energy
conservation law for the gyrokinetic Vlasov-Maxwell equations that includes all the relevant linear
and nonlinear coupling terms. The foundations of nonlinear gyrokinetic theory are reviewed with an
emphasis on rigorous application of Lagrangian and Hamiltonian Lie-transform perturbation methods
in the variational derivation of nonlinear gyrokinetic Vlasov-Maxwell equations. The physical
motivations and applications of the nonlinear gyrokinetic equations that describe the turbulent
evolution of low-frequency electromagnetic fluctuations in a nonuniform magnetized plasmas with
arbitrary magnetic geometry are discussed.
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I. INTRODUCTION

Magnetically confined plasmas, found either in labo-
ratory devices �e.g., fusion-related plasmas� or in nature
�e.g., astrophysical plasmas�, exhibit a wide range of spa-
tial and temporal scales. An important class of plasma
space-time scales, which includes some of the shortest
and longest plasma scales, is defined by the orbits of*Electronic address: abrizard@smcvt.edu
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magnetically confined charged particles. It has long been
known that the long-time magnetic confinement of
charged particles �Northrop, 1963� depends on the exis-
tence of adiabatic invariants �based on a separation of
orbital time scales� and/or exact invariants �associated
with exact symmetries of the confining magnetic field�.
This review begins a brief survey of orbital time scales
by considering the motion of single charged particles in
a plasma confined by a strong magnetic field, repre-
sented in divergenceless form as

B = �� � �� � B��,�,s�b̂��,�,s� . �1�

Here the Euler potentials �� ,�� are time-dependent
magnetic-line labels �Stern, 1970�, s denotes the parallel

coordinate along a field line, and b̂��x /�s denotes the
unit vector along the magnetic-field line. Charged-

particle motion in a uniform magnetic field B0=B0b̂0 �in
the absence of an electric field� is characterized by �a� a
gyromotion perpendicular to a magnetic-field line with
constant gyrofrequency �=eB0 /mc �for a particle of
mass m and charge e� and constant gyroradius �=v� /�,

where v�= �v� b̂0� denotes the magnitude of the parti-
cle’s velocity perpendicular to the magnetic field, and �b�
a parallel motion along a magnetic-field line with con-

stant parallel velocity v� =v · b̂0.
When the magnetic field �1� is spatially inhomoge-

neous the magnitude B= ������� and direction b̂
=B /B are not constant and the velocity components v�

and v� are no longer conserved. The primary terms asso-
ciated with magnetic-field inhomogeneity are repre-

sented by the perpendicular gradient b̂�� ln B as well

as the magnetic curvature b̂ ·�b̂ and the parallel gradi-

ent b̂ ·� ln B.1 Charged particles confined by a strong
magnetic field with weak inhomogeneity execute three
types of quasiperiodic motion �Kruskal, 1962; Northrop,
1963�: �i� a rapid gyromotion about a single magnetic-
field line, with a gyroperiod �g�x� that depends on the
particle’s spatial position x= �� ,� ,s�; �ii� an intermediate
bounce �or transit� motion along a magnetic-field line
�affected by the parallel gradient�, with an intermediate
characteristic time scale �b�y ;E ,Jg� that depends on the
particle’s energy E and its gyroaction Jg��mc /e��
�where � denotes the magnetic moment� as well as the
field-line labels y��� ,��; and �iii� a slow drift �bounce-
averaged precession� motion across magnetic-field lines
�driven by the perpendicular gradient and the magnetic
curvature term�, with a long characteristic time scale
�d�E ,Jg ,Jb� that depends on the bounce action Jb as well

as the energy E and the gyroaction Jg. The use of mag-
netic coordinates �� ,�� in the magnetic-field representa-
tion �1� facilitates the general description of bounce-
averaged guiding-center motion, where the fast
gyromotion and bounce-motion time scales are decou-
pled from the drift motion of magnetically confined
charged particles; see Appendixes B.4 and D.2. For the
remainder of the paper, the particular magnetic geom-
etry is ignored, the work presented here is suitable for
applications in gyrokinetic studies of laboratory and
space magnetized plasmas.

The orbital time scales �g��b��d are typically well
separated for charged particles magnetically confined in
a strong magnetic field with weak inhomogeneity �i.e.,
��� ln B��1�. For example, the orbital time scales of a
10-keV proton equatorially mirroring at geosynchronous
orbit �Schulz and Lanzerotti, 1974� are �g�0.33 s��b

�33 s��d�105 s. It has long been understood
�Northrop and Teller, 1960� that the stability and longev-
ity of Earth’s radiation belts was due to the adiabatic
invariance of the three actions �Jg ,Jb ,Jd�, where the drift
action Jd��e /c�	B is defined in terms of the magnetic
flux 	B enclosed by the bounce-averaged precession
motion of magnetically trapped charged particles. In a
high-temperature magnetized plasma the typical energy-
confinement time �E �great interest in the development
of fusion energy� generally satisfies the condition �E


�b
�g so the time scales associated with the charge
particle’s gyromotion and bounce or transit motion are
much smaller than the transport time scale of interest.

Understanding the nonlinear dynamics of magneti-
cally confined plasmas is a formidable task. There exist a
wide variety of instabilities in inhomogeneous magneti-
cally confined plasmas whose nonlinear behavior is, in
general, different from their linear behavior. In plasma
turbulence, the “inertial” range is relatively narrow in
wave-vector k space due to Landau damping from wave-
particle resonant interaction, in contrast to the inertial
range in fluid turbulence �Frisch, 1995� that exists over
several decades in k space and for which the Reynolds
number R �a dimensionless number characterizing the
ratio between nonlinear coupling and classical dissipa-
tion� satisfies the condition R
1 �see, for example,
Dimotakis �2000��. Plasma turbulence involves a
plethora of additional dimensionless parameters associ-
ated with the orbital dynamics of magnetically confined
charged particles not present in fluid turbulence. Many
aspects of the nonlinear dynamics involved in the evolu-
tion toward such a saturated state that often exhibits
self-organized large-scale motion and are not yet well
understood. It is important to note that many plasmas of
interest in magnetic fusion and in astrophysics are “col-
lisionless” on the particle dynamics and turbulence time
scales, since typical charged particles can execute many
gyrations and bounces or transits, and collective waves
can undergo many cycles before particles suffer a 90°
Coulomb collision. A collisionless kinetic description is
desirable for such plasmas.

1Additional terms associated with magnetic-field inhomoge-
neity include b̂ ·�� b̂= �4� /c�J� /B, which is related to the
plasma current J� flowing along magnetic-field lines, and R
��1̂ · 2̂, where 1̂��� / ���� and 2̂� b̂� 1̂ denote local unit vec-
tors perpendicular to b̂ �Littlejohn, 1988�; these secondary
terms appear in the Hamiltonian formulation of guiding-center
theory �Littlejohn, 1983�.
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The development of low-frequency gyrokinetic theory
was motivated by the need to describe complex plasma
dynamics over time scales that are long compared to the
gyromotion time scale. Gyrokinetic theory was devel-
oped as a generalization of guiding-center theory
�Northrop, 1963; Littlejohn, 1983�. Taylor �1967� showed
that, while the guiding-center magnetic-moment invari-
ant �denoted �� can be destroyed by low-frequency,
short-perpendicular-wavelength electrostatic fluctua-
tions, a new magnetic-moment invariant �denoted �̄� can
be constructed as an asymptotic expansion in powers of
the amplitude of the perturbation field. This result indi-
cated that gyrokinetic theory could be built upon an ad-
ditional transformation beyond the guiding-center
phase-space coordinates, constructing new gyrocenter
phase-space coordinates that describe gyroangle-
averaged perturbed guiding-center dynamics. This step
was not considered the highest priority at the time, and
Rutherford and Frieman �1968� followed a more con-
ventional approach by developing the linear gyrokinetic
theory of low-frequency drift-wave �universal� instabili-
ties in general magnetic geometry.2

Nonlinear gyrokinetic theory focuses on low-
frequency electromagnetic fluctuations that are ob-
served in inhomogeneous magnetized plasmas found in
laboratory devices and nature; see, for example, Frie-
man and Chen �1982�; Dubin et al. �1983�; Hahm �1988,
1996�; Hahm et al. �1988�; and Brizard �1989a�. Plasma
microturbulence and its associated anomalous transport
have been subjects of active research and wide interest
over many years. The following review papers have ad-
dressed this subject with different emphases: Tang �1978�
on linear instabilities in magnetized plasmas, Horton
�1999� on further developments in linear and nonlinear
theories and simulations, Krommes �2002� on analytical
aspects of statistical closure, and Diamond et al. �2005�
on the self-regulation of turbulence and transport by
zonal flows. Gyrokinetic simulations now play a major
role in the investigation of low-frequency plasma turbu-
lence and its associated transport in magnetized plas-
mas; see Table I for a survey of applications of nonlinear
gyrokinetic equations.

The foundations of modern nonlinear gyrokinetic
theory presented in this review paper are three impor-
tant mutually dependent pillars: �I� a gyrokinetic Vlasov
equation written in terms of a gyrocenter Hamiltonian
that contains quadratic low-frequency ponderomotive-
like terms, �II� a set of gyrokinetic Maxwell �Poisson-
Ampère� equations that contain low-frequency polariza-
tion �Poisson� and magnetization �Ampère� terms
derived from the quadratic nonlinearities in the gyro-

center Hamiltonian, and �III� an exact energy conserva-
tion law for the self-consistent gyrokinetic Vlasov-
Maxwell equations that includes the relevant linear and
nonlinear coupling terms.

I. Nonlinear gyrokinetic Vlasov equation

Particle Hamiltonian dynamics
⇓

Guiding-center Hamiltonian dynamics
⇓

Gyrocenter Hamiltonian dynamics
⇓

Gyrokinetic Vlasov equation

Our derivation of the nonlinear gyrokinetic Vlasov
equation �I� proceeds in two steps; each step involves
the asymptotic decoupling of the fast gyromotion time
scale from a set of Hamilton equations by Lie-transform
methods �Littlejohn, 1982a; Brizard, 1990; Qin and Tang,
2004�. The first step derives the guiding-center �gc�
Hamilton equations through the elimination of the gy-
roangle associated with the gyromotion of charged par-
ticles about equilibrium magnetic-field lines. As a result
of the guiding-center transformation, the gyroangle be-
comes an ignorable coordinate, and the guiding-center
magnetic moment �=�0+¯ �where �0�m�v��2 /2B de-
notes the lowest-order term� is treated as a dynamical
invariant within the guiding-center Hamiltonian dynam-
ics. The introduction of low-frequency electromagnetic
fluctuations �within the guiding-center Hamiltonian for-
malism� results in the destruction of the guiding-center
magnetic moment due to the reintroduction of the gy-
roangle dependence in the perturbed guiding-center
Hamiltonian system. In the second step, a new set of
gyrocenter �gy� Hamiltonian equations is described
through the elimination of the gyroangle from the per-
turbed guiding-center equations. As a result of the gyro-
center transformation, a new gyrocenter magnetic mo-
ment �̄=�+¯ is constructed as an adiabatic invariant

and the gyrocenter gyroangle �̄ is an ignorable coordi-
nate. Within the gyrocenter Hamiltonian formalism, the
gyrokinetic Vlasov equation expresses the fact that the

gyrocenter Vlasov distribution F̄�X̄ , v̄� , t ; �̄� is constant
along a gyrocenter orbit in gyrocenter phase space

�X̄ , v̄� ; �̄ , �̄�,

�F̄

�t
+

dX̄
dt

· �̄F̄ +
dv̄�

dt

�F̄

�v̄�

= 0, �2�

where d�̄ /dt�0 and �F̄ /��̄�0 �both by definition�.
Here X̄ denotes the gyrocenter position, v̄� � b̂ ·dX̄ /dt

denotes the gyrocenter parallel velocity �b̂=B /B�, and

the gyrocenter equations of motion �dX̄ /dt ,dv̄� /dt� are

independent of the gyrocenter gyroangle �̄ �explicit ex-
pressions are given below�. This two-step Lie-transform
approach plays a fundamental role in the construction of
modern gyrokinetic theory �Dubin et al., 1983; Hahm,

2The conventional approach to deriving the gyrokinetic Vla-
sov equation is based on an iterative solution of the gyroangle-
averaged Vlasov equation perturbatively expanded in powers
of the finite-Larmor-radius dimensionless parameter � /L
�Hastie et al., 1967�. The modern Lie-transform approach pre-
sented here is based on a two-step transformation procedure
from particle to gyrocenter phase space.
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1988; Hahm et al., 1988; Brizard, 1989a�:

II. Gyrokinetic Maxwell equations

Maxwell equations
⇓

Gyrokinetic Maxwell equations

A self-consistent description of low-frequency electro-
magnetic fluctuations, produced by charged-particle mo-
tion, is based on the derivation of gyrokinetic Maxwell
equations �II� expressed in terms of moments of the gy-
rocenter Vlasov distribution. The transformation from
particle moments to gyrocenter moments again involves
two steps �associated with the guiding-center and gyro-

center phase-space transformations�, and each step in-
troduces a polarization density and a magnetization cur-
rent in the gyrokinetic Maxwell �Poisson-Ampère�
equations,

�2�	 + 
�� = − 4���̄ + �pol� , �3�

� � �B + 
B� =
4�

c
�J̄ + Jpol + Jmag� , �4�

where �̄ and J̄ denote charge and current densities
evaluated as moments of the gyrocenter Vlasov distribu-

tion F̄, while the polarization density �pol�−� ·Pgy, the
polarization current Jpol��Pgy/�t, and the divergence-

TABLE I. Applications of nonlinear gyrokinetic equations.

Instability Nonlinear theory Nonlinear simulation

Drift �universal or dissipative� instability Frieman and Chen �1982� Lee �1983�
Smith et al. �1985� Lee et al. �1984�
Hahm �1992� Parker and Lee �1993�

Ion temperature gradient �ITG� mode Mattor and Diamond �1989� Lee and Tang �1988�
Hahm and Tang �1990� Sydora et al. �1990�
Mattor �1992� Parker et al. �1993�

ITG turbulence with zonal flows Rosenbluth and Hinton �1998� Dimits et al. �1996�
Chen et al. �2000� Lin et al. �1999�

Refs. in Diamond et al. �2005�
ITG turbulence with velocity space Hatzky et al. �2002�
nonlinearity addressing energy conservation Villard, Allfrey, et al. �2004�
Trapped electron mode Similon and Diamond �1984� Sydora �1990�

Gang et al. �1991� Chen and Parker �2001�
Hahm and Tang �1991� Ernst et al. �2004�

Dannert and Jenko �2005�
Trapped-ion mode Hahm and Tang �1996� Depret et al. �2005�
Electron-temperature-gradient �ETG� mode Kim et al. �2003� Jenko et al. �2000�

Chen et al. �2005� Idomura et al. �2000�
Idomura �2006� Dorland et al. �2000�

Lin, Chen, et al. �2005�
Interchange turbulence Sarazin et al. �2005�
�Kinetic� shear-Alfvén wave Frieman and Chen �1982� Lee et al. �2001�

Hahm et al. �1988� Parker et al. �2004�
Drift-Alfvén turbulence Briguglio et al. �2000� Briguglio et al. �1998�

Chen et al. �2001� Jenko and Scott �1999�
Chen et al. �2001�

Tearing and internal kink instability Naitou et al. �1995�
Matsumoto et al. �2005, 2003�

Microtearing and drift-tearing mode Sydora �2001�
Parker et al. �2004�

Energetic particle driven MHD instabilities Chen �1994� Park et al. �1992�
Vlad et al. �1999� Santoro and Chen �1996�
Zonca et al. �2005� Zonca et al. �2002�

Todo et al. �2003�
Geomagnetic pulsation Chen and Hasegawa �1994�
Whistler lower-hybrid instability Lin, Wang, et al. �2005�
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less magnetization current Jmag�c� �Mgy are defined
in terms the gyrocenter polarization vector Pgy and the
gyrocenter magnetization vector Mgy.

3 The guiding-

center magnetization current Mgc�−���gcb̂ �where
�¯ �gc denotes a moment with respect to the guiding-
center Vlasov distribution� accounts for the difference
between the particle current and guiding-center current.
Gyrocenter polarization and magnetization effects, on
the other hand, involve expressions for �pol, Jpol, and
Jmag in which the perturbed electromagnetic fields
�
E ,
B� appear explicitly. The presence of self-
consistent gyrocenter polarization effects within the
nonlinear electrostatic gyrokinetic formalism �Dubin et
al., 1983; Hahm, 1988�, for example, yields important
computational advantages in gyrokinetic electrostatic
simulations �Lee, 1983�. The self-consistency of the non-
linear gyrokinetic Vlasov-Maxwell equations is guaran-
teed by the Lie-transform perturbation approach.

Under standard gyrokinetic space-time orderings con-
sidered in this work �see Sec. II.A�, the quasineutrality
condition �� �̄+�pol=0, associated with the gyrokinetic
Poisson equation �3�, is consistent with the charge con-

servation law � · �J� +Jpol�=0, associated with the gyroki-
netic Ampère equation �4�. These relations ensure that

the gyrocenter charge conservation law ��̄ /�t+� · J̄=0 is
satisfied, i.e.,

��̄

�t
= − � · J̄ = � · Jpol = −

��pol

�t
.

This relation guarantees the proper treatment of polar-
ization �and magnetization� effects in gyrokinetic theory:

III. Gyrokinetic energy conservation law

Gyrokinetic variational formulation
⇓

Gyrokinetic Vlasov-Maxwell equations
⇓

Gyrokinetic energy conservation law �Noether�

The self-consistent polarization and magnetization ef-
fects appearing in the gyrokinetic Maxwell equations �3�
and �4� can be computed either directly by the push-
forward method, transforming particle moments into
guiding-center moments and then into gyrocenter mo-
ments, or by a variational method from a nonlinear low-
frequency gyrokinetic action functional. While the direct
approach has the advantage of being the simplest
method to use �Dubin et al., 1983; Hahm et al., 1988;
Brizard, 1989a, 1990�, the variational approach �Brizard,
2000a, 2000b� has the advantage of allowing a direct
derivation of an exact energy conservation law �III� for
the nonlinear gyrokinetic Vlasov-Maxwell equations

through the Noether method �Brizard, 2005a�.
This paper reviews the modern foundations of nonlin-

ear gyrokinetic theory by presenting the Lagrangian and
Hamiltonian Lie-transform perturbation methods used
to derive self-consistent, energy-conserving gyrokinetic
Vlasov-Maxwell equations describing the nonlinear tur-
bulent evolution of low-frequency, short-perpendicular-
wavelength electromagnetic fluctuations in nonuniform
magnetized plasmas. While prototype modern gyroki-
netic theories �Dubin et al., 1983; Hagan and Frieman,
1985; Yang and Choi, 1985; Hahm et al., 1988� relied on
the Hamiltonian Lie-Darboux perturbation method
�Littlejohn, 1979, 1981�, this work is focused on applica-
tions of the phase-space-Lagrangian Lie perturbation
method �Littlejohn, 1982a, 1983�, which is superior in its
clarity and efficiency.

The remainder of the paper is organized as follows. In
Sec. II, the physical motivations for the nonlinear gyro-
kinetic analysis of turbulent magnetized plasmas are
presented. While this discussion tends to focus on
fusion-related magnetically confined plasmas, these non-
linear gyrokinetic equations are valid for arbitrary mag-
netic geometry and, will find applications in space
plasma physics �Lin, Wang, et al., 2005� and astrophysics
�Howes et al., 2006�. A brief discussion of the nonlinear
gyrokinetic equation derived by conventional �iterative�
methods by Frieman and Chen �1982� is also presented
as well as an outline of the modern �i.e., Lie-transform�
derivation of the nonlinear gyrokinetic Vlasov equation.
In Sec. III, simplified forms of the nonlinear gyrokinetic
Vlasov-Maxwell equations that are recommended for
simulations and analytic applications are presented. The
nonlinear gyrokinetic equations suitable to describe
electrostatic fluctuations as well as shear-Alfvénic and
compressional magnetic fluctuations in a strongly mag-
netized plasma of arbitrary geometry are presented.
These equations are supplemented by explicit expres-
sions for the appropriate gyrokinetic Poisson-Ampère
equations as well as an explicit form for the gyrokinetic
energy-conservation law. Last, simplified nonlinear gy-
rofluid equations �derived as moments of the nonlinear
gyrokinetic Vlasov equation� are presented to discuss
the intimate connection between nonlinear gyrokinetic
dynamics and reduced fluid dynamics such as reduced
magnetohydrodynamics �RMHD�. Section IV intro-
duces the basic concepts of Lie-transform perturbation
theory applied to the transformation of the Vlasov-
Maxwell equations induced by an arbitrary near-identity
phase-space transformation. These methods are then ap-
plied in Sec. V to derive the nonlinear gyrocenter
Hamiltonian as well as the corresponding nonlinear gy-
rokinetic Vlasov equation. Section VI shows how the
self-consistent gyrokinetic Poisson-Ampère equations
are derived from a gyrokinetic variational principle. The
existence of such a variational principle guarantees the
existence of exact conservation laws for nonlinear gyro-
kinetic Vlasov-Maxwell equations. The gyrokinetic en-
ergy conservation law is derived explicitly since it plays a
fundamental role in the development of energy-
conserving gyrokinetic simulation techniques. Last, a

3See Appendix C for derivation of the reduced polarization
density and reduced magnetization current by Lie-transform
methods; see also Sec. 6.7 of Jackson �1975� for additional
details.
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summary of the paper is presented in Sec. VII. A num-
ber of appendixes are included that present either sup-
porting material not central to the topic of this paper or
extensions of the gyrokinetic Vlasov-Maxwell equations
presented in the text. For readers who are mainly inter-
ested in basic concepts, fusion applications, and the sim-
pler forms of the nonlinear gyrokinetic equations useful
for simulations, we recommend Secs. II and III, and Ap-
pendix D.1.

Other developments in gyrokinetic theory not pre-
sented here include derivation of nonlinear relativistic
gyrokinetic Vlasov-Maxwell equations �Brizard and
Chan, 1999�, investigation of the thermodynamic prop-
erties of the gyrokinetic equations �Krommes et al.,
1986; Krommes, 1993a, 1993b; Sugama et al., 1996; Wa-
tanabe and Sugama, 2006�, inclusion of a reduced
�guiding-center� Fokker-Planck collision operator into
the gyrokinetic formalism �Dimits and Cohen, 1994;
Brizard, 2004�, and derivation of high-frequency linear
gyrokinetics �Lee et al., 1983; Tsai et al., 1984; Lashmore-
Davies and Dendy, 1989; Qin et al., 1999, 2000�.

II. BASIC PROPERTIES OF NONLINEAR GYROKINETIC
EQUATIONS

In many plasmas found in both laboratory devices and
nature, the temporal scales of collective electrostatic
and/or electromagnetic fluctuations of interest are much
longer than a period of a charged particle’s cyclotron
motion �gyromotion� due to a strong background mag-
netic field, while the spatial scales of such fluctuations
are much smaller than the scale length of the back-
ground magnetic-field inhomogeneity. In these circum-
stances, the details of the charged particle’s gyration,
such as the gyrophase, are not of dynamical significance,
and it is possible to develop a reduced set of dynamical
equations that captures the essential features of the low-
frequency phenomena of interest.

By decoupling the nearly periodic gyromotion
�Kruskal, 1962�, one can derive the gyrokinetic equation
�2� that describes the spatiotemporal evolution of the
gyrocenter distribution function defined over a reduced

�4+1�-dimensional gyrocenter phase space �X̄ , v̄� ; �̄�, a
key feature of the modern nonlinear gyrokinetic ap-
proach. In simulating strongly magnetized plasmas, an
enormous amount of computing time is saved by using a
time step greater than the gyroperiod and reducing the
number of dynamical variables by 1.

An excellent example in which the nonlinear gyroki-
netic formulations have applied well and have made a
deep and long-lasting impact is the theoretical study of
microturbulence in tokamak and stellarator devices. Ex-
perimental measurements over the past three decades
have led to the belief that, in the absence of macroscopic
magnetohydrodynamic �MHD� instabilities,4 tokamak

microturbulence is responsible for the anomalous trans-
port of plasma particles, heat, and toroidal angular mo-
mentum commonly found to appear at higher levels
than predictions from classical and neoclassical colli-
sional transport theories �Rosenbluth et al., 1972; Hinton
and Hazeltine, 1976; Chang and Hinton, 1982; Hinton
and Wong, 1985; Connor et al., 1987�.

A. Physical motivations and nonlinear gyrokinetic orderings

Experimental observations of magnetically confined
high-temperature plasmas indicate that they represent
strongly turbulent systems �Liewer, 1985; Wootton et al.,
1990�. While there are be various ways to excite insta-
bilities in plasmas �such as the velocity-space gradient,
current gradient, and an energetic-particle population�,
the observed turbulent fluctuations are believed to origi-
nate primarily from collective instabilities driven by the
expansion free energy associated with radial gradients in
temperature or density �Tang, 1978; Horton, 1999�, and
is thought to be related to fluctuation-induced transport
processes due to saturated �finite-amplitude� plasma mi-
croturbulence, whose characteristic time scale is much
longer than the gyroperiod. The fluctuation spectra are
characterized by the following features: �i� the character-
istic �mean� frequency �k �for fixed wave vector k� and
perpendicular wavelength �� �=2� / �k��� of the fluctua-
tion spectrum are typical of drift-wave turbulence theo-
ries �Horton, 1999�; �ii� the frequency spectrum is broad
�����k� at fixed wave vector k; �iii� there are fluctua-
tions in density, temperature, electrostatic potential, and
magnetic field, with each fluctuating quantity having its
own spatial profile across the plasma discharge; and �iv�
the fixed-frequency fluctuation spectrum is highly aniso-
tropic in wave vector �k� �k��, i.e., parallel wavelengths
are much longer than perpendicular wavelengths.

From experimental observations �see references listed
in Wootton et al. �1990��, the typical fluctuation fre-
quency spectrum is found to be broadband �����k� at
fixed wave vector k. Its characteristic mean frequency
�in the plasma frame rotating with E�B velocity� is
on the order of the diamagnetic frequency �*�k ·vD

��, where the diamagnetic velocity vD ���cT /eB�b̂
�� ln P� is caused by a perpendicular gradient in
plasma pressure P and ��eB /mic is the ion gyrofre-
quency. Using some typical plasma parameters �tem-
perature T=10 keV and magnetic field B=50 kG with a
typical gradient length scale L�100 cm�, the thermal
ion gyroradius is �i�0.2 cm and the frequency ratio is
�* /���k��i��i /L�10−3, where k��1 cm−1 denotes the
poloidal component of the wave vector k �see Fig. 1�. Its
correlation lengths in both the radial and poloidal direc-
tions are on the order of several ion gyroradii, much
shorter than the macroscopic gradient-scale length L
�Mazzucato, 1982; Fonck et al., 1993; McKee et al., 2003�.
Its wavelength �or correlation length� along the equilib-
rium magnetic field is rarely measured, in particular in-
side the last closed magnetic surface. Some measure-
ments at the scrape-off layer of tokamak plasmas

4MHD instabilities sometimes lead to a catastrophic termina-
tion of a plasma discharge called a disruption, or otherwise
severely limit the performance of plasmas.
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indicate that it is much less than the connection length
qR �Zweben and Medley, 1989; Endler et al., 1995�,
where q denotes the safety factor and R denotes the
major radius of the plasma torus. Last, the relative den-
sity fluctuation level 
n /n0 ranges typically from well
under 1% at the core �near the magnetic axis� �Maz-
zucato et al., 1996; Nazikian et al., 2005� to the order of
10% at the edge �see Fig. 2�. Although fluctuations in
electric and magnetic fields in the interior of tokamaks
are rarely measured, estimates indicate that e
� /Te
�
n /n0 and �
B� /B0�10−4.

From these spatiotemporal scales of tokamak micro-
turbulence, one can make a very rough estimate of the
transport coefficient Dturb using a dimensional analysis
based on a random-walk argument,

Dturb �
��r�2

�t
�

��

kr
2 �

�*

kr
2 � 	 k�

kr
2�i


�i

L

cTi

eB
.

While this elementary estimate reveals neither dynami-
cal insights on the detailed transport process by random
E�B motion nor the significant role played by fluctua-
tion amplitude in determining transport scalings, it illus-
trates the basic relation between the spatiotemporal
scales of fluctuations and transport scaling. More de-
tailed heuristic discussions have been given by Horton
�1999� and Krommes �2006�. If it is assumed that k�

�kr��i
−1 as observed in gyrokinetic simulations with

self-generated zonal flows �see Table I� and in some ex-

periments �Fonck et al., 1993; McKee et al., 2003�, then

Dturb �
�i

L

cTi

eB
.

This is called gyro-Bohm scaling because the Bohm scal-
ing ��cTi /eB� is reduced by a factor �i /L�1, the ratio
of gyroradius to a macroscopic length scale. This scaling
is expected when local physics dominates. It can be
modified due to a variety of mesoscale phenomena �Itoh
and Itoh, 2001� such as turbulence spreading5 and
avalanches.6

Some early simulations without self-generated zonal
flows �see Table I� reported a radial step �r��L�i
�i,
with k���i

−1, consistent with the Bohm scaling Dturb
�cTi /eB. While the distinction between Bohm scaling
and gyro-Bohm scaling may seem obvious, it is compli-
cated by many subtle issues �Lin et al., 2002; Waltz et al.,
2002�.

The nonlinear gyrokinetic formalism pursues a dy-
namical reduction of the original Vlasov-Maxwell equa-
tions for both computational and analytic feasibility
while retaining the general description of the relevant
physical phenomena. In this section, the standard non-
linear gyrokinetic ordering �Frieman and Chen, 1982� is
described with an emphasis on physical motivations. The
understanding of microturbulence based on experimen-
tal observations was incomplete when earlier versions of
nonlinear gyrokinetic equations were being developed.
The original motivation of the ordering may have been
somewhat different than presented here. The adiabatic
invariance of the new magnetic moment �̄ is established
on the fundamental fluctuation-based space-time order-
ings ��� and �k��
L−1, which have a broad experi-
mental basis for plasma instabilities in strongly magne-
tized plasmas.

The nonlinear gyrokinetic Vlasov-Maxwell equations
are traditionally derived through a multiple space-time-
scale expansion that relies on the existence of one or
more small �dimensionless� ordering parameters �Frie-
man and Chen, 1982�. These ordering parameters are
defined in terms of the following characteristic physical
parameters associated with the background magnetized
plasma �represented by the Vlasov distribution F and
the magnetic field B� and fluctuation fields �represented
by the perturbed Vlasov distribution 
f and the per-
turbed electric and magnetic fields 
E and 
B�: � is the
characteristic fluctuation frequency, k� is the characteris-
tic fluctuation parallel wave number, �k�� is the charac-
teristic fluctuation perpendicular wave number, � is the

5See Garbet et al., 1994; Kim et al., 2003; Chen et al., 2004;
Hahm, Diamond, et al., 2004; Lin and Hahm, 2004; Villard,
Angelino, et al., 2004b; Zonca et al., 2004; Gurcan et al., 2005;
Hahm et al., 2005; Itoh et al., 2005; Naulin et al., 2005; Waltz
and Candy, 2005; Gurcan et al., 2006a, 2006b; Wang et al., 2006;
Yagi et al., 2006.

6See Diamond and Hahm, 1995; Newman et al., 1996; Garbet
and Waltz, 1998; Naulin et al., 1998; Sarazin and Ghendrih,
1998; Politzer et al., 2002.

FIG. 1. Spatial wave-number spectra obtained from spatial
correlation coefficients in the poloidal direction for �a� the
Adiabatic Toroidal Compression tokamak �Mazzucato, 1982�
and �b� the Tokamak Fusion Test Reactor �Fonck et al., 1993�.

FIG. 2. Spatial profile of the total rms density-fluctuation am-
plitude obtained by beam emission spectroscopy on the Toka-
mak Fusion Test Reactor �Fonck et al., 1993�.
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ion cyclotron frequency, vth=�Ti /mi is the ion thermal
speed, �i=vth /� is the ion thermal gyroradius, LB is the
characteristic background magnetic-field nonuniformity
length scale, and LF is the characteristic background
plasma density and temperature nonuniformity length
scale.

The background plasma is described in terms of the
�guiding-center� small parameter �B��i /LB as

��i � ln B� � �B and � 1

�

� ln B

�t
� � �B

3 , �5�

where the background time-scale ordering ��B
3 � is consis-

tent with the transport time-scale ordering �Hinton and
Hazeltine, 1976�: The background Vlasov distribution F
satisfies a similar space-time ordering7 with �F��i /LF.
The background magnetized plasma is treated as a
static, nonuniform medium that is perturbed by low-
frequency electromagnetic fluctuations characterized by
short wavelengths perpendicular to the background
magnetic field and long wavelengths parallel to it.

The fluctuating fields �
f ,
E ,
B� are described in
terms of two space-time ordering parameters ��� ,���,

�k���i � �� � 1 and
�

�
� �� � 1. �6�

While microturbulence spectra of present-day high-
temperature plasmas typically peak around ��

�0.1–0.2�1 at nonlinear saturation, the linear growth
rates are often highest at ���1, in particular for
trapped-electron-driven turbulence. Since shorter-
wavelength fluctuations can affect longer-wavelength
modes via nonlinear interactions, it is desirable to have
an accurate description of the relatively short-
wavelength fluctuations ����1�. Since it is important to
have an ordering in which a strong wave-particle inter-
action �e.g., Landau damping� is captured at the lowest
order, we require that ���k��vth and have the ordering

�k��
�k��

�
��

��

. �7�

The most dangerous plasma instabilities in a strong mag-
netic field tend to satisfy the parallel ordering k� �k�

�with ������. The relative fluctuation levels are de-
scribed in terms of the amplitude ordering parameter �
,

�
f

F
� �

c�
E��
Bvth

�
�
B�

B
� �
 � 1. �8�

The electric fluctuation ordering,

�
 �
c�
E��
Bvth

� ��

e
�

Ti
, �9�

implies that, for ���1 and Te�Ti, we have e
� /Te
��
. A covariant description of electromagnetic fluctua-

tions requires that the parallel component 
A� � b̂ ·
A of
the perturbed vector potential satisfies the amplitude or-
dering �v� /c�
A� �
�, where the parallel particle veloc-
ity is v� �vth, so that

�
 �
v�

c

e
A�

Ti
�

�
B��
��B

, �10�

which implies that, for ���1, we have �
B�� /B��
.
Hence, the orderings �9� and �10� imply that the terms
�k��
� and �� /c�
A� in the parallel perturbed electric
field 
E� have similar orderings �for ���1�,

�k��
�

��/c�
A�

�
�k��/�k��

�/�
�

1

��

,

so that �
E�� / �
E����k�� / �k����� /���1. Last, for a
fully electromagnetic gyrokinetic ordering �and high-�
plasmas, where ��8�P /B2�, we require that �
B�� /B
���
 �Brizard, 1992�;8 note that we use the electromag-
netic gauge condition �� ·
A�=0, which represents the
low-frequency gyrokinetic limit of the Lorenz gauge
c−1�t
�+� ·
A=0. While �� and �
 are comparable in
practice �e.g., ����
�10−3�, it is useful to keep these
parameters separate for ordering purposes and greater
flexibility. Note that, because of the perpendicular order-
ing ���1, full finite-Larmor-radius �FLR� effects must
be retained in the nonlinear gyrokinetic formalism.

The regimes of validity of various drift-kinetic and gy-
rokinetic theories are summarized in Fig. 3 in terms of
the normalized electrostatic potential �L /�i�e
� /Te
��
 /���B �Dimits et al., 1992; Hazeltine and Hinton,
2005�. Note that one needs �
�1 for any perturbative
nonlinear kinetic equations: for drift-kinetic theories, we
require ���1, while for gyrokinetic theories ����1�, we
require �
��B. The latter ordering implies that the lin-

ear drive term ��b̂��
� ·�F� is of the same order as

the nonlinear E�B coupling term ��b̂��
� ·�
f�.
This is a generic situation for strong turbulence, which
yields a nonlinear saturation roughly at a mixing length
level 
n���i /L�n; nonetheless, with a subsidiary order-
ing, the nonlinear gyrokinetic equations can describe
weak turbulence as well �Sagdeev and Galeev, 1969�.

B. Frieman-Chen nonlinear gyrokinetic equation

The first significant work on nonlinear gyrokinetic
equations in general magnetic geometry was by Frieman
and Chen �1982�, who used a conventional approach

7The ratio �B /�F�1 can be used to formally define an auxil-
iary ordering parameter known as the inverse-aspect-ratio pa-
rameter a /R in toroidal magnetized plasmas, where a and R
denote the minor and major radii; we shall not make use of
this auxiliary ordering parameter in the present work and,
henceforth, assume that �F��B.

8While e
� /Te
 �
B�� /B
 �
B�� /B for typical low-to-modest
� tokamak plasmas, the fluctuation ordering �8� is retained for
its generality �which makes it applicable to high-� devices such
as spherical tori�.
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based on a maximal multiple-scale-ordering expansion
involving a single ordering parameter �����B�����
�.
Here the linear-physics-driven terms are ordered at ���


and �B�
 �which recognizes the crucial role played by the
background magnetic-field nonuniformity with �B����,
while the nonlinear coupling terms are ordered at �


2.
The main purpose of the Frieman-Chen �FC� gyroki-
netic equations was for analytic applications and it has
served its original motivation during the past two de-
cades. For instance, many nonlinear kinetic theories of
tokamak microturbulence �see Table I and references in
Horton �1999�� have used the FC equations as the start-
ing point. The number of assumptions on the general FC
ordering was minimal at least in the context of nonlinear
gyrokinetics �we elaborate on this point later on�.

The material presented here only summarizes some
aspects of the work of Frieman and Chen �1982� relevant
to our discussion �and we use notation consistent with
the remainder of our paper�. We begin with the Vlasov
equation

df

dt
�

�f

�t
+

dz
dt

·
�f

�z
= 0, �11�

where z= �x ,p� denote the particle phase-space coordi-
nates and f�z , t� denotes the Vlasov particle distribution.
Here the Vlasov equation �11� states that the particle
distribution f„z�t ;z0� , t…= f�z0 ;0� is a constant along an
exact particle orbit z�t ;z0�, where z0�z�0;z0� denotes
the orbit’s initial condition.

Following the conventional �iterative� approach ini-
tially used by Hastie et al. �1967�, Frieman and Chen
�1982� introduce decompositions of the Vlasov distribu-
tion f=F+�

f and the particle’s equations of motion
dz /dt=dZ /dt+�
d
z /dt, where �F ,dZ /dt� represent the
background plasma dynamics and �
f ,d
z /dt� represent
the perturbed plasma dynamics associated with the pres-

ence of short-wavelength fluctuating electromagnetic
fields 
E=−�
�−c−1�t
A and 
B=��
A.

Next, Frieman and Chen introduce a short-space-scale
averaging �denoted by an overbar� with the definitions

f̄�F and �dz /dt��dZ /dt. Hence, the short-space-scale
average of the Vlasov equation �11� yields

�F

�t
+

dZ
dt

·
�F

�z
�

DF

Dt
= − �


2	d
z
dt

·
�
f

�z

 , �12�

which describes the long-time evolution of the back-
ground Vlasov distribution F as a result of the back-
ground plasma dynamics �represented by the averaged
Vlasov operator D /Dt� and the nonlinear ��


2� short-
wavelength-averaged �quasilinear� influence of the fluc-
tuating fields. Here, Frieman and Chen �1982� expand
the solution F=F0+�BF1+¯ for the background Vlasov
equation �12� up to first order in �B and without the
nonlinear fluctuation-driven term ��
=0�, where the
gyroangle-dependent part of the first-order correction

�BF̃1 = − 	
 d�

�
�̇0
 �F0

��
�13�

is expressed in terms of the lowest-order distribution
F0�X� ,E ,��, which is a function of the perpendicular
components of the guiding-center position X� �i.e.,

b̂ ·�F0=0�, the �lowest-order� guiding-center kinetic en-
ergy E �with E0�0�, and the �lowest-order� guiding-
center magnetic moment �. In Eq. �13�, �̇0 denotes the
time derivative of the lowest-order magnetic moment,
which is ordered at �B for a time-independent magnetic
field and is explicitly gyroangle dependent.9

By subtracting the averaged Vlasov equation �12�
from the Vlasov equation �11�, we obtain the fluctuating
Vlasov equation

D
f

Dt
= −

d
z
dt

·
�F

�z
−

d
z
dt

·
�
f

�z
+ 	d
z

dt
·
�
f

�z

 , �14�

where the left side contains terms of order ���
 and �B�
,
while the first term on the right side provides the linear
drive for 
f �at order �B�
� and the remaining terms in-
volve the short-spatial-scale nonlinear coupling �at order
�


2�. Note that a quasilinear formulation is obtained from
Eq. �14� by retaining only the first term on the right side
and substituting the �eikonal� solution for 
f �as a func-
tional of F� into the averaged Vlasov equation �12�.

Next, Frieman and Chen �1982� introduce a decompo-
sition of the perturbed Vlasov distribution 
f in terms of

9Using �E ,�� rather than �v� ,�� as the velocity-space coordi-
nates reduces the number of nonzero terms when either F0 is
isotropic in velocity space �i.e., �F0 /��=0 at constant E�, or the
electromagnetic fields are time independent such that Ė=0.
Thus, it can sometimes be advantageous to the �v� ,�� formu-
lation. However, for more complex realistic nonlinear applica-
tions, we find the �v� ,�� formulation more straightforward in
describing physics.

FIG. 3. Regimes of validity of nonlinear �A� and linear �B�
drift-kinetic and nonlinear �C� and linear �D� gyrokinetic theo-
ries displayed on a plot of normalized electrostatic potential
�L /�i�e
� /Te��
 /���B vs ��, where the ordering parameters
��
 ,�� ,�B� are defined in the text and 
�1 denotes an order-
ing parameter that distinguishes linear from nonlinear theories
or drift-kinetic from gyrokinetic theories.
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its adiabatic and nonadiabatic components �Antonsen
and Lane, 1980; Catto et al., 1981�,


f � �e
�
�

�E
+

e

B
	
� −

v�

c

A�
 �

��
�F0

+ e−�·�	
g −
e�
�gc�

B

�F0

��

 . �15�

Here 
g denotes the gyroangle-independent nonadia-
batic part of the perturbed Vlasov distribution, 
A�

�
A · b̂ denotes the component of the perturbed vector
potential parallel to the background magnetic field B

=Bb̂ �v� denotes the parallel component of the guiding-
center velocity�, �¯� denotes gyroangle averaging �� de-
notes the lowest-order gyroangle-dependent gyroradius
vector�, and the effective first-order gyroaveraged po-
tential is

�
�gc� � �e�·�	
� −
v
c

· 
A
� = �
�gc −
v
c

· 
Agc� .

�16�

Note that all terms on the right side of Eq. �15� are
ordered at �
 and an additional higher-order adiabatic

term �F0 ·
A� b̂ /B �of order �B�
� has been omitted.
For the sake of clarity in the discussion presented below,
we refer to the adiabatic terms involving the perturbed
potentials �
� ,
A�� evaluated at the particle position as
the particle adiabatic terms, while the adiabatic term in-
volving the effective first-order Hamiltonian �16�, where
perturbed potentials are evaluated at the guiding-center
position, as the guiding-center adiabatic term.

By substituting the nonadiabatic decomposition �15�
into the fluctuating Vlasov equation �14�, Frieman and
Chen �1982� obtain the nonlinear gyrokinetic equation
for the nonadiabatic part 
g of the perturbed Vlasov
distribution,

dgc
g

dt
= − 	e

��
�gc�
�t

�

�E
+

cb̂

B
� ��
�gc� · �
F0

−
cb̂

B
� ��
�gc� · �
g , �17�

where D /Dt�dgc/dt denotes the unperturbed averaged
Vlasov operator expressed in guiding-center coordinates
�X ,E ,��. Note that the time evolution of the nonadia-
batic part 
g depends solely on the effective first-order
Hamiltonian �16�. The terms appearing on the left side
of Eq. �17�, as well as the F0 terms on the right side, are
ordered at ���
 and �B�
, while the last term on the right
side is ordered at �


2 and thus represents the nonlinear
coupling terms, which are absent from previous linear
gyrokinetic models �Antonsen and Lane, 1980; Catto et
al., 1981�. The nonlinear coupling terms include the �lin-

ear� perturbed E�B velocity �cb̂ /B����
�gc�, the mag-
netic flutter velocity �v� /B��
B�gc�, and the perturbed

grad-B drift velocity �−b̂ /B����v� ·
A�gc�. The nonlin-

ear gyrokinetic Vlasov equation �48� derived by Frieman
and Chen �1982� contains additional terms, defined in
their equation �45�, that are subsequently omitted in
their final equation �50� shown above as Eq. �17�.

A self-consistent description of nonlinear gyrokinetic
dynamics requires that the Maxwell equations for the
perturbed electromagnetic fields 
E and 
B be ex-
pressed in terms of particle charge and current densities
represented as fluid moments of the nonadiabatic part

g of the perturbed Vlasov distribution �15�. For ex-
ample, using the nonadiabatic decomposition �15�, the
perturbed particle fluid density 
n��d3p
f is


n =
 d3P�e−�·�	
g −
e�
�gc�

B

�F0

��

� , �18�

where d3P denotes the �E ,�� integration in guiding-
center coordinates of a gyroangle-averaged integrand.
Note that the particle adiabatic terms in Eq. �15� have
canceled out of Eq. �18� and only the guiding-center
adiabatic and nonadiabatic terms contribute to 
n. We
show later that this guiding-center adiabatic contribu-
tion leads to the so-called polarization density �see Ap-
pendix C.2�; a similar treatment for the perturbed par-
ticle moment �d3pv
f leads to the cancellation of
particle adiabatic terms and the definition of the magne-
tization current in terms of the guiding-center adiabatic
and nonadiabatic terms.

The Frieman-Chen nonlinear gyrokinetic Vlasov
equation �17� is contained in modern versions of the
nonlinear gyrokinetic Vlasov equation �Brizard, 1989a�,
as shown in Sec. V.E. The Frieman-Chen formulation
contains the polarization density �while there was no ex-
plicit mention about it in the FC paper�. For most ana-
lytic applications �see Table I� a separate treatment of
this term is not necessary. However, an explicit treat-
ment of the polarization density as the dominant shield-
ing term in the gyrokinetic Poisson equation �Lee, 1983�
has provided computational advantage �Lee, 1987� in
nonlinear gyrokinetic simulations. It is also a key quan-
tity in relating the nonlinear gyrokinetic approach
to reduced magnetohydrodynamics �Hahm et al. 1988;
Brizard, 1992� �see Sec. III.E�.

The major difficulties encountered in the conventional
Frieman-Chen derivation of Eq. �17� involve �a� insert-
ing the solution �13� for the first-order correction F1 to
the background Vlasov distribution F0 into the first term
on the right of Eq. �14� and �b� constructing a new mag-
netic moment �̄ that is invariant at first order in �B and
�
. While the Frieman-Chen equations are valid up to
order �2 and for practical purposes,10 including initial
interactions of linear modes and the early phase follow-
ing nonlinear saturation, their work did not consider
preserving the conservation laws of the original Vlasov-
Maxwell equations �e.g., total energy and momentum�.

10The Frieman-Chen paper was published in 1982 at a time
when computer power and plasma-diagnostic capabilities were
far lower than the present-day equivalents.
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For instance, the sum of the kinetic energy and field
energy, as well as phase-space volume, are not conserved
up to the nontrivial order. A lack of phase-space-volume
conservation can introduce fictitious dissipation that can
affect the long-term behavior of the �presumed� Hamil-
tonian system. Moreover, by ignoring the O��3� nonlin-
ear wave-particle interactions due to parallel-velocity-
space nonlinearity, one cannot describe phase-space
structures such as clumps �Dupree, 1972� and holes �Du-
pree, 1982; Terry et al., 1990�. Ignoring the nonlinear
wave-particle interactions can also artificially limit the
energy exchange between particles and waves.

C. Modern nonlinear gyrokinetic equations

In contrast to conventional methods used for deriving
nonlinear gyrokinetic equations �based on a regular per-
turbation expansion in terms of small parameters and a
direct gyrophase average�, the modern nonlinear gyroki-
netic derivation pursues a reduction of dynamical di-
mensionality via phase-space coordinate transforma-
tions. The modern derivation of the nonlinear
gyrokinetic Vlasov equation is based on the construction
of a time-dependent phase-space transformation from
�old� particle coordinates z= �x ,p� to �new� gyrocenter

phase-space coordinates Z� �to be defined later� such that

the new gyrocenter equations of motion dZ̄ /dt are inde-
pendent of the fast gyromotion time scale at arbitrary
orders in �B and �
. This transformation effectively de-
couples the fast gyromotion time scale from the slow
reduced time scales. In the course of this derivation, the
important underlying symmetry and conservation laws
of the original system are retained. In contrast to the
conventional derivation �where different small param-
eters are lumped together via a particular ordering�,
various expansion parameters appear at different stages
of the derivation. This feature makes modifications of
ordering for specific applications more transparent, such
as nonlinear gyrokinetic equations with strong E�B
shear flows as described in Appendix D.1.

The phase-space transformation z→ Z̄ is formally ex-
pressed in terms of an asymptotic expansion in powers
of the perturbation-amplitude ordering parameter �
,

Z̄ � �
n=0

�

nZ̄n�z� , �19�

where the lowest-order term Z̄0�z� is expressed in terms
of an asymptotic expansion in powers of the
background-plasma ordering parameter �B associated
with the guiding-center transformation �see Fig. 4�. The
original particle dynamics dz /dt in Eq. �11� can be rep-
resented as a Hamiltonian system dz /dt��z ,H�z, where
H�z , t� denotes the particle Hamiltonian and � , �z de-
notes the Poisson bracket in particle phase space with
coordinates z �which are, generically, noncanonical�.
Since Hamiltonian systems have important conservation
properties, e.g., the Liouville theorem associated with
the invariance of the phase-space volume under Hamil-

tonian evolution �Goldstein et al., 2002�, the new equa-

tions of motion dZ̄ /dt must also be expressed as a
Hamiltonian system in terms of a new Hamiltonian

H̄�Z̄ , t� and a new Poisson bracket � , �Z̄ such that

dZ̄ /dt��Z̄ ,H̄�Z̄.

The phase-space transformation z→ Z̄ induces a trans-
formation from the �old� particle Vlasov distribution f to

a �new� reduced Vlasov distribution F̄, subject to the

scalar-invariance property F̄�Z̄�= f�z�, such that the new

Vlasov distribution F̄ is constant along a reduced orbit

Z̄�t�. From the scalar-invariance property, the induced

transformation f→ F̄ is

f�z� � F̄�Z̄� = F̄	�
n=0

�

nZ̄n�z�
 , �20�

that generates an asymptotic expansion in powers of �
,

f � �
n=0

�

nfn�F̄� , �21�

where each term fn�F̄� is expressed in terms of deriva-

tives of the new Vlasov distribution F̄. The infinitesimal
constant translation x→X=x+� and the induced trans-
formation f→F satisfies

f�x� � F�X� = F�x + ��

= �
n=0

�n

n!
dnF�x�

dxn � �
n=0

�nfn„F�x�… ,

where fn�F���1/n!�dnF /dxn shows that the two func-
tions f and F are formally different functions. The non-
adiabatic decomposition �15� is a similar asymptotic ex-
pansion f= f0+�

f+¯, where f0 and 
f are expressed in

terms of a reduced Vlasov distribution F̄.
For the new Vlasov kinetic theory to be dissipation-

free, the phase-space transformation �19� must be invert-
ible �i.e., entropy-conserving� so that no information on
the fast-time-scale particle dynamics is lost. Hence, the
following inverse relations are required:

z � �
n=0

�

nzn�Z̄� , �22�

F̄�Z̄� � f�z� = f	�
n=0

�

nzn�Z̄�
 , �23�

FIG. 4. Exact and reduced single-particle orbits in a magnetic
field.
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F̄ � �
n=0

�

nF̄n�f� . �24�

These are justified by the smallness of the ordering pa-
rameter �
�1. Within canonical Hamiltonian perturba-
tion theory �Goldstein et al., 2002� the relation between
the �old� particle Hamiltonian H and the �new� reduced

Hamiltonian H̄ is expressed as

H̄�Z̄,t� � H�z,t� −
�S

�t
�z,t� , �25�

where S denotes the scalar field that generates the time-

dependent canonical transformation z→ Z̄ and each

function �H ,S ,H̄� is itself expressed as a power expan-
sion in �
 �and �B�.

The modern formulation of the nonlinear gyrokinetic
Vlasov theory provides powerful algorithms to construct
the phase-space transformations �19� and �22� and in-
duced transformations �21� and �24�. These algorithms
are based on applications of differential geometric meth-
ods associated with Lie-transform operators �see Ap-
pendix A for a primer on these mathematical methods�.

III. SIMPLE FORMS OF NONLINEAR GYROKINETIC
EQUATIONS

Simplified forms of the nonlinear gyrokinetic equa-
tions recommended for simulations and analytic applica-
tions in laboratory �e.g., fusion� and space plasma phys-
ics as well as astrophysics are presented. This section
provides a quick reference to readers who are mainly
interested in applications of nonlinear gyrokinetic for-
mulations, rather than theoretical derivations of math-
ematical structures thereof. The full nonlinear gyroki-
netic equations will be derived in Secs. V and VI.

In this review, recent remarkable progress in nonlin-
ear gyrokinetic simulations �Tang, 2002; Tang and Chan,
2005� is not covered. The physics issues that arise when
nonlinear gyrokinetic equations are simplified and ap-
plied to specific collective waves and instabilities in mag-
netized plasmas are described. The basic physics under-
lying the magnetic confinement of plasmas has been
described by Boozer �2004�. A relatively complete sur-
vey of fusion-relevant instabilities can be found in Con-
nor and Wilson �1994� and Horton �1999�, while a partial
summary of applications of nonlinear gyrokinetic formu-
lations is provided in Table I. Some early simulations
were performed as the modern nonlinear gyrokinetic
formulations were being developed. Not all of the gyro-
kinetic theoretical knowledge discussed in this review
article was available then. The overbar notation used to
identify the gyrocenter coordinates is omitted for the
remainder of this section �unless otherwise needed�.

A. General gyrokinetic Vlasov-Maxwell equations

For nonlinear simulations, the nonlinear gyrokinetic
Vlasov equation �2� for the gyrocenter distribution F is

written in terms of the Hamiltonian gyrocenter equa-
tions of motion,

dX
dt

= v�

B*

B�
* +

cb̂

eB�
* � �� � B + e � 
�gy� �26�

and

dp�

dt
= −

B*

B�
* · �� � B + e � 
�gy� −

e

c

�
A�gy

�t
, �27�

where the effective gyrocenter perturbation potential

�gy contains terms that are linear in the perturbed elec-
tromagnetic potentials �
� ,
A� �e.g., the effective linear
potential �
�gc� defined in Eq. �16�� and terms that are
nonlinear �quadratic� in �
� ,
A�. Explicit forms for this
effective gyrocenter perturbation potential are given be-
low for limiting cases: electrostatic fluctuations �Sec.
III.B�, shear-Alfvénic magnetic fluctuations �Sec. III.C�,
and compressional-Alfvénic magnetic fluctuations �Sec.
III.D�. The gyrocenter Poisson-bracket �symplectic�
structure is represented by the modified magnetic field

�with B�
*� b̂ ·B*�,

B* � B + �c/e�p� � � b̂ + 
Bgy, �28�

where the first term denotes the background magnetic

field B�Bb̂, the second term is associated with the
guiding-center curvature drift, and the third term repre-
sents the symplectic magnetic perturbation 
Bgy��
�
Agy that may or may not be present depending on
the choice of gyrocenter model adopted �see below�.

The perturbed linear gyrocenter dynamics contained
in Eq. �26� includes the linear perturbed E�B velocity


uE= �cb̂ /B���
�, the perturbed magnetic-flutter ve-
locity v�
B� /B, and the perturbed grad-B velocity

�cb̂ /eB����
B�. When magnetic perturbations are
present, the gyrocenter parallel momentum p� appearing
in Eq. �27� is either a canonical momentum if the mag-
netic perturbation 
Agy is chosen so that 
A�gy

� b̂ ·
Agy=0 or a kinetic momentum �i.e., p� =mv�� if

A�gy�0. The magnetic-flutter velocity v�
B� /B is ei-
ther included in v�
Bgy/B �in the symplectic gyrocenter

model� or in �cb̂ /B���
�gy �in the Hamiltonian gyro-
center model� �Hahm et al., 1988; Brizard, 1989a�, while
the inductive part ��t
A�gy� of the perturbed electric field
appears on the right side of the gyrocenter parallel force
equation �27� only in the symplectic gyrocenter model.
For specific application of nonlinear gyrokinetics, not all
terms in Eqs. �26� and �27� are used simultaneously; all
of the terms are included here for easy reference within
this section.

A closed self-consistent description of the interactions
involving the perturbed electromagnetic field and a Vla-
sov distribution of gyrocenters implies that the gyroki-
netic Maxwell equations are written with charge-current
densities expressed in terms of the gyrocenter distribu-
tion function. The gyrokinetic Poisson equation �3� is
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�2
� = − 4� � e
 d3p�T�F̄�

� − 4��e�N̄i − N̄e� + �pol� , �29�

where T��TgcTgy denotes an operator �defined in Sec.
IV� that transforms functions on gyrocenter phase space
into functions on guiding-center phase space and then
into functions on particle phase space, � denotes a sum
over charged-particle species �e.g., ions and electrons�,
�d3p=2�mB�dp�d� denotes an integration over the gy-
rocenter coordinates p� and �, and gyroangle averaging
is denoted as �¯���2��−1�d��¯�. On the right side of

Eq. �29�, N̄j��d3pF̄j is the gyrocenter density for par-
ticle species j �=i or e�, and the gyrocenter polarization
density is

�pol � � e
 d3p��T�F̄� − F̄� � − � · Pgy, �30�

that is then expressed in terms of the divergence of the
gyrocenter polarization vector Pgy �defined below�. The
gyrokinetic Ampère equation �4� is

� � �B + 
B� =
4�

c � e
 d3p�vT�F̄�

�
4�

c
��J̄i + J̄e� + �Jpol + Jmag�� , �31�

where J̄j�ej�d3p�T�
−1v�F̄j denotes the gyrocenter cur-

rent density associated with particle species j, T�
−1v

�Tgy
−1�Tgc

−1v� denotes the particle velocity transformed
into gyrocenter phase space, and the gyrocenter polar-
ization and magnetization currents are defined as

Jpol + Jmag = � e
 d3p�vT�F̄ − T�
−1vF̄�

�
�Pgy

�t
+ c � � Mgy, �32�

that are expressed, respectively, in terms of the time de-
rivative of the gyrocenter polarization vector Pgy and the
curl of the the gyrocenter magnetization vector Mgy �de-
fined below�. By definition, the gyrocenter polarization
charge conservation law

0 =
��pol

�t
+ � · Jpol �

�

�t
�− � · Pgy� + � · 	 �Pgy

�t

 �33�

is explicitly satisfied. A related discussion on the polar-
ization drift in a simple limit can be found in Appendix
C of Krommes �2002�. This relation has been extended
to the neoclassical polarization associated with trapped
particles �Fong and Hahm, 1999�. The gyrocenter mag-
netization current Jmag�c� �Mgy is explicitly diver-
genceless.

The variational formulation for the nonlinear gyroki-
netic Vlasov-Maxwell equations reveals that these gyro-
kinetic polarization and magnetization effects are also
associated with derivatives of the nonlinear gyrocenter

Hamiltonian e
�gy with respect to the perturbed electric
and magnetic fields 
E and 
B, respectively,

Pgy � − � e
 d3pF	 �
�gy

�
E

 = �
 d3pF�gy, �34�

Mgy � − � e
 d3pF	 �
�gy

�
B



= �
 d3pF	�gy + �gy �
p�

mc
b̂
 , �35�

where �gy is the gyrocenter electric-dipole moment, �gy
is the gyrocenter magnetic-dipole moment, and the gy-
rocenter magnetization vector �35� includes a moving-

electric-dipole contribution �gy� �p� /mc�b̂ �Jackson,
1975�.

The nonlinear gyrokinetic Vlasov-Maxwell equations
possess an exact energy conservation law dE /dt�0,
where the global gyrokinetic energy integral is �Brizard,
1989a, 1989b�

E =
 d6ZF	 p�
2

2m
+ �B + e
�gy − e�Tgy

−1
�gc�

+
 d3x

8�
���
��2 + �B + 
B�2� , �36�

where Tgy
−1
�gc is the gyrocenter push-forward of the per-

turbed scalar potential. This exact conservation law ei-
ther is constructed directly from the nonlinear gyroki-
netic equations or is derived by applying the Noether
method within a gyrokinetic variational formulation.

The gyrocenter pull-back and push-forward operators
T�=TgcTgy and T�

−1=Tgy
−1Tgc

−1 appearing in Eqs. �29�–�32�
are the fundamental tools used in the modern derivation
of the nonlinear gyrokinetic Vlasov equation �2�, with
gyrocenter equations of motion given by Eqs. �26� and
�27�, the gyrokinetic Poisson-Ampère equations �29� and
�31�, and the global gyrokinetic energy invariant �36�,
defined in Sec. IV. The classical forms �30� and �32� for
the polarization density and current and the magnetiza-
tion current �Jackson, 1975� arise from the push-forward
representation of fluid moments �see Appendix C�. For
the remainder of this section, various limiting cases of
the nonlinear gyrokinetic equations are presented in
general magnetic geometry �while some applications in
Table I were made in simple geometry�.

B. Electrostatic fluctuations

When only electrostatic fluctuations are present �i.e.,

A�0� the electrostatic nonlinear gyrokinetic equations
in general geometry �Hahm, 1988� can be used to study
most drift-wave-type fluctuations driven by the expan-
sion free energy associated with the gradients in density
and temperature. The sound-wave dynamics as well as
linear and nonlinear Landau damping �Sagdeev and Ga-
leev, 1969� are contained within the nonlinear gyroki-
netic formulations. The electrostatic nonlinear gyroki-
netic equations can be used for ion dynamics associated
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with the ion-temperature-gradient �ITG� instability,
electron drift waves including the trapped-electron
mode �TEM�, collisionless trapped-ion modes �TIM�,
and universal and dissipative drift instabilities. These gy-
rokinetic equations can be used to study electron dy-
namics of the electron-temperature-gradient �ETG� in-
stability. While an unmagnetized “adiabatic” ion
response is commonly used for ETG studies, a more ac-
curate treatment of ion dynamics associated with the
ETG instability is possible with a gyrokinetic formula-
tion with proper high-k behavior. A recent simulation
�Candy and Waltz, 2006� shows its importance. The non-
linear gyrokinetic formulations can also be used to study
zonal flows �Diamond et al., 2005� and geodesic acoustic
modes �Winsor et al., 1968� that are typically linearly
stable. A partial summary of nonlinear gyrokinetic ap-
plications of these examples is listed in Table I.

In the electrostatic case, the modified magnetic field
�28� has the form that appears in the guiding-center
theory �with 
Bgy�0�, and the effective gyrocenter per-
turbation potential 
�gy in the gyrocenter equations of
motion �26� and �27� is expressed as


�gy = �
�gc� −
e

2B

�

��
�
�̃gc

2 � , �37�

which retains full FLR effects in both the linear and the
nonlinear terms,11 where 
�̃gc�
�gc− �
�gc� denotes the
gyroangle-dependent part of 
�gc�exp�� ·��
�. Only
the gyrokinetic Poisson equation �29� is relevant in the
electrostatic limit, where the gyrocenter pull-back TgyF
consistent with the simplified effective gyrocenter per-
turbation potential �37� is

TgyF = F +
e
�̃gc

B

�F

��
.

Thus, the integrand on the right side of the gyrokinetic
Poisson equation �29� includes the polarization term

e−�·��TgyF − F� = −
ef0

T�

�
� − e−�·��
�gc�� , �38�

where f0�e−�·�F0 denotes the background particle Vla-
sov distribution expressed in terms of a Maxwellian dis-
tribution F0 in � �with temperature T��. The gyrokinetic
energy invariant �36� includes the perturbation term


�gy − �Tgy
−1
�gc� =

e

2B

�

��
�
�̃gc

2 � , �39�

which is consistent with the effective gyrocenter pertur-
bation potential �37� and the gyrokinetic Poisson equa-
tion �29� with the polarization density �38�.

The energy-conserving gyrokinetic Vlasov-Poisson
equations constructed with the effective gyrocenter per-
turbation potential �37� and the gyrokinetic polarization

density �38� can be written in a more definite form in-
volving modified Bessel functions �Dubin et al., 1983� by
Fourier transforming the gyrokinetic Poisson equation
�29� into k space,

n0��k�2�Di
2 �

e
�k

Ti�
= 
nik − 
nek, �40�

where �Di
2 �Ti� /4�n0e2 and the perturbed ion fluid den-

sity


nik = 
Nik − n0�1 − �0�
e
�k

Ti�

+ n0��i
2�ik� · �ln n0���1 − �0��

e
�k

Ti�
�41�

is expressed in terms of the perturbed ion gyrofluid den-
sity 
Nik��d3p�e−i�·k��
Fik, and �n�b��In�b�e−b is ex-
pressed in terms of modified Bessel functions In �of or-
der n�, with b��k��2�i

2. While the last term in Eq. �41� is
smaller than the leading term, it is needed to preserve
the polarization density as a divergence of a polarization
vector �Dubin et al., 1983; Hahm et al., 1988�. The invari-
ant energy for these electrostatic gyrokinetic equations
is

E =
 d6Z
Fi	�B +
mi

2
v�

2
 +
 d6z
fe	me

2
v2


+
 d3x

8�
�
E�2 +

n0e2

2Ti

 d3k

�2��3 �1 − �0��
�k�2, �42�

which provides an accurate linear response for arbitrary
k��i and the dominant E�B nonlinearity as well as the
parallel velocity-space nonlinearity needed for most ap-
plications.

The nonlinear gyrokinetic Vlasov-Poisson equations
�37�–�39� can be further simplified by taking the long-
wavelength �drift-kinetic� limit �k��i�1� of the nonlin-
ear correction in the effective gyrocenter perturbation
potential �37�,

e
�gy = e�
�gc� −
m

2
�
uE�2, �43�

where the second term is the normalized kinetic energy
associated with the perturbed E�B drift �Scott, 2005�.
There is a one-to-one correspondence with this term, the
polarization density term in the gyrokinetic Poisson
equation, and the sloshing energy term in the energy
invariant. In the same drift-kinetic limit �Dubin et al.,
1983�, the linear gyrocenter polarization vector in the
gyrokinetic Poisson equation �29� is expressed in terms
of the gyrocenter electric-dipole moment,

�gy � − e
�
�gy

�
E�

= −
mc2

B2 ��
� �
cb̂

B
� �m
uE� �44�

that is directly related to the nonlinear terms in the ef-
fective gyrocenter perturbation potential �43�; note that
the linear term �
�gc� contains the guiding-center polar-
ization vector that is automatically included in the defi-

11An additional nonlinear term involving the multidimen-
sional expression b̂ · ��
	̃gc��
�̃gc�, where 
	̃gc=�
�̃gcd�, is
omitted.
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nition of the ion gyrofluid density. Because the gyro-
center electric-dipole moment �44� is proportional to the
particle’s mass, the dominant contribution to the polar-
ization density comes from the ion species. Representing
the polarization drift as a shielding term in the gyroki-
netic Poisson equation provided one of the principal
computational advantages of the gyrokinetic approach.
The energy invariant consistent with the simplified effec-
tive gyrocenter perturbation potential �43� and the gyro-
kinetic Poisson equation �29�, with gyrocenter polariza-
tion vector �44�, includes the nonlinear term

e
�gy − e�Tgy
−1
�gc� =

m

2
�
uE�2. �45�

The simplified nonlinear gyrokinetic Vlasov-Poisson
equations based on Eqs. �43�–�45� highlight the three pil-
lars of nonlinear gyrokinetic theory: a gyrocenter Hamil-
tonian �43� that contains nonlinear �quadratic� terms, a
gyrokinetic Poisson equation that contains a polariza-
tion density derived from the nonlinear gyrocenter
Hamiltonian �44�, and an energy invariant that includes
all relevant nonlinear coupling terms �45�.

While the nonlinear electrostatic gyrokinetic equa-
tions based on Eqs. �37�–�39� have a clear physical
meaning, this set has not been utilized much for appli-
cations due to its complexity. For tokamak core turbu-
lence, the relative density-fluctuation amplitude is typi-
cally less than 1%, and nonlinear corrections to the
effective potential are small. However, these nonlinear
corrections may play important roles in edge turbulence
where the relative fluctuation amplitude is high, typi-
cally greater than 10% �see Fig. 2�.

For both simulation and analytic applications, the dis-
tribution function F=F0+
F is often split into the equi-
librium part F0 and the perturbed part 
F, with 
F /F0
��
. One can write the equilibrium part and the per-
turbed part of Eqs. �26� and �27� separately. Then, Eqs.
�2�–�27� become

�
F

�t
+

dZ
dt

·
�
F

�Z
= −

d
Z
dt

·
�F0

�Z
, �46�

where the perturbed equations of motion are

d
X
dt

=
cb̂

B�
* � ��
�gc� and

d
v�

dt
= −

B*

mB�
* · ��
�gc� ,

and the full equations of motion are

dX
dt

= v�

B*

B�
* +

cb̂

eB�
* � �e � �
�gc� + � � B� �47�

and

dv�

dt
= −

B*

mB�
* · �e � �
�gc� + � � B� . �48�

The second term on the left side of Eq. �46� contains the
dominant E�B nonlinearity ��d
X /dt� ·�
F� and the
subdominant velocity-space parallel nonlinearity
��d
v� /dt��
F /�v��. If this parallel velocity-space nonlin-
earity is ignored, the physics contained in Eqs. �46�–�48�

is essentially the same as the electrostatic limit of the
Frieman-Chen gyrokinetic equation �17�. One conse-
quence of omitting this term is that the energy invariant
�42� is not conserved to the same order. While most tur-
bulence simulations have not kept this small subdomi-
nant term for simplicity, some simulations �Sydora et al.,
1996; Hatzky et al., 2002; Kniep et al., 2003; Villard, An-
gelino, et al., 2004� have kept it. In principle, simulations
with this term should have better energy-conservation
properties and, therefore, less time-accumulated error.
This term is crucial in long-time simulations; this topic is
an active area of current research.

C. Shear-Alfvénic magnetic fluctuations

It has been shown by Hahm et al. �1988� that the re-
duced magnetohydrodynamic �MHD� equations �whose
derivation makes use of the ratio k� /k��1 as an expan-
sion parameter� can be recovered from the electromag-
netic nonlinear gyrokinetic equations. For finite-� plas-
mas �with me /mi���1�, the perpendicular magnetic

fluctuations 
B����
A� � b̂ become important as the
magnetic flutter v�
B� /B becomes comparable to the

perturbed �linear� E�B velocity �cb̂ /B����
� �i.e.,

A�v� /c�
��. The physics associated with shear-Alfvén
waves and instabilities �which include a wide variety of
MHD instabilities� can be studied using the gyrokinetic
approach.

Early computational applications to MHD modes
consisted of various hybrid approaches with nonlinear
gyrokinetic description of energetic particle dynamics
and MHD description of bulk plasmas �Fu and Park,
1995; Santoro and Chen, 1996; Briguglio et al., 1998�.
The nonlinear gyrokinetic approach has been applied to
the classical tearing and kink instabilities when the free
energy comes from the radial gradient of the equilib-
rium plasma current. For these simulations, the electron
dynamics should include the radial variation of the equi-
librium current along the perturbed magnetic field to
describe the release of the current free energy. The elec-
tromagnetic modifications of drift-wave turbulence, of-
ten referred to as “drift-Alfvén” turbulence �see Table
I�, is an outstanding topic in magnetic confinement phys-
ics, including edge turbulence �Scott, 1997�. There have
been nonlinear simulations of shear-Alfvén fluctuations
based on nonlinear gyrokinetic formulations; some ex-
amples are listed in Table I.

Since the early days of modern nonlinear gyrokinetic
theory �Hahm et al., 1988� it has become apparent that
there can be at least two different versions of electro-
magnetic nonlinear gyrokinetic equations. One version
is the Hamiltonian formulation that uses the parallel ca-
nonical momentum p� as an independent variable; the
other is the symplectic formulation, where the parallel
velocity v� is an independent variable. Each approach
has its own advantages. This work is confined to the case
in which nonlinear modifications of the perturbed poten-
tial are expressed in the drift-kinetic limit that may turn
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out to be important in the nonlinear gyrokinetic simula-
tion of edge turbulence.

1. Hamiltonian „p¸… formulation

In the Hamiltonian formulation, the magnetic pertur-

bation 
A� � b̂ ·
A is treated as part of the gyrocenter
Hamiltonian, with all linear and nonlinear 
A� terms in-
cluded in the effective gyrocenter potential 
�gy in Eqs.
�26� and �27� while the symplectic magnetic perturbation
is 
Agy�0. The linear perturbation potential 
�gc
=
�gc− �p� /mc�
A�gc is manifestly covariant. The gyro-

center parallel velocity v� � b̂ ·dX /dt is expressed in
terms of the gyrocenter parallel canonical momentum p�

and the perturbed parallel vector potential e
A� /c,

v� �
1

m
	p� − �


e

c
�
A�gc� + ¯ 
 .

For this reason, the Hamiltonian formulation is some-
times referred to as the “canonical-momentum” formu-
lation or the Pz formulation following the terminology
from early work �Hahm et al., 1988� in a straight mag-
netic field.

This formulation deserves two important remarks.
First, the expression � /�t associated with the parallel in-
duction electric field is absent on the right side of Eq.
�27�. This computationally desirable feature �Hahm et
al., 1988� is one of the motivations for the canonical-
momentum formulation. Second, in the perpendicular

gyrocenter velocity �26�, the second term b̂���
�gc�
contains both the perturbed E�B velocity and the
magnetic-flutter motion along the perturbed magnetic
field �which often becomes stochastic�. The E�B drift
turbulence is the most likely anomalous transport
mechanism in magnetically confined plasmas with low to
moderate values of �; a detailed explanation of this
mechanism can be found in Scott �2003�. The test-
particle transport in stochastic magnetic fields has been
thoroughly studied �Rechester and Rosenbluth, 1978;
Krommes et al., 1983�.

For the Hamiltonian gyrocenter formulation of shear-
Alfvénic fluctuations, the effective gyrocenter perturba-
tion potential is �Hahm et al., 1988�

e
�gy = e�
�gc� +
e2
A�

2

2mc2 −
m

2
�
uE +

p�

m


B�

B
�2

, �49�

where the linear term retains full FLR effects while the
nonlinear terms are given in the drift-kinetic limit ���

→0�, with 
B���
A� � b̂ denoting the perturbed mag-
netic field.

These gyrokinetic Maxwell’s equations consist of the
gyrokinetic Poisson equation �29�, with the linear gyro-
center polarization vector expressed in terms of the gy-
rocenter electric-dipole moment

�gy � − e
�
�gy

�
E�

= −
mc2

B2 	��
� −
p�

mc
��
A�


=
cb̂

B
� 	m
uE + p�


B�

B

 , �50�

where magnetic-flutter motion along perturbed
magnetic-field lines contributes to the polarization den-
sity, and the gyrokinetic parallel Ampère equation

− ��
2 
A� = − 	�p

2

c2 

A� +
4�

c
�Ji� + Je��

+ 4� � · �Mgy � b̂� , �51�

where the parallel current densities Jj� �j= i or e� involve
moments of p� /mj, and the linear gyrocenter magnetiza-
tion vector

Mgy � − � e
 d3pf0	 �
�gy

�
B�



= �
 d3pf0	�gy �

p�

mc
b̂
 �52�

only displays the moving-electric-dipole contribution.
The explicit appearance of the collisionless skin depth
��p /c� on the right side of Eq. �51�, whose dominant
contribution comes from the electron species, might sug-
gest that it can be a characteristic correlation length for
electromagnetic turbulence in magnetized plasmas.
While this alone is not sufficient theoretical evidence,
turbulence at the scale of the collisionless skin depth has
been simulated �Yagi et al., 1995; Horton et al., 2000� and
measured in experiments �Wong et al., 1997�. This
canonical-momentum formulation has been widely used
for kink mode, classical tearing mode, and drift-tearing
mode nonlinear gyrokinetic simulations, as listed in
Table I.

The gyrokinetic energy invariant consistent with the
effective gyrocenter perturbation potential �49�, the gy-
rokinetic polarization density �50�, and the gyrokinetic
parallel magnetization current �52� includes the terms

e
�gy − e�Tgy
−1
�gc� = −

ep�

mc
�
A�gc� +

e2
A�
2

2mc2

+
1
2
	m�
uE�2 −

p�
2

mB2 �
B��2
 .

�53�

In the Hamiltonian gyrocenter model of shear-Alfvénic
fluctuations, the magnetic-flutter perturbed motion
changes the gyrocenter polarization density �50�, while
the perturbed E�B motion contributes to the gyro-
center magnetization current �52�. If one drops contribu-
tions to the gyrocenter polarization and magnetization
vectors that are subdominant compared to other terms
in the gyrokinetic Poisson-Ampère equations, they must
be dropped simultaneously in the effective gyrocenter
perturbation potential and the gyrokinetic invariant.
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2. Symplectic „v¸… formulation

While the Hamiltonian formulation has some compu-
tational advantages �Hahm et al., 1988� and is in an ex-
plicitly covariant form suitable for renormalization
�Krommes and Kim, 1988�, it is more straightforward to
identify the physical meaning of various terms in an al-
ternative “symplectic” �or vz� formulation. In the Hamil-
tonian formulation it is often cumbersome to calculate
the moment of p� numerically while using the analytic
expression ��p /c�2
A� that appears explicitly in
Ampère’s law �51�, up to an accuracy that is sufficient for
calculation of their difference, i.e., the moment of mv�

�Chen and Parker, 2001; Hammett, 2001; Chen et al.,
2003; Mishchenko et al., 2004; Lin, Wang, et al., 2005�. It
is more computationally efficient and easier to under-
stand the physics if a smaller term v� is used as an inde-
pendent variable. In the symplectic formulation, the per-
turbed parallel vector potential 
A� appears explicitly in

the gyrocenter Poisson bracket �where 
Agy= �
A�gc�b̂
and 
Bgy=��
Agy�, rather than in the gyrocenter
Hamiltonian. The resulting Euler-Lagrange equations
contain the induction part of the electric field with
��
A�gc� /�t, although this is not a computationally attrac-
tive feature. As discussed by Cummings �1995�, the pres-
ence of the term �
A�gy/�t in Eq. �27� makes the gyroki-
netic Vlasov equation unsuitable for numerical
integration by the method of characteristics. The per-
turbed parallel electric field 
E� from the generalized
parallel Ohm’s law should be calculated, which involves
the calculation of a parallel-pressure moment.

This symplectic version of the electromagnetic nonlin-
ear gyrokinetic equation is more suitable in showing its
relation to various reduced fluid equations by taking
moments of the nonlinear gyrokinetic Vlasov equation
�Brizard, 1992�. One of the key points in understanding
the shear-Alfvén physics in the context of the electro-
magnetic nonlinear gyrokinetic formulation is that the
“vorticity evolution” in the reduced MHD equation is
equivalent to the evolution of the ion polarization den-
sity that is the difference between the ion and electron
gyrocenter densities �Hahm et al., 1988; Brizard, 1992�. It
is straightforward to extend a simple illustration of de-
riving the vorticity evolution equation of reduced MHD
in Hahm et al. �1988� to include the gyrocenter drift due
to magnetic-field inhomogeneity �the driving term for
ballooning and interchange instability� and the variation
of the equilibrium current along the perturbed magnetic
field �the driving term for kink, tearing, and peeling in-
stabilities�.

For the symplectic formulation of shear-Alfvénic fluc-
tuations, the effective gyrocenter perturbation potential
is �Hahm et al., 1988�

e
�gy = e�
�gc� +
�

2B
�
B��2 −

m

2
�
uE + v�


B�

B
�2

,

�54�

where the linear term that retains full FLR effects in-
cludes only the perturbed electrostatic potential �the

symplectic perturbed magnetic potential 
Agy

��
A�gc�b̂ appears in the modified magnetic field �28�
and the inductive part �t�
A�gc� of the parallel perturbed
electric field� while the nonlinear terms in Eq. �54� are in
the drift-kinetic limit. The gyrokinetic Maxwell’s equa-
tions consist of the gyrokinetic Poisson equation �29�,
where the gyrocenter electric-dipole moment �gy is
given by Eq. �50�, and the gyrokinetic parallel Ampère
equation

− ��
2 
A� =

4�

c
�Ji� + Je�� + 4� � · �Mgy � b̂� , �55�

where the linear gyrocenter magnetization vector has
the moving-electric-dipole contribution shown in Eq.
�52� and an intrinsic gyrocenter magnetic-dipole mo-
ment contribution

�gy � − �

B�

B
. �56�

In the symplectic formulation, the skin-depth term is ab-
sent from the parallel Ampère equation �55� while a new
intrinsic magnetic-dipole moment �56� contributes to the
gyrocenter magnetization vector.

The gyrokinetic energy invariant consistent with the
effective gyrocenter perturbation potential �54�, the gy-
rokinetic polarization density, and the gyrokinetic paral-
lel magnetization current include the terms

e
�gy − e�Tgy
−1
�gc� =

�

2B
�
B��2 +

m

2
	�
uE�2

−
v�

2

B2 �
B��2
 . �57�

An energy-conserving set of nonlinear drift-Alfvén fluid
equations, with linear and nonlinear terms both ex-
pressed in the drift-kinetic limit, was derived by Brizard
�2005b� using variational methods.

D. Compressional magnetic fluctuations

The treatment of the compressional Alfvén wave is
beyond the scope of the low-frequency nonlinear gyro-
kinetic formulation. If ��k�vA, then � /��k�vA /�
�k��i /�1/2. Therefore, with the full gyrokinetic FLR de-
scription �k��i�1�, it is impossible to satisfy the low-
frequency gyrokinetic ordering � /��1 for a typical
value of ��1 encountered in magnetically confined
plasmas. To describe the compressional Alfvén wave, it
is necessary to use a drift-kinetic description �i.e., k��th
�1 for all particle species�. It has been shown that it is
possible to decouple the gyromotion from dynamics as-
sociated with high-frequency waves with � /��1 and
develop a high-frequency linear gyrokinetic equation
�Tsai et al., 1984; Lashmore-Davies and Dendy, 1989�. It
has also been shown that the phase-space Lagrangian
and Lie-transform perturbation method can be useful in
deriving the linear high-frequency gyrokinetic equation
in a more transparent way. It is instructive to follow the
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derivation of the compressional Alfvén wave linear dis-
persion relation from the high-frequency gyrokinetic ap-
proach �Qin et al., 1999�. A satisfactory nonlinear high-
frequency gyrokinetic formulation has not been derived
to date and progress in the linear high-frequency gyro-
kinetic formulation is not discussed in this review.

Although the compressional Alfvén wave does not ex-
ist within the nonlinear �low-frequency� gyrokinetic for-

mulation, the compressional component �
B� � b̂ ·
B� of
the perturbed magnetic field 
B, it becomes important
as the plasma � value is increased. The magnetic field

B� must be kept for a quantitatively accurate descrip-
tion of fluctuations in relatively high-� plasmas, for ex-
ample, those encountered in spherical tori including the
National Spherical Torus Experiment �Ono et al., 2003�
and the Mega-Amp Spherical Tokamak �Sykes et al.,
2001�.

The fully electromagnetic nonlinear gyrokinetic Vla-
sov equation is presented in Sec. V. We use the Hamil-
tonian gyrocenter model �with 
Agy�0� and express the
effective gyrocenter perturbation potential in the drift-
kinetic limit as

e
�gy = e	
� −
p�

mc

A�
 + �
B� +

e2
A�
2

2mc2 −
m

2
�
uE

+
p�

m


B�

B
�2

−
e

c

A� · 	
uE +

p�

m


B�

B

 . �58�

The linear perpendicular gyrocenter dynamics is repre-

sented by the linear perturbed E�B velocity �b̂
��
��, the linear magnetic-flutter velocity �v�
B��, and

the linear perturbed grad-B drift ��b̂��
B��. While in
most fusion plasmas �with ��1� the radial transport due
to this last term is subdominant to other transport
mechanisms driven by E�B transport and magnetic-
flutter transport, this drift can be important in geophys-
ical applications �Chen, 1999� and the cross-field diffu-
sion of cosmic rays due to turbulence �Otsuka and Hada,
2003�; linear gyrokinetic simulations are currently ex-
tended to high-� astrophysical plasmas �Howes et al.,
2006�. Although the nonlinear terms in the gyrocenter
potential �58� are small compared to the linear terms,
they play an important role in contributing to the gyro-
center polarization and �intrinsic� magnetization vectors

�gy =
cb̂

B
� 	 e

c

A� + m
uE + p�


B�

B

 , �59�

�gy = − �b̂ . �60�

The lowest-order contribution of the intrinsic magneti-
zation current in the perpendicular gyrokinetic Ampère
equation, derived from the gyrocenter magnetic-dipole
moment �60�, yields the perpendicular pressure balance
condition 
B� +4�
P� /B=0, where 
P� is the perturbed
perpendicular �total� pressure �Tang et al., 1980; Brizard,
1992�; a straightforward demonstration of this condition
can be found in Roach et al. �2005�. The corresponding
energy invariant includes the terms

e
�gy − e�Tgy
−1
�gc� = �
B� −

ep�

mc

A · 	b̂ +


B�

B



+
1
2
	m�
uE�2 −

p�
2

mB2 �
B��2
 .

�61�

The polarization velocity e−1��gy/�t based on Eq. �59�
includes the inductive part �b̂ /B���
A� /�t of the per-
turbed E�B velocity in addition to the polarization ve-

locity �b̂ /����
uE /�t. The variational expressions �59�
and �60� for the electric-dipole and magnetic-dipole mo-
ments are rederived in Appendix C by the push-forward
method.

E. Reduced fluid equations from moments of the nonlinear
gyrokinetic Vlasov equation

The need to carry out long-time simulations of turbu-
lent magnetized plasmas with increasingly realistic ge-
ometries has also been addressed by the development of
reduced nonlinear fluid models derived from perturba-
tive expansions of exact fluid models based on space-
time and amplitude orderings similar to the nonlinear
gyrokinetic orderings �5�–�8�. Examples of such nonlin-
ear reduced fluid models include the nonlinear reduced
MHD equations �Strauss, 1976, 1977�, the Hasegawa-
Mima nonlinear drift-wave equation �Hasegawa and
Mima, 1978�, and the Hasegawa-Wakatani FLR-
corrected nonlinear reduced fluid equations �Hasegawa
and Wakatani, 1983�.

While reduced fluid models cannot capture all kinetic
physics described by nonlinear gyrokinetic equations,
their use is justified for many applications �such as the
investigation of macroscopic MHD stability�. They are
also useful for turbulence studies due to their relative
simplicity and their closer connection to nonlinear theo-
ries that are primarily based on the E�B nonlinearity.
As a result, the knowledge gained in the fluid-turbulence
community can serve as a useful guide for plasma turbu-
lence studies.

An important class of reduced fluid models involves
the so-called gyrofluid models that are derived by taking
gyrocenter-velocity moments of the nonlinear gyroki-
netic Vlasov equation while keeping finite-gyroradius ef-
fects �Brizard, 1992�. One obtains a hierarchy of evolu-
tion equations for gyrocenter-fluid moments, i.e., for
density, parallel velocity, pressure, etc. To obtain a
closed set of these gyrofluid equations, one needs to in-
voke a closure approximation �i.e., expressions for
higher-order fluid moments in terms of lower-order fluid
moments�. In the simulation community, the so-called
Landau-closure approach that places emphasis on accu-
rate linear Landau damping and the linear growth rate
has been most widely adopted �Dorland and Hammett,
1993; Waltz et al., 1994; Beer, 1995; Snyder and Ham-
mett, 2001�. In this approach, some kinetic effects such
as linear Landau damping and a limited form of nonlin-
ear Landau damping �e.g., elastic Compton scattering�
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have been successfully incorporated in gyro-
fluid models. These models do not accurately treat the
strongly nonlinear wave-particle interactions �e.g., in-
elastic Compton scattering and trapping� �Sagdeev and
Galeev, 1969�. While more accurate closures involving
nonlinear kinetic effects �Mattor, 1992� and the treat-
ment of damped modes �Sugama et al., 2001� have been
developed, they have not been as widely used in simula-
tions as the Landau-closure-based models. To date, gy-
rofluid models cannot describe the zonal-flow damping
accurately and can overestimate the turbulence level
�Rosenbluth and Hinton, 1998�. More discussions on
zonal flows can be found in Appendix D.1, and a hierar-
chy of reduced kinetic and fluid models has been sum-
marized by Diamond et al. �2005�.

While a complete survey of collisionless and colli-
sional reduced fluid models is beyond the scope of the
present review of nonlinear gyrokinetic theory, it is in-
structive to see how nonlinear gyrokinetic theory is con-
nected to nonlinear reduced fluid models. For this pur-
pose �and using standard normalizations used in reduced
fluid models that are presented below�, the nonlinear
gyrocenter-fluid equations derived from moments of the
nonlinear gyrokinetic Vlasov equation are compared
with the normalized Hasegawa-Mima equation �Hase-
gawa and Mima, 1978�,

d

dt
�
� − ��

2 
�� = �̂*
� , �62�

and the normalized �collisionless� Hasegawa-Wakatani
equations �Hasegawa and Wakatani, 1983�,

− ����
2 
A� = 	 d

dt
+ �̂*

p�i�
��
2 
� − ���

2 
�,
p�i�x

− � ��̂�
p� + �̂�
p�� , �63�

�
A�

�t
= − ���
� − 
p�e� + �̂*

p�e�
A� , �64�

dp�i

dt
=

dp�i

dt
=

dpi

dt
= 0, �65�

dp�e

dt
=

dp�e

dt
=

dpe

dt
= − ����

2 
A� . �66�

Here the normalizations are standard �i.e., space-time
scales are ordered with �s=�−1�Te0 /mi and �−1, 
�
��
Te0 /e, 
A� ��
B0�s, etc.�, the normalized linear op-

erators are the drift operator �̂*= b̂0��ln n0 ·��, the

diamagnetic operator �̂*
p�j�= b̂0��ln pj0 ·��, the �B op-

erator �̂�= b̂0��ln B0 ·��, and the curvature operator

�̂�= b̂0� �b̂0 ·�b̂0� ·��, while the nonlinear operators

d /dt and b̂ ·� are defined as

d

dt
�

�

�t
+ �
�, �x and �� � b̂0 · �− �
A�, �x,

where �f ,g�x� b̂0 · ��f��g� is the normalized spatial
Poisson bracket. The Hasegawa-Mima equation �62� is
the paradigm model equation describing nonlinear drift-
wave dynamics of electrostatic fluctuations assuming
adiabatic electrons �
ne=
�� in a neutralizing cold-ion
fluid background with uniform magnetic field. On the
other hand, the Hasegawa-Wakatani equations �63�–�66�
that contain the low-beta reduced MHD equations
�Strauss, 1976� d��

2 
� /dt=−����
2 
A� and �
A� /�t

=−��
� include the vorticity equation �63�, the parallel
Ohm’s law �64�, the incompressible isotropic ion pres-
sure equation �65�, and the isothermal isotropic electron
pressure equation �66�. The vorticity equation �63� can
be derived from the ion fluid equation of motion either
by taking the parallel component of the ion fluid vortic-

ity b̂0 ·��
u=��
2 
�, where the ion velocity is given as

the perturbed E�B velocity 
u= b̂0��
�, or by using
the quasineutrality condition and the charge conserva-
tion law � ·
J=0, which follows from the gyrokinetic
Ampère equation �4�, where the net perturbed current


J=
J�b̂+
J� is defined in terms of the parallel current
contribution 
J� �−��

2 
A� and the perpendicular current

J� expressed as the sum of the perturbed guiding-
center current, the perturbed magnetization current, and
the polarization current.

Reduced nonlinear fluid models such as the
Hasegawa-Mima equation �62� and the Hasegawa-
Wakatani equations �63�–�66� have proved successful in
the analysis of turbulent magnetized plasmas in the pres-
ence of drift-wave �electrostatic� fluctuations and drift-
Alfvén fluctuations, respectively. Both sets presented
here contain the polarization nonlinearity �
� ,��

2 
��x
that plays a crucial role in spectral transfer and possibly
in self-sustaining turbulence �Scott, 1990�. For the zonal
�poloidally and toroidally symmetric� part of the poten-
tial evolution, this term describes the vorticity transport,
which is responsible for zonal flow amplification �Dia-
mond et al., 1993; Diamond, Lebedev, et al., 1994�.

These nonlinear reduced fluid models can be obtained
from the nonlinear gyrokinetic Vlasov-Maxwell equa-
tions based on Eqs. �26�, �27�, �29�, and �31�. We consider
moments of the gyrokinetic Vlasov equation �Brizard,
1992�

����
�t

+ � · �Ẋ�� = �d�

dt
� , �67�

where the gyrocenter phase-space functions �
= „1,v� ,�B ,m�v� −U��2 , . . . … are used to calculate the gy-
rofluid moments �� � = �N ,NU� ,P� ,P� , . . . �. To lowest or-
der in the FLR expansion and in the absence of com-
pressional magnetic fluctuations �
B� =0�, the electron
gyrofluid moments are identical to the electron fluid mo-
ments �i.e., Ne=ne, U�e=u�e , . . .�, and the normalized elec-
tron fluid equations are
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d
ne

dt
= − ��
u�e + ��̂* − ��̂� + �̂���
�

+ ��̂�
p�e + �̂�
p�e� , �68�

�
A�

�t
= − ���
� − 
p�e� + �̂*

p�e�
A� , �69�

d
pe

dt
= �̂*

p�e�
� − ��
u�e. �70�

The compressibility of the perturbed E�B velocity is
represented by the term ��̂�+ �̂��
� in the perturbed
electron continuity equation �68�, where the last term
represents the divergence of the electron diamagnetic
current, and the electron parallel velocity equation �in
the absence of electron inertia, me→0� yields the paral-
lel Ohm’s law �68�.

The ion gyrofluid equations for the perturbed ion gy-
rofluid density 
Ni and the perturbed gyrofluid pressures

P�i and 
P�i can be written in terms of the perturbed
ion fluid density 
ni and the perturbed isotropic ion fluid
pressure 
p�i=
p�i=
pi by making use of the normal-
ized FLR expansions


Ni = 
ni − ��
2 	
� +

1
2


pi
 ,


P�i = 
pi − ��
2 �2
� + 2
pi − 
ni� ,


P�i = 
pi − ��
2 	
� + 
pi −

1
2


ni
 , �71�

where the term ��
2 
� denotes the first-order FLR cor-

rection associated with polarization effects. Several re-
duced fluid models have neglected the perturbed ion
parallel dynamics �i.e., 
u�i�0� and the normalized
Ampère equation is

��
2 
A� = − 
J� � 
u�e. �72�

Hence, the ion gyrofluid continuity equation becomes

d
ni

dt
= ��̂* − ��̂� + �̂���
� − ��̂�
p�i + �̂�
p�i�

+ 	 d

dt
+ �̂*

p�i�
��
2 
� − ���

2 
�,
p�i�x, �73�

while the incompressible isotropic ion pressure equation
becomes

d
pi

dt
= �̂*

p�i�
� . �74�

The gyrofluid equations �68�–�74� were presented in
greater generality in Brizard �1992�, where the per-
turbed ion parallel dynamics and compressional mag-
netic fluctuations were retained.

The Hasegawa-Mima equation �62� and the
Hasegawa-Wakatani equations �63�–�66� are contained
in the gyrofluid equations �68�–�70�, �73�, and �74�. By

combining the quasineutrality condition 
ni=
ne with
the electron adiabatic response 
ne=
� �in the presence
of a neutralizing cold-ion fluid in a uniform magnetic
field�, the ion gyrofluid continuity equation �73� yields
the Hasegawa-Mima equation �62�, where d
ni /dt
=d
� /dt. To obtain the Hasegawa-Wakatani vorticity
equation �63�, the electron continuity equation �68� is
subtracted from the ion continuity equation �73� and we
make use of the quasineutrality condition 
ni=
ne and
the perturbed Ampère’s law, ��

2 
A� =
u�e. The remain-
ing Hasegawa-Wakatani equations are found in Eqs.
�69�, �70�, and �74�.

There are other reduced nonlinear fluid equations,
such as the four-field model of Hazeltine et al. �1985� and
the Yagi-Horton �1994� model that generalize the non-
linear reduced MHD equations by capturing the differ-
ence between ion and electron dynamics �i.e., a two-fluid
approach�, but with less emphasis on the finite ion-
gyroradius effects. The hierarchy of various nonlinear
governing equations is briefly summarized in a recent
review by Diamond et al. �2005�. Roughly speaking,
while fluid approaches �other than Landau-closure-
based models for core turbulence applications� are justi-
fied by taking collisions into account �Braginskii, 1965�,
the presence of strong magnetic fields makes fluid de-
scriptions justifiable for the dynamics across the mag-
netic field. Nonlinear fluid models have been extended
to the long-mean-free-path “banana” collisionality re-
gime as well; these models are called neoclassical MHD
models �Callen and Shaing, 1985; Connor and Chen,
1985�, and have been very useful as a starting point of
the studies on neoclassical tearing modes �which are
driven by the expansion free energy in the pressure gra-
dient�. A useful discussion of the physics and derivation
of the MHD equations has been given by Kulsrud
�1983�. Since the energy-conservation property of a non-
linear reduced fluid model is often a critical component
of its usefulness in simulations of turbulent magnetized
plasmas, the derivation of energy-conserving reduced
fluid models is a topic of active research �Strintzi and
Scott, 2004; Brizard, 2005b; Strintzi et al., 2005�.

IV. LIE-TRANSFORM PERTURBATION THEORY

After having presented some simple forms of the non-
linear gyrokinetic equations in the previous section, this
section focuses on the transformations from particle to
gyrocenter phase-space coordinates that allow the dy-
namical reduction of the original Vlasov-Maxwell equa-
tions to generate energy-conserving nonlinear gyroki-
netic Vlasov-Maxwell equations.

We begin with a brief introduction to the extended
phase-space Lagrangian formulation of charged-particle
dynamics in a time-dependent electromagnetic field. The
electromagnetic field is represented by the potentials
A�= �� ,A�, while the eight-dimensional extended
phase-space noncanonical coordinates Za= �x� ;p��
��ct ,x ;w /c ,p� include the position x of a charged par-
ticle �mass m and charge e�, its kinetic momentum p
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=mv, and the canonically conjugate energy-time �w , t�
coordinates. We use the convenient Minkowski space-
time metric g=diag�−1,1 ,1 ,1� whenever we need a con-
cise covariant expression.12 The use of an eight-
dimensional representation of phase space is motivated
by that, in the presence of time-dependent electromag-
netic fields, the energy of a charged particle is no longer
conserved but instead changes according to an addi-
tional Hamilton’s equation dw /dt�e�� /�t, where ���
−A ·v /c=−A�v� /c is the effective electromagnetic po-
tential. By introducing the canonical pair �w , t�, where
the energy coordinate w=E is equal to the conserved
energy in the time-independent case, new extended
Hamilton’s equations for charged-particle motion in
time-dependent electromagnetic fields can be written.

The complete representation of the Hamiltonian dy-
namics of a charged particle in an electromagnetic field
�represented by the four-potentials A�� is expressed in
terms of a Hamiltonian function H and a Poisson-
bracket structure � , � that satisfies the following proper-
ties �valid for arbitrary functions f, g, and h�: antisymme-
try property

�f,g� = − �g,f� , �75�

the Leibnitz rule

�f,�gh�� = �f,g�h + g�f,h� , �76�

and the Jacobi identity

0 = �f,�g,h�� + �g,�h,f�� + �h,�f,g�� . �77�

We introduce the general form for the Poisson bracket
�f ,g�,

�f,g� �
�f

�ZaJab �g

�Zb , �78�

where Jab denotes the components of the Poisson tensor.
The bilinear form of the Poisson bracket �78� automati-
cally satisfies the Leibnitz rule �76�, the antisymmetry
property �75� requires that the Poisson tensor be anti-
symmetric Jba=−Jab, and the Jacobi identity �77� re-
quires that

0 = Ja���Jbc + Jb���Jca + Jc���Jab, �79�

where ���� /�Z�. We note that the extended canonical
Poisson tensor

Jcan =�
0 0 g 0

0 0 0 g

− g 0 0 0

0 − g 0 0
�

immediately satisfies all three properties.

Hamilton’s equations are then expressed as Ża

= �Za ,H�=Jab�bH in terms of the extended-phase-space
Hamiltonian

H�Z� =
�p�2

2m
+ e� − w � H�z,t� − w , �80�

where H�z , t� denotes the standard time-dependent
Hamiltonian and the physical single-particle motion
takes place on the subspace

H�Z� = H�z,t� − w = 0. �81�

Within the canonical formalism, the Poisson-bracket
structure is independent of the electromagnetic field and
the Hamiltonian depends explicitly on the electromag-
netic potentials �� ,A�. Within the noncanonical formal-
ism, however, the Hamiltonian only retains its depen-
dence on the electrostatic potential � and derivatives of
the magnetic potential A appear in the Poisson-bracket
structure.

A. Single-particle extended Lagrangian dynamics

The extended-phase-space Lagrangian, or Poincaré-
Cartan differential one-form �Arnold, 1998�, for a
charged particle in eight-dimensional extended phase
space is expressed in noncanonical form as

�̂ = 	 e

c
A + p
 · dx − wdt − Hd�

� �a�Z�dZa − H�Z�d� , �82�

where �a are the symplectic components of the

extended-phase-space Lagrangian �̂ and � is the Hamil-
tonian orbit parameter. In Eq. �82�, d denotes an exterior
derivative with the property

d2f = d��afdZa� = �ab
2 fdZa ∧ dZb = 0, �83�

which holds for any scalar field f, where the wedge prod-
uct ∧ is antisymmetric �i.e., df∧dg=−dg∧df�; we will use
the standard-derivative notation d whenever the
exterior-derivative properties are not involved �see Ap-
pendix A for further details�. As a result of property
�83�, an arbitrary gauge term dS may be added to the
extended-phase-space Lagrangian �82� without modify-
ing the Hamiltonian dynamics.

To obtain the extended Hamilton’s equations of mo-
tion from the phase-space Lagrangian �82�, we introduce
the single-particle action integral

S =
 �̂ = 

�1

�2 	�a

dZa

d�
− H
d� , �84�

where the end points �1 and �2 are fixed. Hamilton’s

principle 
S=�
�̂=0 for single-particle motion in ex-
tended phase space yields

12Summation over repeated indices is, henceforth, implied
and latin letters a ,b ,c , . . . go from 1 to 8 while greek letters
� ,� , . . . go from 0 to 3.

441A. J. Brizard and T. S. Hahm: Foundations of nonlinear gyrokinetic theory

Rev. Mod. Phys., Vol. 79, No. 2, April–June 2007



0 =
 	
Za ��b

�ZadZb + �ad
Za − 
Za
�H
�Zad�


=
 
Za��abdZb −
�H
�Zad�� , �85�

where

�ab �
��b

�Za −
��a

�Zb �86�

denotes a component of the 8�8 antisymmetric
Lagrange two-form ��d� �Goldstein et al., 2002�, and
integration by parts of the second term was performed
�with the usual assumption of virtual displacements 
Za

vanishing at the end points�. Hence, stationarity of the
particle action �84� yields the extended phase-space
Euler-Lagrange equations

�ab

dZb

d�
=

�H
�Za . �87�

For regular �nonsingular� Lagrangian systems, the
Lagrange matrix � is invertible. The components of the
inverse of the Lagrange matrix J��−1, known as the
antisymmetric Poisson matrix, are the fundamental Pois-
son brackets

��−1�ab � �Za,Zb� = Jab�Z� . �88�

Using the identity relation

Jca�ab = 
b
c , �89�

the Euler-Lagrange equations �87� become the extended
Hamilton’s equations

dZa

d�
= Jab

�H
�Zb = �Za,H� . �90�

Using the identity �89�, it can be shown that the Jacobi
identity �79� holds if the Lagrange matrix satisfies the
identity d�=0, or

�a�bc + �b�ca + �c�ab = 0, �91�

which is automatically satisfied since ��d� is an exact
two-form �i.e., �ab=�a�b−�b�a�. Hence, any Poisson
bracket derived through the sequence �→�=d�→J
=�−1 automatically satisfies the Jacobi identity �77�.

Using the symplectic part of the extended phase-space
Lagrangian �82�, the Lagrange two-form ��d� is

� = dp� ∧ dx� +
e

2c
�ijkBkdxi ∧ dxj −

e

c

�Ai

�t
dxi ∧ dt ,

�92�

from which, using the inverse relation �88�, we construct
the extended noncanonical Poisson bracket

�f,g� =
�f

�x�

�g

�p�

−
�f

�p�

�g

�x� +
eB
c

·
�f

�p
�

�g

�p

−
e

c

�A
�t

· 	 �f

�w

�g

�p
−

�f

�p
�g

�w

 . �93�

The Hamiltonian dynamics in extended phase space is
expressed as

dx
dt

=
�H
�p

= v ,

dp
dt

= − �H +
e

c
	 �A

�t

�H
�w

+
�H
�v

� B
 = e	E +
v
c

� B
 ,

dw

dt
=

�H
�t

−
e

mc

�A
�t

·
�H
�v

= e	 ��

�t
−

v
c

·
�A
�t

 ,

where the Hamilton equation dt /d�= �t ,H�= +1 was
used to substitute the orbit parameter � with time t.

B. Perturbation theory in extended phase space

A variational formulation of single-particle perturba-
tion theory, where the small dimensionless ordering pa-
rameter � is used as a measure of the amplitude of the
fluctuating electromagnetic fields, can be introduced
through the new phase-space Lagrangian one-form
�Brizard, 2001�

�̂� � �adZa − Hd� − Sd� , �94�

where the symplectic components �a and the Hamil-
tonian H now depend on the perturbation parameter �
�e.g., either �B or �
� and the scalar field S is the gener-
ating function for an infinitesimal canonical transforma-
tion that smoothly deforms a particle’s extended phase-
space orbit from a reference orbit �at �=0� to a
perturbed orbit �for ��0�. From the phase-space La-
grangian �94�, we construct the action path integral SC�

=�C�̂� evaluated along a fixed path C in the �� ,�� param-
eter space.

The modified principle of least action for perturbed
single-particle motion in extended phase space,

0 =
 
Za��abdZb −
�H
�Zad� − 	 �S

�Za +
��a

��

d�� ,

whose derivation is similar to Eq. �85�, now yields the
extended perturbed Hamilton’s equations,

dZa

d�
= �Za,H� , �95�

dZa

d�
= �Za,S� −

��b

��
�Zb,Za� , �96�

where Eq. �95� is identical to Eq. �90� except that the
extended Hamiltonian H and symplectic components �a
now depend on the perturbation parameter �, while Eq.
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�96� determines how particle orbits evolve under the
perturbation � flow.

The order of time evolution �� flow� and perturbation
evolution �� flow� is not physically relevant. The commu-
tativity of the two Hamiltonian �� ,�� flows leads to the

path independence of the action integral ��̂� in the two-
dimensional �� ,�� orbit-parameter space. Considering

two arbitrary paths C and C̄ with identical end points on
the �� ,�� parameter space and calculating the action

path integrals SC� =�C�̂� and S
C̄
� =�C̄�̂�, the path-

independence condition S
C̄
� =SC� leads, by applying

Stokes’s theorem for differential one-forms �Flanders,
1989�, to the condition

0 = 

C

�̂� − 

C̄

�̂� � �
�D

�̂� = 

D

d�̂�,

where D is the area enclosed by the closed path �D

�C− C̄. Here the two-form d�̂� on the �� ,�� parameter
space is

d�̂� = d� ∧ d��dZa

d�
�ab

dZb

d�
− 	 �H

��
+

�H
�Za

dZa

d�



+ 	 �S
�Za +

��a

��

dZa

d�
�

� d� ∧ d�	�S,H� −
�H
��

+
��a

��
�Za,H�
 ,

where Eqs. �95� and �96� were used. The condition of

path independence requires that d�̂�=0, yielding the
Hamiltonian perturbation equation

dS
d�

� �S,H� =
�H
��

−
��a

��
�Za,H� , �97�

relating the generating scalar field S to the perturbation-
parameter dependence of the extended Hamiltonian
���H=�1+ ¯ � and Poisson bracket ����a=A1 ·�x /�Za

+ ¯ �. The perturbed evolution operator d /d�=d0 /d�
+¯ and the generating function S=S1+¯ are expanded
in powers of �, with the lower-order operator d0 /d� con-
sidered to be explicitly integrable. In practice, the first-
order term S1 is solved explicitly as

S1 � 	 d0

d�

−1�e�1 − eA1 ·

v0

c
� , �98�

where v0�d0x /d�= �x ,H0� denotes the particle’s unper-
turbed velocity. In order to determine higher-order Sn
terms �for n�2�, however, a more systematic approach,
based on applications of the Lie-transform perturbation
method, is required.

C. Near-identity phase-space transformations

The Hamiltonian perturbation equation �97� arises
naturally within the context of the dynamical reduction
of single-particle Hamilton equations �95� through the

decoupling of fast orbital time scales from the relevant
electromagnetic fluctuation time scales. The most effi-
cient method for deriving reduced Hamilton equations is
based on the Hamiltonian �Cary and Kaufman, 1981;
Lichtenberg and Lieberman, 1984� or the phase-space
Lagrangian �Cary and Littlejohn, 1983� Lie-transform
perturbation methods.13

The process by which a fast time scale is removed

from Hamilton’s equations Ża= �Za ,H� involves a near-
identity transformation on extended particle phase
space �Littlejohn, 1982a�,

T�:Z → Z̄�Z ;�� � T�Z , �99�

with Z�Z ;0�=Z, and its inverse

T�
−1:Z̄ → Z�Z̄ ;�� � T�

−1Z̄ , �100�

with Z�Z̄ ;0�= Z̄, where ��1 denotes a dimensionless or-
dering parameter. By adopting the techniques of Lie-
transform perturbation theory, these phase-space trans-
formations are expressed in terms of generating vector
fields �G1 ,G2 , . . . � as

T�
±1 � exp	±�

n=1

�

�nGn · d
 , �101�

where the nth-order generating vector field Gn is chosen
to remove the fast time scale at order �n from the per-
turbed Hamiltonian dynamics. The near-identity trans-
formations �99� and �100� are explicitly written as

Z̄a�Z,�� = Za + �G1
a + �2	G2

a +
1
2

G1
b�G1

a

�Zb
 + ¯ �102�

and

Za�Z̄,�� = Z̄a − �G1
a − �2	G2

a −
1
2

G1
b�G1

a

�Z̄b
 + ¯ �103�

up to second order in the perturbation analysis. The new
extended phase-space coordinates include the pair of

fast action-angle coordinates �J̄g� �̄B /� , �̄� and the re-

duced phase-space coordinates Z̄R such that the mag-
netic moment �̄= �̄0+��̄1+¯ is an exact invariant of the
reduced Hamiltonian dynamics and the Hamiltonian dy-

namics of the reduced coordinates Z̄R is independent of

the fast angle �̄.
Using the transformation �99�, the pull-back operator

on scalar fields �Abraham and Marsden, 1978; Little-
john, 1982a� induced by the near-identity transformation
is defined as �99�

13Hamiltonian Lie-transform perturbation theory is a special
case of phase-space Lagrangian Lie-transform perturbation
theory, in which the Poisson-bracket—or symplectic—
structure is unperturbed.
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T�:F̄ → F � T�F̄ , �104�

i.e., the pull-back operator T� transforms a scalar field F̄
on the phase space with coordinates Z̄ into a scalar field
F on the phase space with coordinates Z,

F�Z� = T�F̄�Z� = F̄�T�Z� = F̄�Z̄� .

Using the inverse transformation �100�, the push-
forward operator is defined as �Littlejohn, 1982a�

T�
−1:F → F̄ � T�

−1F , �105�

i.e., the push-forward operator T�
−1 transforms a scalar

field F on the phase space with coordinates Z into a

scalar field F̄ on the phase space with coordinates Z̄,

F̄�Z̄� = T�
−1F�Z̄� = F�T�

−1Z̄� = F�Z� .

The pull-back and push-forward operators are illus-
trated in Fig. 5.

The pull-back and push-forward operators can
be used to transform an arbitrary operator C :F�Z�
→C�F��Z� acting on the extended Vlasov distribution
function F. First, since C�F��Z� is a scalar field, it trans-

forms to T�
−1C�F��Z̄� with the help of the push-forward

operator �105�. Next, we replace the extended Vlasov
distribution function F with its pull-back representation

F=T�F̄ and define the transformed operator C� as

C��F̄� � T�
−1�C�T�F̄�� . �106�

This induced transformation is applied to the Vlasov
equation in extended phase space,

dF
d�

� �F,H�Z = 0, �107�

where d /d� defines the total derivative along a particle
orbit in extended phase space and � , �Z denotes the ex-
tended Poisson bracket on the original extended phase
space �with coordinates Z�. Hence, the transformed Vla-
sov equation is written as

0 =
d�F̄
d�

� T�
−1	 d

d�
T�F̄
 = �F̄,H̄�Z̄, �108�

where the total derivative along the transformed particle
orbit d� /d� is defined in terms of the transformed Pois-
son bracket � , �Z̄ and the transformed Hamiltonian

H̄ � T�
−1H . �109�

The transformation of the Poisson bracket by Lie-
transform methods is performed through the transfor-
mation of the extended phase-space Lagrangian, ex-
pressed as

�̄ = T�
−1� + dS , �110�

where S denotes a �canonical� scalar field used to sim-
plify the transformed phase-space Lagrangian �110�, i.e.,
it has no impact on the new Poisson-bracket structure

�̄ = d�̄ = d�T�
−1�� = T�

−1d� � T�
−1� , �111�

since d2S=0 �i.e., �ab
2 S−�ba

2 S=0� and T�
−1 commutes with

d �see Appendix A�.
Note that the extended-Hamiltonian transformation

�109� may be reexpressed in terms of the regular Hamil-

tonians H and H̄ as

H̄ = T�
−1H −

�S
�t

, �112�

where S is the canonical scalar field introduced in Eq.
�110�; note the similarity with Eq. �25�. The new ex-
tended phase-space coordinates are chosen so that

d�Z̄a /d�= �Z̄a ,H̄�Z̄ are independent of the fast angle �̄
and the adiabatic invariant �̄ satisfies the exact equation
d��̄ /d��0. The dynamical reduction of single-particle
Hamiltonian dynamics has been successfully achieved by
phase-space transformation via the construction of a fast

invariant �̄ with its canonically conjugate fast angle �̄
becoming an ignorable coordinate.

D. Lie-transform methods

In Lie-transform perturbation theory �Littlejohn,
1982a�, the pull-back and push-forward operators �104�
and �105� are expressed as Lie transforms,

T�
±1 � exp	±�

n=1
�nL� n
 , �113�

where L� n denotes the Lie derivative generated by the
nth-order vector field Gn �Abraham and Marsden, 1978�.
A Lie derivative is a special differential operator that
preserves the tensorial nature of the object it operates
on �see Appendix A for more details�. In Eq. �109�, for
example, the Lie derivative L� nH of the scalar field H is
defined as the scalar field

FIG. 5. The phase-space transformation Z̄=TZ and its inverse
Z=T−1Z̄ induce a pull-back operator F=TF̄ and a push-
forward operator F̄=T−1F.
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L� nH � Gn
a�aH . �114�

In Eq. �110� the Lie derivative L� n� of a one-form �
��adZa is defined as the one-form �Abraham and Mars-
den, 1978�

L� n� � Gn · d� + d�Gn · �� = �Gn
a�ab + �b�Gn

a�a��dZb,

�115�

where �ab��a�b−�b�a are the components of the two-
form ��d�. At each order �n, the terms d�Gn ·�� can be
absorbed in the gauge term dSn in Eq. �110�.

1. Transformed extended Poisson-bracket structure

We now write the extended phase-space Lagrangian
���0+��1 and the extended Hamiltonian H�H0
+�H1 in terms of an unperturbed �zeroth-order� part
and a perturbation �first-order� part. The Lie-transform
relations associated with Eq. �110� are expressed �up to

second order in �� as �̄0a��0a and

�̄1 = �1 − G1 · �0 + dS1, �116�

�̄2 = − G2 · �0 − 1
2G1 · ��1 + �̄1� + dS2. �117�

A general form for the new Poisson bracket � , �Z̄ is ob-
tained by allowing the new phase-space Lagrangian to

retain symplectic perturbation terms �̄� �̄0+��̄1. By
choosing a specific form for the perturbed gyrocenter

symplectic structure �̄1, Eqs. �116� and �117� can be
solved for the generating vector field �G1 ,G2� expressed
in terms of the scalar fields �S1 ,S2�. The new phase-space

Lagrangian �̄� �̄R+ J̄gd�̄, where the reduced phase-

space Lagrangian �̄R is independent of the fast angle �̄
and, by application of the Noether theorem �Cary, 1977�,
the canonically conjugate action J̄g is an invariant �i.e.,

dJ̄g /dt= �J̄g ,H̄�Z̄�0�.
The first-order generating vector field G1 needed to

obtain the gyrocenter extended phase-space Lagrangian
�116� is

G1
a = �S1,Za�0 + ��1b − �̄1b�J0

ba, �118�

where � , �0 is the Poisson-bracket structure associated
with the unperturbed Poisson matrix J0

ab. The generating
vector field �118� is divided into two parts: a canonical
part generated by the gauge function S1 and a symplectic

part generated by the difference ��1b��1b− �̄1b be-
tween the old and new phase-space Lagrangian symplec-
tic components.

For the second-order generating vector field G2, the

condition �̄2�0 yields the following solution for G2 in
terms of the scalar field S2:

G2
a = �S2,Za�0 − 1

2G1
b��1bc + �̄1bc�J0

ca, �119�

where �1bc and �̄1bc are components of the first-order
perturbed Lagrange matrices. The second-order gener-

ating field �119� is, once again, divided into a canonical
part �generated by S2� and a symplectic part �generated

by �1b and �̄1b�.
The near-identity extended-phase-space transforma-

tion �102� is expressed in terms of the asymptotic expan-
sion

Z̄a = Za + ���S1,Za�0 + ��1bJ0
ba� + O��2� , �120�

and its explicit expression requires a solution of the sca-
lar fields �S1 , . . . �; for most practical applications, how-
ever, only the first-order function S1 is needed.

2. Transformed extended Hamiltonian

By substituting the generating vector fields �118� and
�119� into the Lie-transform relations associated with
Eq. �109�,

H̄1 = H1 − G1 · dH0, �121�

H̄2 = − G2 · dH0 − 1
2G1 · d�H1 + H̄1� , �122�

the first-order and second-order terms in the trans-
formed extended Hamiltonian are obtained,

H̄1 = H1 − ��1a − �̄1a�Ż0
a − �S1,H0�0

� �K1 + �̄1aŻ0
a� − �S1,H0�0 �123�

and

H̄2 = − �S2,H0�0 − 1
2G1

a�a�K1 + K̄1�

− 1
2G1

b���1b + �̄1b�,H0�0

− 1
2 ��1b + �̄1b��G1

a�aŻ0
b� , �124�

where we have used the Poisson-bracket properties

�75�–�77�. In Eqs. �123� and �124�, Ż0
a��Za ,H0�0 denotes

the zeroth-order Hamilton equations and

K1 � H1 − �1aŻ0
a �125�

denotes the effective first-order Hamiltonian �and K̄1

�H̄1− �̄1aZ0
a�. The choice of �̄1, that is relevant only for

magnetic perturbations affects both the new Poisson-

bracket structure � , �Z̄ and the new Hamiltonian H̄
�H̄− w̄.

The two Hamiltonian relations �123� and �124� contain
terms on the right side that exhibit both fast and slow
time-scale dependence: the slow-time-scale terms are ex-

plicitly identified with the new Hamiltonian term H̄n on
the left side, while the fast-time-scale terms are used to
define the gauge function Sn. The solution for the new
first-order Hamiltonian �123� is expressed in terms of the
fast-angle averaging operation �¯� as

H̄1 � �K1� + �̄1aŻ0
a, �126�

where the Poisson bracket � , � henceforth denotes the
zeroth-order Poisson bracket � , �0 �unless otherwise
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noted� and S1 can be chosen such that �S1��0. The first-
order gauge function S1 is determined from the pertur-
bation equation

d0S1

d�
� �S1,H0� = K̃1 � K1 − �K1� , �127�

whose solution is S1��d0 /d��−1K̃1, where �d0 /d��−1 de-
notes integration along an unperturbed extended Hamil-
tonian orbit. This formal solution is identical to the so-
lution �98� obtained using variational methods. To
lowest order in the fast orbital time scale, the unper-
turbed integration

S1 = �d0/d��−1K̃1 � �−1
 K̃1d�̄ �128�

involves an indefinite fast-angle integration, where �

�d0�̄ /dt denotes the fast-angle frequency; note that the
solution �128� for the first-order gauge function S1 does

not depend on the choice of �̄1.
The solution for the new second-order Hamiltonian

�124� yields the fast-angle-averaged expression

H̄2 = − 1
2 �ˆS1,�S1,H0�‰� − ���1a�Za,K1��

− 1
2 ���1aJ0

ab���1b + �̄1b�,H0��

− 1
2 ���1a�Za,Ż0

b���1b + �̄1b�� , �129�

where the first term corresponds to the standard qua-
dratic ponderomotive Hamiltonian �Cary and Kaufman,
1981�. The remaining terms �which depend on the sym-

plectic choice �̄1� will be discussed below. The second-
order gauge function S2 appearing in Eq. �124� is not
needed in what follows since the phase-space transfor-
mation from guiding-center to gyrocenter coordinates is
only needed to first order in �
.

E. Reduced Vlasov-Maxwell equations

Having derived an expression for the reduced Hamil-

tonian, H̄= �H̄0− w̄�+�H̄1+�2H̄2+¯, where the pertur-
bation terms are given in Eqs. �126� and �129�, expres-
sions for the self-consistent reduced Vlasov-Maxwell
equations are now derived.

The extended Vlasov equation �107� may be con-
verted into the regular Vlasov equation. In order to sat-
isfy the physical constraint �81�, the extended Vlasov dis-
tribution is

F�Z� � c
�w − H�z,t��f�z,t� , �130�

where f�z , t� denotes the time-dependent Vlasov distri-
bution on regular phase space z= �x ,p�. By integrating
the extended Vlasov equation �107� over the energy co-
ordinate w �and using d�=dt�, the regular Vlasov equa-
tion is obtained

0 =
df

dt
�

�f

�t
+

dz
dt

·
�f

�z
. �131�

The push-forward transformation of the extended Vla-
sov distribution �130� yields the reduced extended Vla-
sov distribution,

F̄�Z̄� � c
�w̄ − H̄�z̄,t��f̄�z̄,t� , �132�

where the reduced extended Hamiltonian H̄�H̄�z� , t�
− w̄ is defined in Eq. �109�. The extended reduced Vlasov
equation

d�F̄
d�

� �F̄,H̄�� = 0 �133�

can then be converted into the regular reduced Vlasov
equation by integrating it over the reduced energy coor-
dinate w̄, yielding the reduced Vlasov equation

0 =
d�f̄

dt
�

�f̄

�t
+

d�z̄
dt

·
�f̄

�z̄
, �134�

where f̄�z̄ , t� is the time-dependent reduced Vlasov dis-
tribution on the new reduced phase space. The pull-back
and push-forward operators play a fundamental role in
the transformation of the Vlasov equation to the re-
duced Vlasov equation.

We then investigate how the pull-back and push-
forward operators �113� are used in the transformation
of Maxwell’s equations,

� · E = 4�� , �135�

� � B −
1

c

�E
�t

=
4�

c
J , �136�

where the charge-current densities

	�

J

 = � e
 d4pF	1

v

 �137�

are defined in terms of the extended Vlasov distribution
F �with d4p=c−1dwd3p� and the electric and magnetic
fields E�−��−c−1�A /�t and B���A satisfy the con-
straints � ·B=0 and ��E+c−1�tB=0.

The charge-current densities �137� can be expressed in
terms of the general expression

�v���r� � 
 d3pv�f =
 d4pv�F

=
 d3x
 d4pv�
3�x − r�F , �138�

where time dependence is omitted for clarity �since time
itself is unaffected by the transformations considered
here�, v�= �c ,v�, and the delta function 
3�x−r� means
that only particles whose positions x coincide with the
field position r contribute to the moment �v���r�. By ap-
plying the extended �time-dependent� phase-space trans-

formation T� :Z→Z̄ on the right side of Eq. �138�, we

446 A. J. Brizard and T. S. Hahm: Foundations of nonlinear gyrokinetic theory

Rev. Mod. Phys., Vol. 79, No. 2, April–June 2007



obtain the push-forward representation for the fluid mo-
ments �v��,

�v���r� =
 d3x̄
 d4p̄�T�
−1v��
3�x̄ + �� − r�F̄

=
 d3p̄e−��·���T�
−1v��f̄� , �139�

where w̄ integration was performed, T�
−1v�= �c ,T�

−1v� is
the push-forward of the particle four-velocity v�, and

�� � T�
−1x − x̄ = − �G1

x − �2	G2
x −

1
2

G1 · dG1
x
 + ¯

�140�

is the displacement between the push-forward T�
−1x of

the particle position x and the �new� reduced position x̄
that is defined in terms of the generating vector fields
�118� and �119�.14

The push-forward representation for the charge-
current densities introduces polarization and magnetiza-
tion effects into the Maxwell equations that transforms
the microscopic Maxwell’s equations �135� and �136� into
the macroscopic �reduced� equations

� · D = 4��̄ , �141�

� � H −
1

c

�D
�t

=
4�

c
J̄ , �142�

where the reduced charge-current densities ��̄ ,J� � are de-

fined as moments of the reduced Vlasov distribution F̄,

	�̄

J̄

 = � e
 d4p̄F̄	1

v̄

 , �143�

and the microscopic electric and magnetic fields E and B
are replaced by the macroscopic fields �Jackson, 1975�

D = E + 4�P�,

H = B − 4�M�. �144�

Here P� and M� denote the polarization and magnetiza-
tion vectors associated with the dynamical reduction in-
troduced by the phase-space transformation �102�. The
relation between the particle charge-current densities

�� ,J� and the reduced charge-current densities ��̄ , J̄�,

� � �̄ − � · P�, �145�

J � J̄ +
�P�

�t
+ c � � M�, �146�

defines the polarization density �pol�−� ·P�, the polar-
ization current Jpol��P� /�t, and the magnetization cur-

rent Jmag�c� �M�. The derivation of the polarization
and magnetization vectors P� and M� is done either di-
rectly by the push-forward method �139� or by varia-
tional method

�D,H� � 4�	 �L̄
�E

,−
�L̄
�B

 , �147�

where L̄ is the Lagrangian density for the reduced
Vlasov-Maxwell equations. While the direct push-
forward method is relatively straightforward to use �see
Appendix C for details�, the variational method allows a
direct derivation of the exact conservation laws �e.g., en-
ergy� for the reduced Vlasov-Maxwell equations �see
Secs. III and IV.B�.

V. NONLINEAR GYROKINETIC VLASOV EQUATION

We now apply the methods of Lie-transform perturba-
tion theory presented in Sec. IV to the dynamical reduc-
tion associated with the perturbed dynamics of charged
particles �mass m and charge e� moving in a background
time-independent magnetic field B0=��A0 in the pres-
ence of low-frequency electromagnetic fluctuations rep-
resented by the perturbation four-potential 
A�

= �
� ,
A�, whose amplitude is ordered with a dimen-
sionless parameter �
�1. We focus our attention on de-
riving the nonlinear gyrocenter Hamiltonian and the as-
sociated nonlinear gyrokinetic Vlasov equation and
postpone the derivation of the self-consistent gyroki-
netic Maxwell equations and the gyrokinetic energy con-
servation law to Sec. VI.

The eight-dimensional extended phase-space dynam-
ics is expressed in terms of the extended phase-space
Lagrangian �=�0+�
�1, where �0���e /c�A0+p� ·dx
−wdt and �1��e /c�
A ·dx, and the extended phase-
space Hamiltonian H=H0+�
H1, where H0��p�2 /2m
−w and H1�e
�. While electrostatic fluctuations per-
turb the Hamiltonian alone, full electromagnetic fluctua-
tions perturb both the Hamiltonian �H1� and the sym-
plectic one-form ��1�.

The standard gyrokinetic analysis for magnetized
plasmas perturbed by low-frequency electromagnetic
fluctuations �Brizard, 1989a� proceeds by a sequence of
two near-identity phase-space transformations: a time-
independent guiding-center phase-space transformation
and a time-dependent gyrocenter phase-space transfor-
mation. This two-step decoupling procedure removes,
first, the fast gyromotion space-time scales associated
with the �unperturbed� background magnetic field �first
step, guiding-center transformation with ordering pa-
rameter �B� and, second, the fast gyromotion time scale
associated with the perturbation electromagnetic fields
�second step, gyrocenter transformation with ordering
parameters �
, ��, and ���.

14We note the similarity between the general form �139� for
the push-forward representation of fluid moments and the
Frieman-Chen expression �18� for the perturbed plasma den-
sity 
n.
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A. Unperturbed guiding-center Hamiltonian dynamics

The guiding-center phase-space transformation in-
volves an asymptotic expansion, with a small dimension-
less parameter �B��th /LB�1 defined as the ratio of the
thermal gyroradius �th and the background magnetic-
field length scale LB. This transformation is designed to
remove the fast gyromotion time scale associated with
the time-independent background magnetic field B0 as-
sociated with an unperturbed magnetized plasma �Little-
john, 1983�. In previous work �Brizard, 1995�, this trans-
formation was carried out to second order in �B with the
scalar potential 	0 ordered at zeroth order in �B; in this
section, the equilibrium scalar potential is set equal to
zero and issues associated with an inhomogeneous equi-
librium electric field are discussed in Appendix D.1.

The results of the guiding-center analysis presented by
Littlejohn �1983� are summarized as follows �further de-
tails are presented in Appendix B�. The guiding-center
transformation yields the following guiding-center coor-
dinates �X ,p� ,� ,� ,w , t��Zgc, where X is the guiding-
center position, p� is the guiding-center kinetic momen-
tum parallel to the unperturbed magnetic field, � is the
guiding-center magnetic moment, � is the gyroangle, and
�w , t� are the canonically conjugate guiding-center
energy-time coordinates �time is unaffected by the trans-
formation while the guiding-center kinetic energy is
equal to the particle kinetic energy�. The unperturbed
guiding-center extended phase-space Lagrangian is

�gc �
e

c�B
A0

* · dX + �B��mc/e�d� − wdt , �148�

where A0
*�A0+�B�c /e�p�b̂0+O��B

2 � is the effective un-

perturbed vector potential, with b̂0�B0 /B0 and higher-
order correction terms are omitted �see Appendix B for
further details�; we omit displaying the dimensionless
guiding-center parameter �B for simplicity. The unper-
turbed extended phase-space guiding-center Hamil-
tonian is

Hgc =
p�

2

2m
+ �B0 − w � Hgc − w . �149�

Last, from the unperturbed guiding-center phase-space
Lagrangian �148�, the unperturbed guiding-center Pois-
son bracket � , �gc is obtained, given here in terms of two
arbitrary functions F and G on extended guiding-center
phase space as �Littlejohn, 1983�

�F,G�gc �
e

mc
	 �F

��

�G
��

−
�F
��

�G
��



+
B0

*

B0�
* · 	�F

�G
�p�

−
�F
�p�

� G

−

cb̂0

eB0�
* · �F � �G + 	 �F

�w

�G
�t

−
�F
�t

�G
�w


 ,

�150�

where B0
*���A0

* and B0�
* � b̂0 ·B0

* are defined as

B0
* = B0 + �c/e�p� � � b̂0,

B0�
* = B0 + �c/e�p�b̂0 · � � b̂0. �151�

The Jacobian of the guiding-center transformation is
Jgc=mB0�

* �i.e., d3xd3p=Jgcd
3Xdp�d�d�� and the back-

ground magnetic field is assumed to be a time-
independent field �e.g., on time scales shorter than colli-
sional time scales� so that the time derivative �A0 /�t is
absent from the Poisson bracket �150�. The unperturbed
guiding-center Hamiltonian dynamics is expressed in
terms of the Hamiltonian �149� and the Poisson bracket
�150� as Za��Za ,Hgc�gc. The conservation law �̇�0 for
the guiding-center magnetic moment follows from the
fact that the guiding-center Hamiltonian �149� is inde-
pendent of the fast gyroangle � �to arbitrary order in �B�.
The first three terms in the guiding-center Poisson
bracket �150� are arranged in order of increasing powers
of �B�e−1: at order �B

−1�e, the first term represents the
fast gyromotion; at order �B

0 �e0, the next term repre-
sents the bounce/transit motion parallel to the magnetic-
field line; at order �B�e−1, the third term represents the
slow drift motion across magnetic-field lines.

B. Perturbed guiding-center Hamiltonian dynamics

We now consider how the guiding-center Hamiltonian
system �Hgc ; � , �gc� is affected by the introduction of
low-frequency electromagnetic field fluctuations
�
� ,
A� satisfying the low-frequency gyrokinetic order-
ings �6�–�10�. Under the electromagnetic potential per-
turbations �
� ,
A�, the guiding-center phase-space La-
grangian �148� and Hamiltonian �149� become

�gc� � �0gc + �
�1gc,

Hgc� � H0gc + �
H1gc, �152�

where the zeroth-order guiding-center phase-space La-
grangian �0gc and Hamiltonian Hgc0 are given by Eqs.
�148� and �149�, respectively. In what follows, although
the parameters ��B ,�
 ,��� may be of the same order in
the conventional nonlinear gyrokinetic ordering �Frie-
man and Chen, 1982�, we keep them independent to em-
phasize their different physical origins and to retain
more flexibility in the perturbative analysis of reduced
Hamiltonian dynamics in various situations. An out-
standing example, in which this ordering flexibility is
necessary, is the case with strong E�B flow shear as
discussed in Appendix D.1.
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In Eq. �152�, the first-order guiding-center phase-
space Lagrangian �gc1 and Hamiltonian H1gc are

�1gc =
e

c

A�X + �,t� · d�X + ��

�
e

c

Agc�X,t ;�,�� · d�X + �� �153�

and

H1gc = e
��X + �,t� � e
�gc�X,t ;�,�� , �154�

where 
Agc�X , t ;� ,�� and 
�gc�X , t ;� ,�� are perturba-
tion potentials evaluated at a particle’s position x�X
+� expressed in terms of the guiding-center position X
and the gyroangle-dependent gyroradius vector ��� ,��;
to lowest order in �B, ignoring the spatial dependence of
� �although these terms can be kept to arbitrary orders
in �B�.

Because of the gyroangle dependence in the guiding-
center perturbation potentials �
�gc ,
Agc�, the guiding-
center magnetic moment � is no longer conserved by the
perturbed guiding-center equations of motion, i.e., �̇
=O��
�. To remove the gyroangle dependence from the
perturbed guiding-center phase-space Lagrangian and
Hamiltonian �153� and �154�, we proceed with the time-
dependent gyrocenter phase-space transformation,

Z � �X,p�,�,�,w,t� → Z̄ � �X̄,p̄�,�̄, �̄,w̄,t� ,

where Z̄ denotes the gyrocenter �gy� extended phase-
space coordinates. The nature of the gyrocenter parallel
momentum p̄� depends on the choice of representation
used for gyrocenter Hamiltonian dynamics �as discussed
below� and the time coordinate t is not affected by this
transformation.

The results of the nonlinear Hamiltonian gyrocenter
perturbation analysis �Brizard, 1989a� are summarized
as follows. To first order in the small-amplitude param-
eter �
 and zeroth order in the space-time-scale param-
eters ��� ,�B�, this transformation is represented in terms
of generating vector fields �G1 ,G2 , . . . � as

Z̄a � Za + �
G1
a + ¯ . �155�

We wish to construct a new gyrocenter Hamiltonian sys-
tem in which the new gyrocenter extended phase-space
Lagrangian is

�̄ = � e

c
�A0 + �

Agy� + p̄�b̂0� · dX̄ +

mc

e
�̄d�̄ − w̄dt

� �̄0 + �
�̄1, �156�

where the gyrocenter symplectic-perturbation term 
Agy
is defined as


Agy � ��
A�gc� + ��
A�gc�b̂0. �157�

The model parameters �� ,�� determine the form of the
nonlinear gyrocenter model:

Gyrocenter model � � p̄�

Hamiltonian 0 0 canonical
Symplectic 1 1 kinetic
�-symplectic 1 0 canonical
�-symplectic 0 1 kinetic

The Hamiltonian gyrocenter model ��=0=�� and the sym-
plectic gyrocenter model ��=1=�� were derived by Brizard
�1989a�, while the parallel-symplectic gyrocenter model ��
=1,�=0� was used by Brizard �1992� to derive the so-called
nonlinear electromagnetic gyrofluid equations.

The Jacobian for the transformation from particle to
gyrocenter phase space is J=m2B�

*, where

B�
* � B0�

* + �
���
B�gc�� , �158�

while the general form for the gyrocenter Poisson
bracket is

�F,G� =
e

mc
	 �F

��

�G
��* −

�F
��*

�G
��



+
B*

B�
* · 	�*F

�G
�p�

−
�F
�p�

�*G

−

cb̂0

eB�
* · �*F � �*G + 	 �F

�w

�G
�t

−
�F
�t

�G
�w


 ,

�159�

where B*�B0
*+�

Bgy, with 
Bgy���
Agy, and

�*F � �F − �


e

c
	 �
Agy

�t

�F
�w

−
�

B

�
Agy

��

�F
��

 ,

�F
��* �

�F
��

− �

2	 e

c

�
Agy

�t
·
�
Agy

��
� b̂0
 �F

�w
.

The guiding-center Poisson bracket �150� is recovered
from Eq. �159� with the Hamiltonian gyrocenter model
�
Agy=0�.

The nonlinear gyrocenter Hamilton’s equations are

X̄
˙

=
cb̂0

eB�
* � 	�̄H̄ + �


e

c

�
Agy

�t

 +

�H̄

�p̄�

B*

B�
* , �160�

ṗ̄� = −
B*

B�
* · 	�̄H̄ + �


e

c

�
Agy

�t

 , �161�

where the gyrocenter Hamiltonian H̄=H̄0+�
H̄1+�

2H̄2

is derived in the next sections. The gyrocenter Hamil-
ton’s equations �160� and �161� satisfy the gyrocenter
Liouville theorem

0 =
�B�

*

�t
+ � · �B�

*X̄
˙ � +

�

�p̄�

�B�
*ṗ̄�� . �162�

The fact that the gyrocenter Hamilton equations �160�
and �161� satisfy the Liouville theorem �162� ensures
that gyrocenter phase-space volume �as well as other
Poincaré invariants� is conserved, a universal property
of all Hamiltonian systems.
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C. Nonlinear gyrocenter Hamiltonian dynamics

We now briefly review the first-order and second-
order perturbation analysis leading to the derivation of
the nonlinear gyrocenter Hamiltonian.

We begin with the first-order analysis. From Eq. �118�,
with �̄1��e /c�
Agy·dX̄, the first-order generating vector
field for the gyrocenter phase-space transformation is

G1
a = �S1,Za�0 +

e

c

Agc · �X + �,Za�0

−
e

c

Agy · �X,Za�0, �163�

or its components can be explicitly given as

G1
X = − b̂0

�S1

�p�

−
cb̂0

eB0
� �S1

+ �
Agc − ��
A�gc�� �
b̂0

B0
, �164�

G1
p� = b̂0 · �S1 +

e

c
�
A�gc − ��
A�gc�� , �165�

G1
� =

e

mc
	 e

c

A�gc ·

��

��
+

�S1

��

 , �166�

G1
� = −

e

mc
	 e

c

A�gc ·

��

��
+

e

mc

�S1

��

 , �167�

G1
w = −

�S1

�t
, �168�

where effects due to background magnetic-field nonuni-
formity are omitted. The first-order generating vector
field �163� satisfies the identity �a�B0G1

a��−��
B�gc�,
showing that the gyrocenter phase-space Jacobian is dif-
ferent from the guiding-center phase-space Jacobian for
gyrocenter models with �=1 �i.e., the symplectic and
�-symplectic gyrocenter models�. The gyrocenter paral-
lel momentum p̄� is

p̄� = p� + �


e

c
�
A�gc − ��
A�gc�� + ¯ , �169�

showing that the gyrocenter parallel momentum coordi-
nate p̄� is a canonical momentum for gyrocenter models
with �=0 �i.e., the Hamiltonian and �-symplectic gyro-
center models�.

The first-order gyrocenter Hamiltonian is determined
from the first-order Lie-transform equation �123� as

H̄1 � e
�gc − �S1,H0�0,

where the effective first-order potential is defined as


�gc � 
�gc − 
Agc ·
v
c

+ �
v�

c
�
A�gc� . �170�

The gyroangle-averaged part of this first-order equation
yields

H̄1 � e�
�gc� = e�
�gc −
v�

c
· 
A�gc�

−
ev�

c
�1 − ���
A�gc� , �171�

while the solution for the scalar field S1 is

S1 =
e

�0

 
�̃gcd�̄ �

e

�0

�̃gc, �172�

where 
�̃gc�
�gc− �
�gc� is the gyroangle-dependent
part of the first-order effective potential �170�.

While the �linear� first-order gyrocenter Hamiltonian
�171� is sufficient for linear gyrokinetic theory �i.e., in
the absence of polarization and magnetization effects in
Maxwell’s equations�, it must be supplemented by a

�nonlinear� second-order gyrocenter Hamiltonian H̄2 for
two important reasons. First, the second-order gyro-

center Hamiltonian H̄2 is needed in order to obtain po-
larization and magnetization effects that, within the
variational formulation of self-consistent gyrokinetic
Vlasov-Maxwell theory presented here, have variational
definitions expressed in terms of the partial derivatives

�H̄2 /�E1 and �H̄2 /�B1, respectively �see Sec. III�. Sec-
ond, once polarization and magnetization effects are in-
cluded in the gyrokinetic Maxwell equations, the

second-order gyrocenter Hamiltonian H̄2 must be kept
in the gyrokinetic Vlasov Lagrangian density to obtain
an exact energy conservation law �derived using the No-
ether method� for the gyrokinetic Vlasov-Maxwell equa-
tions.

The general expression for the second-order gyro-
center Hamiltonian is obtained from Eq. �129�, using
Eqs. �163�, �171�, and �172�, as

H̄2 = −
e2

2�0
��
�̃gc,
�̃gc�0� +

e2

2mc2 ���
Agc�2�

− ��
A�gc�2� + ��
A�gc� ·
b̂0

B0
� �H̄1, �173�

where the first term describes low-frequency pondero-
motive effects associated with the elimination of the fast
gyromotion time scale while the remaining terms involve
magnetic perturbations and the choice of gyrocenter-
model parameters �� ,��.

D. Nonlinear gyrokinetic Vlasov equation

Once the linear gyrocenter Hamiltonian �171� and the
nonlinear gyrocenter Hamiltonian �173� are obtained, it
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is a simple to derive the corresponding nonlinear gyro-
kinetic Vlasov equation for the gyrocenter Vlasov distri-

bution F̄,

0 =
�F̄

�t
+ �F̄,H̄gy� , �174�

where, in order to simplify this presentation, � , � denotes
the guiding-center Poisson bracket �159� in the Hamil-
tonian gyrocenter model ��=0=�� and the nonlinear gy-

rocenter Hamiltonian is H̄gy=H̄gc+e
�gy. The �unper-

turbed� guiding-center Hamiltonian is H̄gc= p̄�
2 /2m+ �̄B

and, up to second order in the amplitude parameter �
,
the gyrocenter perturbation potential is

e
�gy � �
e�
�gc� +
�


2e2

2mc2 ��
Agc�2�

−
�


2e2

2�
��
�̃gc,
�̃gc�� . �175�

The gyrocenter perturbation potentials presented in Sec.
III were all derived in various limits from Eq. �175�.

We have obtained a reduced �gyroangle-independent�
gyrocenter Hamiltonian description of charged-particle
motion in nonuniform magnetized plasmas perturbed by
low-frequency electromagnetic fluctuations. At this
level, the nonlinear gyrokinetic Vlasov equation can be
used to study the evolution of a distribution of test gy-
rocenters in the presence of low-frequency electromag-
netic fluctuations. For a self-consistent treatment that
includes an electromagnetic field response to the gyro-
center Hamiltonian dynamics, a set of low-frequency
Maxwell equations with charge and current densities ex-
pressed in terms of moments of the gyrocenter Vlasov
distribution is required.

E. Pull-back representation of the perturbed Vlasov
distribution

Before proceeding to the variational derivation of the
gyrokinetic Maxwell equations and the exact gyrokinetic
energy invariant, the connection between the particle
Vlasov distribution f and the gyrocenter Vlasov distribu-

tion F̄ is investigated.
The perturbed Vlasov distribution is traditionally de-

composed into its adiabatic and nonadiabatic compo-
nents �Antonsen and Lane, 1980; Catto et al., 1981;
Brizard, 1994a, 1994b� following an iterative solution of
the perturbed guiding-center Vlasov equation. We as-
sume that the magnetic field is uniform and the pull-
back transformation from the guiding-center Vlasov dis-
tribution F to the particle Vlasov distribution f is

f � TgcF = e−�·�F . �176�

The pull-back transformation from the gyrocenter Vla-

sov distribution F̄ to the guiding-center Vlasov distribu-
tion F is

F = TgyF̄ = F̄ + �
�S1,F̄� + �


e

c

Agc · �X + �,F̄� . �177�

No information is lost in transforming the Vlasov equa-
tion in particle phase space to the gyrokinetic Vlasov
equation in gyrocenter phase space since

df

dt
=

d

dt
�T�F̄� = T��	T�

−1 d

dt
T�
F̄� � T�	d�F̄

dt

 , �178�

so that the Vlasov equation df /dt=0 is satisfied for the

particle Vlasov distribution f=T�F̄�Tgc�TgyF̄� if the gy-

rokinetic Vlasov equation d�F̄ /dt=0 is satisfied for the

gyrocenter Vlasov distribution F̄.
To compare the nonlinear gyrokinetic Vlasov equa-

tion directly with the Frieman-Chen gyrokinetic equa-
tion �17�, the guiding-center Poisson bracket associated
with the new guiding-center coordinates �X ,E ,� ,�� is
introduced,

�F,G� = �� �F

��
	 �G

�E
+

1

B

�G

��

 − 	 �F

�E
+

1

B

�F

��

 �G

��
�

+ vgc · 	�F
�G

�E
−

�F

�E
� G
 −

cb̂

eB
· �F � �G ,

�179�

where vgc=v�b̂ in the absence of magnetic-field nonuni-
formity and the gyrocenter kinetic energy E is used in-
stead of the parallel guiding-center velocity v� to simplify
the comparison with the Frieman-Chen gyrokinetic for-
malism. By combining the guiding-center and gyrocenter
pull-backs, the pull-back transformation from the gyro-

center Vlasov distribution F̄ and the particle Vlasov dis-
tribution f is found

f = e−�·��F̄ − e�
�gc�	 �F

�E
+

1

B

�F

��

� + e
�

�F̄

�E

+
e

B
	
� −

v�

c

A�
 �F̄

��
+ 
A �

b̂

B
· �F̄ , �180�

where the last three terms represent the adiabatic com-
ponents of the perturbed particle Vlasov distribution
while the first two terms represent the guiding-center

pull-back of the gyrocenter Vlasov distribution F̄ and
the nonadiabatic component of the perturbed particle
Vlasov distribution.

By comparing the pull-back decomposition �180� with
the Frieman-Chen decomposition �15�, a relation be-

tween the first-order correction F̄1 to the gyrocenter dis-

tribution F̄= F̄0+�
F̄1 and the nonadiabatic part Ḡ1 is
obtained,

F̄1 � Ḡ1 + e�
�gc�
�F̄0

�E
. �181�

Substituting this relation into the nonlinear gyrokinetic
Vlasov equation �174�,
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0 =
dgyF̄

dt
�

dgcF̄

dt
+ �
e�F̄,�
�gc�� ,

with the gyrocenter Hamiltonian truncated at first order

H̄gy=H̄gc+�
e�
�gc�, we obtain

0 =
dgy

dt
�F̄0 + �
	Ḡ1 + e�
�gc�

�F̄0

�E 
�
= �
��F̄0 + �
Ḡ1�,e�
�gc��

+ �
	dgcḠ1

dt
+ e

dgc�
�gc�
dt

�F̄0

�E 
 . �182�

Using the guiding-center Poisson bracket �179�, we find

�F̄0,e�
�gc�� =
cb̂

B
� ��
�gc� · �F̄0

− �evgc · ��
�gc��
�F̄0

�E

and the nonlinear gyrokinetic Vlasov equation �182� be-
comes the Frieman-Chen nonlinear gyrokinetic Vlasov,

dgcḠ1

dt
= − 	e

��
�gc�
�t

�F̄0

�E
+

cb̂

B
� ��
�gc� · �F̄0


−
cb̂

B
� ��
�gc� · �Ḡ1, �183�

where higher-order terms �e.g., �B�

2� were omitted. The

Frieman-Chen nonlinear gyrokinetic Vlasov equation is
contained in the nonlinear gyrokinetic Vlasov equation
�174�. While the adiabatic and nonadiabatic decomposi-
tions have at times appeared mysterious, they naturally
appear in the context of the action of the pull-back op-
erators used in the derivation of the nonlinear gyroki-
netic Vlasov equation. The physical interpretation of the
pull-back operator is that it performs a partial solution
of the Vlasov equation associated with fast-time gyro-
motion dynamics. The truncation of the gyrocenter
Hamiltonian at first order in �
 implies that the gyroki-
netic energy conservation law will break down unless
the gyrokinetic polarization and magnetization terms
are also dropped in the gyrokinetic Maxwell equations
�as discussed in Sec. III and further discussed in the next
section�.

VI. GYROKINETIC VARIATIONAL FORMULATION

After having derived various expressions for the non-
linear gyrocenter Hamiltonian and its associated nonlin-
ear gyrokinetic Vlasov equation, we now derive self-
consistent expressions for the gyrokinetic Maxwell’s
equations, in which gyrocenter polarization and magne-
tization effects appear. Once a set of self-consistent non-
linear gyrokinetic Vlasov-Maxwell equations is derived,
the exact energy conservation law these nonlinear gyro-
kinetic equations satisfy will be derived. These two tasks

are simultaneously performed in this section using a
variational formulation for the nonlinear gyrokinetic
Vlasov-Maxwell equations �Brizard, 2000a, 200b�.

A. Nonlinear gyrokinetic Vlasov-Maxwell equations

The nonlinear self-consistent gyrokinetic Vlasov-
Maxwell equations �using the Hamiltonian gyrocenter
model� are derived from a reduced variational principle
that will also be used to derive an exact energy conser-
vation law for the gyrokinetic Vlasov-Maxwell equa-
tions. The reduced action functional for the low-
frequency gyrokinetic Vlasov-Maxwell equations
�Brizard, 2000b; Sugama, 2000� is

Agy = −
 d8ZF�Z�H�Z ;A1�,F1���

+
 d4x

8�
���	�2 − �B�2� , �184�

where H is the nonlinear gyrocenter Hamiltonian �175�,
and we use the notation

	 � ��1 and B � B0 + � � � A1.

We omit the overbar to denote gyrocenter coordinates
and functions on extended gyrocenter phase space �and
set ���
� and summation over species is implied wher-
ever appropriate. The absence of the inductive part
−c−1�tA1 of the perturbed electric field E1 in the Max-
well part of the reduced action functional �184� means
that the displacement current �tE1 will be absent from
Ampère’s equation. This is consistent with the low-
frequency approximation ����1� used in the nonlinear
gyrokinetic ordering �6� and �7�.

The variational principle 
Agy=�
Lgyd
4x�0 for the

nonlinear low-frequency gyrokinetic Vlasov-Maxwell
equations is based on Eulerian variations for F�Z� and
��1 ,A1�. Variation of Agy with respect to 
F and

A1

��x�= �
�1 ,
A1� yields


Agy =
 d4x

4�
�� � 
�1 · �	 − � � � 
A1 · B�

−
 d8Z�
F�Z�H + F�Z�

�
 d3x	
A1��x�

H


A1��x�
� . �185�

The Eulerian variation 
F is constrained to be of the
form


F � �S,F� , �186�

where � , � is the extended guiding-center Poisson
bracket �150�. The functional derivatives 
H /
A1��x� in
Eq. �185� are evaluated using the gyrocenter Hamil-
tonian �175� �to second order in �� as
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H


A1��x�
� − �e�Tgy

−1	v�

c

gc

3 
� , �187�

where 
gc
3 �
3�x−X−��, Tgy

−1 is the gyrocenter push-
forward operator, and we have used the identity

A1��X + �� =
 d3x
3�x − X − ��A1��x�

so that


A1gc
�


A1��x�
= 
��
gc

3 .

After rearranging terms and integrating by parts, the
variation �185� becomes


Agy =
 d4x�� · Jgy� −
 d8ZS�F,H�

−
 d4x��
�1��2	

4�
+ e
 d6ZF�Tgy

−1
gc
3 ��

+ �
A1 · �� � B
4�

− e
 d6ZF�Tgy
−1	v

c

gc

3 
��� ,

�188�

where the first term on the right side of Eq. �188� in-
volves the exact space-time divergence

� · Jgy �
�

�x�	
 d4pSFẊ�

+ � · 	�


�1

4�
� 	 − �


A1

4�
� B
 , �189�

with Ẋ���X� ,H� denoting the lowest-order gyrocenter
four-velocity. Since Eq. �189� is an exact space-time di-
vergence, it does not contribute to the reduced varia-
tional principle 
Agy�0.

By requiring that the gyrokinetic action functional Agy
be stationary with respect to an arbitrary variation S
�that vanishes on the integration boundaries�, the non-
linear gyrokinetic Vlasov equation is

0 = �F,H� , �190�

which, when integrated over the energy coordinate w,
yields the standard nonlinear gyrokinetic Vlasov equa-
tion

�F

�t
+ 	B*

B�
*

�H

�p�

+
cb̂

eB�
* � �H
 · �F − 	B*

B�
* · �H
 �F

�p�

= 0.

�191�

Stationarity of the gyrokinetic action functional with re-
spect to arbitrary variations 
A1

� yields the gyrokinetic
Maxwell equations: the gyrokinetic Poisson equation

�2	�x� = − 4�e
 d6ZF�Tgy
−1
gc

3 �

� − 4�e
 d3p�e−�·��TgyF�� �192�

and the gyrokinetic Ampère equation

� � B�x� =
4�e

c

 d6ZF�Z��Tgy

−1�v
gc
3 ��

�
4�e

c

 d3p�e−�·��vTgyF�� , �193�

that are valid for all gyrocenter models discussed in Sec.
V.B. The gyrocenter pull-back of the gyrocenter Vlasov
distribution TgyF is

TgyF = F + �
�S1,F� + �


e

c

Agc · �X + �,F�

− �
	��
A�gc� ·
b̂0

B0
� �F +

e

c
��
A�gc�

�F

�p�


 .

The nonlinear gyrokinetic equations �191�–�193�, with
the gyrocenter Hamiltonian �175�, are the self-consistent
nonlinear gyrokinetic Vlasov-Maxwell equations in gen-
eral magnetic-field geometry �Brizard, 1989a�.

B. Gyrokinetic energy conservation law

We now apply the Noether method on the gyrokinetic
action functional �184� to derive an exact gyrokinetic en-
ergy conservation law. By substituting Eqs. �190�, �192�,
and �193� into Eq. �188�, the variational equation 
Agy
��
Lgyd

4x yields the Noether equation


Lgy � � · Jgy. �194�

Using the Noether method, the variations �S ,
A1
� ,
Lgy�

are expressed in terms of generators for infinitesimal
translations in space or time.

Following a translation in time t→ t+
t, the variations
S, 
�1, 
A1, and 
Lgy become, respectively,

S = − w
t ,


�1 = − 
t�t�1,


A1 = − 
t�tA1 � c
t�E1 + ��1� ,


Lgy = − 
t�tLgy. �195�

In the last expression in Eq. �195�, the gyrokinetic
Vlasov-Maxwell Lagrangian density is Lgy= ���	�2
− �B�2� /8� after the physical constraint H=0 is imposed
in the space-time integrand of the reduced action func-
tional �184�. By combining Eq. �195� with Eqs. �189� and
�194�, we obtain, after rearranging and canceling some
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terms �Brizard, 2000b�, the local gyrokinetic energy con-
servation law,15

�Egy

�t
+ � · Sgy = 0, �196�

where the gyrokinetic energy density is

Egy =
 d3pF�H − e�Tgy
−1	gc�� +

1

8�
���	�2 + �B�2�

�197�

while the gyrokinetic energy density flux is

Sgy =
 d3pF�HẊ − e�Tgy
−1v	gc��

+
�

4�
	cE1 � B − 	 �

��1

�t

 . �198�

We also obtain an expression for the global gyrokinetic
energy conservation law dE /dt=0, where the global gy-
rokinetic energy is

E =
 d3x

8�
���	�2 + �B�2� +
 d6ZF�H − e�Tgy

−1	gc�� .

�199�

The existence of an exact energy conservation law for
nonlinear gyrokinetic equations provides a stringent test
on simulations based on nonlinear electrostatic �Dubin
et al., 1983; Hahm, 1988� and electromagnetic �Hahm et
al., 1988; Brizard, 1989a� gyrokinetic equations.

VII. SUMMARY

The foundations of modern nonlinear gyrokinetic
theory are based on three pillars: �i� a gyrokinetic Vla-
sov equation written in terms of a gyrocenter Hamil-
tonian with quadratic low-frequency ponderomotive-
like terms, �ii� a set of gyrokinetic Maxwell equations
written in terms of the gyrokinetic Vlasov distribution
that contain low-frequency polarization and magnetiza-
tion terms derived from the quadratic nonlinearities in
the gyrocenter Hamiltonian, and �iii� an exact energy
conservation law for the gyrokinetic Vlasov-Maxwell
equations that includes all relevant linear and nonlinear
coupling terms.

These three pillars were emphasized in Sec. III, where
simplified forms of the nonlinear gyrokinetic equations
were presented for the cases of electrostatic fluctuations,
shear-Alfvénic fluctuations, and compressional magnetic
fluctuations. In the full electromagnetic case, the gyro-
center polarization and magnetization vectors were de-
fined in terms of derivatives of the effective gyrocenter

perturbation potential with respect to the perturbed
electric and magnetic fields, respectively. Section III also
showed the connection between the nonlinear gyroki-
netic description of turbulent magnetized plasmas and
several nonlinear reduced fluid models such as the
Hasegawa-Mima equation for electrostatic drift-wave
turbulence.

Through the use of Lie-transform perturbation meth-
ods on extended particle phase space, the derivation of a
set of nonlinear low-frequency gyrokinetic Vlasov-
Maxwell equations describing the reduced Hamiltonian
description of gyrocenter dynamics in a time-
independent background magnetic field perturbed by
low-frequency electromagnetic fluctuations was shown.
A self-consistent treatment is obtained through a low-
frequency gyrokinetic variational principle and an exact
gyrokinetic energy conservation law is obtained by ap-
plying the Noether method. Physical motivations for
nonlinear gyrokinetic equations and various applications
in theory and simulations thereof were discussed.
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APPENDIX A: MATHEMATICAL PRIMER

This appendix presents a brief summary of the differ-
ential geometric foundations of Lie-transform perturba-
tion methods used in deriving the nonlinear gyrokinetic
equations presented in Sec. V.

Differential k-forms �Flanders, 1989�

�k =
1

k!
�i1i2¯ik

dzi1 ∧ dzi2 ∧ ¯ ∧ dzik

are fundamental objects in the differential geometry of
n-dimensional space �with coordinates z�, where the
components �i1i2¯ik

are antisymmetric with respect to
interchange of two adjacent indices since the wedge
product ∧ is skew symmetric �i.e., dza∧dzb=−dzb∧dza�
with respect to the exterior derivative d �which has prop-
erties similar to the standard derivative d�.

Note that the exterior derivative d�k of a differential
k-form �or k-form for short� �k is a �k+1�-form. For
example, the exterior derivative of a zero-form f is de-
fined as

df � �afdza, �A1�

and df is a differential one-form; note that its compo-
nents are the components of �f. The exterior derivative
of a one-form � is a two-form,

d� � d�b ∧ dzb = �a�bdza ∧ dzb,

which, as a result of the skew symmetry of the wedge
product ∧, may be expressed as

d� = 1
2 ��a�b − �b�a�dza ∧ dzb � 1

2�abdza ∧ dzb, �A2�

where �ab=−�ba is the antisymmetric components of the
two-form ��d�.

An important difference between the exterior deriva-
tive d and the standard derivative d comes from the
property that d2�k=d�d�k��0 for any k-form �k. In-
deed, for a zero-form we find

d2f = �ab
2 f dza ∧ dzb = 0,

since �ab
2 f is symmetric with respect to interchange a↔b

while ∧ is antisymmetric. For a one-form we find

d2� =
1
3!

��a�bc + �b�ca + �c�ab�dza ∧ dzb ∧ dzc = 0.

A k-form �k is said to be closed if its exterior derivative
is d�k�0, while a k-form �k is said to be exact if it can
be written in terms of a �k−1�-form �k−1 as �k�d�k−1.
Poincaré’s lemma states that all closed k-forms are exact
�as can easily be verified�, while its converse states that
all exact k-forms are closed. For example, the infinitesi-
mal volume element in three-dimensional space with
curvilinear coordinates u= �u1 ,u2 ,u3� and Jacobian J,

� � J�u�du1 ∧ du2 ∧ du3,

is a closed three-form since d��0. Hence, according to
the converse of Poincaré’s lemma, there exists a two-
form � such that ��d�, where

� � 1
2�ijk�k�u�dui ∧ duj

is the infinitesimal area two-form, with the Jacobian de-
fined as J���i�u� /�ui.

We now introduce the inner-product operation involv-
ing a vector field v and a k-form �k, denoted here as
v ·�k, which produces a �k−1�-form. For example, for a
one-form it is defined as v ·�=va�a, while for a two-
form, it is defined as

v · � � 1
2 �va�abdzb − �abvbdza� = va�abdzb.

Note that d�v ·��=J−1�a�Jva����� ·v��, which can be
used to derive the divergence of any vector field ex-
pressed in arbitrary curvilinear coordinates.

The Lie derivative L� v along the vector field v of a
k-form �k is defined in terms of the homotopy formula
�Abraham and Marsden, 1978�,

L� v�k � v · d�k + d�v · �k� . �A3�

The Lie derivative of a k-form is itself a k-form. For
example, the Lie derivative of a zero-form f along the
vector field v is L� vf�v ·df=va�af �i.e., the directional de-
rivative v ·�f�, while the Lie derivative of a one-form �
=�adza is

L� v� = �va�ab + �b�v · ���dzb.

Note that the Lie derivative satisfies the Leibnitz prop-
erty L� v�fg�= �L� vf�g+ f�L� vg� and Lv commutes with d. The
Lie transform generated by the vector field v as T
�exp L� v such that T is distributive T�fg���Tf��Tg� and
T commutes with d. For example, the pull-back operator
T�=exp��L � associated with the nonuniform space
transformation

X = x + �� +
�2

2
� · �� + ¯ ,

which is generated by the vector field ��, yields the
scalar-invariance identity

f�x� = F�X� = F	x + �� +
�2

2
� · �� + ¯ 


= F�x� + �� · �F�x� +
�2

2
� · �� · �F� + ¯

= exp��� · ��F�x� � exp��L��F�x� . �A4�

The pull-back operator associated with a near-identity
transformation is expressed as a Lie-transform opera-
tion along the vector fields that generate the transforma-
tion.

A near-identity phase-space transformation z→ z̄
�T�z carried out by Lie-transform methods �i.e., gener-
ated by the vector fields G1,G2,…� induces a transforma-
tion on Jacobians,

J → J̄ � J − ��a�JG1
a� + ¯ .

The phase-space transformation is said to be canonical if
�a�JG1

a�+ ¯ �0.
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APPENDIX B: UNPERTURBED GUIDING-CENTER
HAMILTONIAN DYNAMICS

In this appendix, derivations of guiding-center and
bounce-averaged guiding-center �bounce-center� Hamil-
tonian dynamics for the case of a strong �static� magnetic
field with weak spatial inhomogeneities in the absence
of a background electric field are summarized.

1. Guiding-center phase-space transformation

Under the time-independent guiding-center transfor-
mation �x ,p�→ �X ,p� ,� ,��, the particle phase-space La-
grangian, �= �p+eA /c� ·dx− ��p�2 /2m�dt is transformed
into the guiding-center phase-space Lagrangian,

�gc = ��−1e

c
A + p�b̂ − �	mc

e

�R*� · dX + �	mc

e

�d�

− Hgcdt , �B1�

where ���B is the ratio of the characteristic gyroradius
to the magnetic-field gradient length scale, the vector R*

is defined below, and the guiding-center Hamiltonian is

Hgc =
p�

2

2m
+ �B . �B2�

The guiding-center phase-space Lagrangian �B1� and
guiding-center Hamiltonian �B2� were originally derived
by Littlejohn �1983� using Lie-transform methods in the
form of asymptotic expansions Zgc

� =Z0
�+�G1

�+¯, where
Z0

���x ,p�0 ,�0 ,�0� are local particle phase-space coordi-

nates „p0� =p · b̂ is the kinetic momentum parallel to the
magnetic field, �0= �p��2 /2mB is the lowest-order mag-

netic moment, and �0=arctan��−p · 1̂� / �−p · 2̂�� is the gy-
ration angle… and the components of the first-order gen-
erating vector field are

G1
x = − �0 = −

mc

e
� 2�

mB
�̂ , �B3�

G1
p� = �mc/e���a1:�b̂ + b̂ · � � b̂� − p��0 · �b̂ · �b̂� ,

�B4�

G1
� = �0 · 	� � ln B +

mv�
2

B
b̂ · �b̂


− �
v�

�
�a1:�b̂ + b̂ · � � b̂� , �B5�

G1
� = − �0 · R +

��0

��
· �ln B +

v�

�
a2:�b̂

+
mv�

2

2�B
	b̂ · �b̂ ·

��0

��

 . �B6�

Here we use the rotating �right-handed� unit vectors

�b̂ ,�̂ , �̂�,

�̂ = − 1̂ sin � − 2̂ cos � =
��̂

��
,

�̂ = 1̂ cos � − 2̂ sin � = −
��̂

��
,

which are defined in terms of the fixed �local� unit vec-

tors 1̂� 2̂= b̂ �see Fig. 6�, the vector field R=��̂ · �̂

=�1̂ · 2̂ denotes Littlejohn’s gyrogauge vector field
�Littlejohn, 1983, 1988�, which is used to define the gra-
dient operator

�* � � + R* �

��
, �B7�

where R*�R+ �b̂ ·�� b̂�b̂ /2, and the gyroangle-
dependent dyadic matrices �a1 ,a2� are defined as

a1 = −
1
2

��̂�̂ + �̂ �̂� =
�a2

��
,

a2 =
1
4

��̂�̂ − �̂�̂� = −
1
4

�a1

��
.

Gyrogauge invariance is defined in terms of the require-
ment that the guiding-center Hamiltonian dynamics be
not only independent of the gyroangle � but also how it
is measured. By introducing the gyrogauge transforma-

tion ��=�+��X�, the perpendicular unit vectors �1̂ , 2̂� are

transformed as 1̂�=1̂ cos �+2̂ sin � and 2̂�=−1̂ sin �

+2̂ cos � so that the vector R transforms as R�=R+��.
For the guiding-center Hamiltonian dynamics to be gy-
rogauge invariant, the guiding-center phase-space La-
grangian �B1� must contain the gyrogauge-invariant
term d�−R ·dX�d��−R� ·dX.

The guiding-center kinetic energy E=p�
2 /2m+�B is

identical to the particle kinetic energy �to first order�
since the energy component of the first-order generating
vector field,

FIG. 6. Fixed unit vectors �1̂ , 2̂ , b̂� and rotating unit vectors
��̂ , �̂ , b̂�. Gyrogauge invariance involves an arbitrary rotation
of the perpendicular unit vectors 1̂ and 2̂ about the parallel
unit vector b̂.
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G1
E = �p�/m�G1

p� + BG1
� + G1

x · � � B � 0,

is identically zero when the components �B3�–�B5� of
the first-order generating vector field are used.

2. Guiding-center Hamiltonian dynamics

The Jacobian J=mB�
* for the guiding-center transfor-

mation �x ,p�→ �X ,p� ,� ,�� is defined in terms of the

guiding-center phase-space function B�
*= b̂ ·B* derived

from the generalized magnetic field,

B* � B + �	 cp�

e

 � � b̂ ,

where the second-order gyrogauge-invariant term
�2�mc2 /e2��� �R* is omitted �note that while the vector
R is gyrogauge-dependent, its curl ��R is not�. The
components �B3�–�B6� of the first-order guiding-center
generating vector field G1

� satisfy the identity B�
*�B

−���BG1
��, which shows how the Jacobian mB for the

local particle phase-space coordinates is transformed
into the Jacobian mB�

* for the guiding-center phase-
space coordinates.

The guiding-center Poisson bracket is constructed
from the guiding-center phase-space Lagrangian �B1�
and is expressed in terms of two arbitrary functions F
and G of �X ,p� ,� ,�� as

�F,G�gc = �−1 e

mc
	 �F

��

�G

��
−

�F

��

�G

��

 +

B*

B�
* · 	�*F

�G

�p�

−
�F

�p�

�*G
 − �
cb̂

eB�
* · �*F � �*G , �B8�

where �* is the gradient operator �B7� and the
�-ordering clearly separates the fast gyromotion time
scale ��−1�, the intermediate parallel time scale ��0�, and
the slow drift-motion time scale ���.

The equations of guiding-center motion Ż�

= �Z� ,Hgc�gc are expressed in terms of the guiding-center
Poisson bracket �B8� and the guiding-center Hamil-
tonian �B2� as

Ẋ = v�

B*

B�
* + �

cb̂

eB�
* � � � B

� vgc = v�b̂ + �
cb̂

eB�
* � �� � B + mv�

2b̂ · �b̂� , �B9�

ṗ� = −
B*

B�
* · � � B , �B10�

while �̇�−�� /B��Hgc/���0 and

�̇ = �−1� + v�b̂ · R* + O��� . �B11�

Note that the guiding-center Poisson bracket �B8� satis-
fies the Liouville identities

� � � 	 cb̂

e

 −

�B*

�p�

= 0 and � · B* = 0,

from which the guiding-center Liouville theorem is de-
rived

� · 	B�
*dX

dt

 +

�

�p�
	B�

*dp�

dt

 = 0. �B12�

Moreover, by substituting B�
*→B in Eqs. �B9� and �B10�,

the guiding-center equations of Northrop �1963� are re-
covered but we lose the guiding-center Liouville prop-
erty �B12�.

3. Guiding-center pull-back transformation

The guiding-center pull-back transformation Tgc re-
lates the guiding-center Vlasov distribution F to the par-
ticle Vlasov distribution f=TgcF, expanded to first order
in gradient length scale as

f = F − �0 · �F + �G1
p�

�F

�p�

+ �G1
� �F

��
, �B13�

where the second term on the right side is also ordered
at �. The Vlasov equation in �local� particle phase space
�x ,p0� ,�0 ,�0� is expressed as

0 =
df

dt
�

�f

�t
+ v · �f + ż0

i �f

�z0
i , �B14�

where the velocity-space equations of motion ż0
i

= �ṗ0� , �̇0 , �̇0� are expressed in terms of the first-order
generating-field components �B4�–�B6� as

ṗ0� = − �	�0b̂ · �B + �
�G1

p�

��

 , �B15�

�̇0 = − ��
�G1

�

��
, �B16�

�̇0 = �� − ��0 · ��� + �	v�b̂ · R* − �
�G1

�

��

 . �B17�

We now show that Eq. �B13� is a solution of the Vla-
sov equation �B14� provided the guiding-center Vlasov
distribution F satisfies the guiding-center Vlasov equa-
tion,

0 =
dgcF

dt
�

�F

�t
+ vgc · �F + ṗ�

�F

�p�

, �B18�

where �F /���0 and �̇�0; here we use vgc=v�b̂ and ṗ�

=−��b̂ ·�B. We write

df

dt
=

�F

�t
+ �	v − �

��0

��

 · �F + 	ṗ0� + ��

�G1
p�

��

 �F

�p�

+ 	�̇0 + ��
�G1

�

��

 �F

��
, �B19�

where we have used the fact that F is independent of the
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gyroangle �. By inserting definitions �B15� and �B16� for
�ṗ0� , �̇0�, we find df /dt=dgcF /dt, so that the particle Vla-
sov equation �B14� is satisfied if the guiding-center Vla-
sov equation �B18� is satisfied.

We conclude that the pull-back operator Tgc provides
a partial solution of the particle Vlasov equation by in-
tegrating the fast-time-scale particle dynamics. Note that
the guiding-center pull-back transformation �B13� is nor-
mally derived directly from the iterative solution of the
particle Vlasov equation.

4. Bounce-center Hamiltonian dynamics

When the characteristic time scale � is much longer
than the bounce period �i.e., when the guiding center has
executed many bounce cycles during time ��, the fast
bounce angle can be asymptotically removed from the
guiding center’s orbital dynamics, and a corresponding
adiabatic invariant �the longitudinal or bounce action J
�Jb� can be constructed. The resulting bounce-averaged
guiding-center dynamics takes place in a reduced two-
dimensional phase space with spatial �magnetic� coordi-
nates �y1 ,y2�, where each coordinate ya �with a=1 or 2�
satisfies the condition B ·�ya=0. Using the notation x̄
��y ,s�, with y��� ,�� used for coordinates in the space
of field-line labels �i.e., each magnetic field line is repre-
sented as a point in y space� and s is the parallel spatial

coordinate �where b̂��x /�s�, the magnetic vector poten-
tial is

A � 1
2�

a,b
!abya � yb, �B20�

where !ab is antisymmetric in its indices �with !12= +1
=−!21�. Using the orthogonality relations

�x̄i ·
�x

�x̄j = 
j
i �B21�

between the contravariant and covariant basis vectors,
we obtain the following expression for �s:

�s � b̂ − �
a

Ra � ya, �B22�

where

Ra � b̂ ·
�x
�ya , �B23�

while for �x /�ya we find

�x
�ya � Rab̂ + �

b
!ab � yb �

B
B2 . �B24�

It is now quite simple to check that the sets ��ya ,�s�
and ��x /�ya ,�x /�s� satisfy the relations �B21�. Bounce-
averaged guiding-center dynamics in static magnetic
fields has been shown to possess a canonical Hamil-
tonian structure �Littlejohn, 1982b�.

We begin with the unperturbed guiding-center phase-
space Lagrangian �B1� written in magnetic coordinates x̄
as

�0 = 	 e

2c�d
!abya + p�Rb
dyb + p�ds − 	�B +

p�
2

2m

dt

� Fbdyb + p�ds − H0dt , �B25�

where the gyromotion dynamics ���d�� has been re-
moved and the dimensionless parameter �d�1 is intro-
duced as an ordering parameter representing the ratio of
the fast bounce time scale to the slow drift time scale.

To lowest order in the drift �d ordering, the fast guid-
ingcenter motion is described by the quasiperiodic
bounce motion,

ṡ = v� and v̇� = − ��/m���B , �B26�

i.e., the motion is taking place along a magnetic-field
line �labeled by y� and drift motion is absent �to lowest
order�. Following a standard procedure in classical me-
chanics �Goldstein et al., 2002�, one constructs action-
angle canonical variables associated with this periodic
motion. The action-angle coordinates �J ,"� associated
with periodic bounce motion have the following lowest-
order expressions: for the bounce action J�Jb=J0+¯,
we find �Northrop, 1963; Littlejohn, 1982b�

J0�E,� ;y� �
1

2�
� p��s,E,� ;y�ds

=
1

�



s0

s1 �2m�E − �B�s ;y��ds , �B27�

where �s0 ,s1� are the turning points where v� vanishes,
while for the bounce angle "="0+¯ we find �Little-
john, 1982b�

"0�s,E,� ;y� � � ± �b

s0

s ds�

� 2

m
�E − �B�s�;y��

, �B28�

where # denotes the sign of v� and "�s=s0��� for both
branches. The bounce frequency �b is defined from Eq.
�B27� as

�b�y ;E,�� � 	 �J

�E
−1

= 2�	� ds

v�


−1

. �B29�

We now proceed with the substitution �s ,p��→ �J ,"�
in the guiding-center phase-space Lagrangian �B25�. The
transformation �s ,p��→ �J ,"��u is canonical since
dp� ∧ds�dJ∧d". In the guiding-center phase-space La-
grangian �B25�, the differential ds becomes ds=��sdu�

and we have

�0 � 	 q

2c�d
!abya + p�Rb
dyb + 	p�

�s

�u�
du�

− H0�y,u�dt , �B30�

where H0�y ,u���B„y ;s�u��+ �p��y ,u��2 /2m is the
lowest-order unperturbed guiding-center Hamiltonian

458 A. J. Brizard and T. S. Hahm: Foundations of nonlinear gyrokinetic theory

Rev. Mod. Phys., Vol. 79, No. 2, April–June 2007



and explicit bounce-angle dependence now appears in
the guiding-center phase-space Lagrangian �B30�. Be-
cause of its dependence on the field-line labels y, the
bounce action �B27� is not conserved at order �d �i.e.,
dJ /dt=O��d��. To remove the bounce-angle dependence
in the guiding-center phase-space Lagrangian �B30� and
construct an asymptotic expansion for the bounce-action
adiabatic invariant, we proceed by performing an infini-
tesimal transformation �y ,u�→ �ȳ , ū�, where the relation
between the guiding-center coordinates �y ,u� and the
bounce-guiding-center coordinates �ȳ , ū� is given in
terms of the asymptotic expansions

ȳa � ya + �dG1
a + ¯ ,

ū� � u� + �dG1
� + ¯ , �B31�

where the components Gn
a and Gn

� of the nth-order gen-
erating vector field are constructed so that the bounce

action J̄=J+�k=1
n �d

kGk
J is conserved at the nth order, i.e.,

dJ̄ /dt=O��d
n+1�. The y components of the first-order gen-

erating vector are �Littlejohn, 1982�

G1
a = − !abc

e
	 �S1

�ȳb + p�Rb
 , �B32�

where !ab=−!ab and the gauge function S1�ȳ , ū� is de-
fined from

�S1

�ū�
� −

!��

2
ū� − p��ȳ,ū�

�s�ū�
�ū�

, �B33�

with !�� antisymmetric in its indices �with !12= +1�.
The purpose of the transformation �B31� is to remove

the bounce-angle dependence at all orders in �d. The
unperturbed bounce-averaged guiding-center �or
bounce-center� phase-space Lagrangian becomes

�̄0 � �d
−1 e

2c
!abȳadȳb + J̄d"̄ − H̄0�ȳ, J̄ ;�d�dt , �B34�

and the unperturbed bounce-center Hamiltonian is
�Littlejohn, 1982b�

H̄0 � H0 −
�d

2 	�b!ab�G1
a�G1

b

�"̄
�

b

 , �B35�

where � �b denotes averaging with respect to "̄. The un-
perturbed bounce guiding-center Poisson bracket is de-
fined in terms of two arbitrary functions F and G on
bounce guiding-center phase space �ȳ , ū� as

�F,G� =
�F
�ū�

!��
�G
�ū�

+ �d
c

e

�F
�ȳa!ab

�G
�ȳb , �B36�

where !���!��
−1 =−!�� and the first term on the right

represents the bounce motion while the second term
represents the bounce-averaged drift motion.

The bounce-guiding-center position ȳa is the �bounce-
motion� time-averaged position of the guiding-center
position ya, i.e., ȳa��ya�b, and thus

$b
a � ya − �ya�b = − �dG1

a�ȳ,ū� �B37�

represents the bounce-angle-dependent bounce radius.
In tokamak geometry �Boozer, 2004�, we find that $b

�

�0 implies that trapped-particle orbits have finite ba-
nana widths, while in an axisymmetric magnetic-dipole
field B=����%, where the azimuthal angle % is an ig-
norable angle, we find $b

��0 implies that trapped-
particle orbits remain on the same magnetic surface �.

APPENDIX C: PUSH-FORWARD REPRESENTATION OF
FLUID MOMENTS

1. Push-forward representation of fluid moments

Applications of Lie-transform methods in plasma
physics include the transformation of an arbitrary fluid
moment on particle phase space into a fluid moment on
the transformed phase space. With the help of the push-
forward representation of arbitrary fluid moments, we
uncover several polarization and magnetization effects
in Maxwell’s equations that are related to the phase-
space transformation itself.

We start with the push-forward representation �139�
for the moment �v��, where v�= �c ,v�, and expand it to
first order in the displacement ��, defined in terms of the
generating vector fields �G1 ,G2 , . . . � by Eq. �140�, so that
we obtain

�v�� =
 d4p̄�T�
−1v��F̄ − � · �
 d4p̄���T�

−1v��F̄ + ¯ � ,

�C1�

where integration by parts was performed to obtain the
second term, and terms omitted inside the divergence
include higher-order multipole moments �e.g., electric
and magnetic quadrupole moments�.

We now derive the push-forward representation for
the four-current J�= �c� ,J���e�v��. First, we derive the
push-forward expression for the charge density �145�, �

= �̄−� ·P�, where �̄��e�d4p̄F̄ denotes the reduced
charge density and the polarization vector is defined as

P� � � e
 d4p̄���F̄ − � · 	����

2
F̄ + ¯ 
� , �C2�

where T�
−1v0�T�

−1c=c was used in Eq. �C1� and ��

�e�� is the lowest-order electric-dipole moment associ-
ated with the charge separation induced by the phase-
space transformation. Second, we derive the push-
forward expression for the current density �146�, where
the push-forward of the particle velocity v=dx /dt �using
its Lagrangian representation�,

T�
−1v = T�

−1dx
dt

= �T�
−1 d

dt
T���T�

−1x� �
d�x̄
dt

+
d���

dt
, �C3�

is expressed in terms of the reduced total time derivative
d� /dt. Here d�x̄ /dt denotes the reduced �e.g., guiding-
center� velocity and d��� /dt denotes the particle polar-
ization velocity, which includes the perpendicular par-
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ticle velocity and the standard polarization drift velocity
�Sosenko et al., 2001�. We replace the term d��� /dt in
Eq. �C3�, which contains the polarization-drift velocity,
by using the following identity based on the expression
�C2� for the reduced polarization vector:

�P�

�t
= � e
 d4p̄�	 ���

�t
F̄ + ��

�F̄
�t



− � · 	1
2

�������
�t

F̄ +
����

2

�F̄
�t

 + ¯ �

= � e
 d4p̄�	d���

dt

F̄ − � · �F̄	d�x̄

dt
��

+
1
2

d�������
dt


 + ¯ �� , �C4�

where the reduced Vlasov equation �108� was used and
integration by parts was performed. The push-forward
representation of the current density is

J = J̄ +
�P�

�t
+ � � �� e
 d4p̄��

� 	d�x̄
dt

+
1
2

d���

dt

F̄�

� J̄ + Jpol + Jmag, �C5�

where J̄��e�d4p̄�d�x̄ /dt�F̄ is the reduced current den-
sity, Jpol��P� /�t is the polarization current, and Jmag
�c� �M� is the divergenceless magnetization current,
with magnetization vector

M� = � e

c

 d4p̄�� � 	d�x̄

dt
+

1
2

d���

dt

F̄

� �
 d4p̄F̄	�� + �� �
1

c

d�x̄
dt


 �C6�

expressed in terms of the intrinsic magnetic-dipole con-
tribution

�� �
e

2c
�� �

d���

dt
�C7�

and the moving electric-dipole contribution ���

�d�x̄ /dt� �Jackson, 1975�.
We have shown that Lie-transform methods offer a

powerful approach for introducing reduced polarization
and magnetization effects into the reduced Maxwell
equations, which are associated with a near-indentity
phase-space transformation designed to eliminate fast
degrees of freedom from the Vlasov-Maxwell equations.

2. Push-forward representation of gyrocenter fluid
moments

The push-forward representation of fluid moments
�C1� is now used to derive gyrocenter polarization and
magnetization effects, which can then be compared with
the variational expressions presented in Sec. III.

Based on Lie-transform perturbation analysis pre-
sented in Sec. V, the gyrocenter displacement �gyrora-
dius� vector is defined as

�gy � �gc − �
G1
* + ¯ , �C8�

where �gc=�0+¯ denotes the gyroangle-dependent gy-
roradius and the effective first-order gyrocenter vector
field G1

* is �see Eqs. �164�, �166�, and �167��

G1
* = G1

x + G1
���0

��
+ G1

� ��0

��

= �S1,X + �0�0 + �
b̂0

B0
� �
A�gc� , �C9�

where S1 is defined in Eq. �172� and other definitions are
given in Sec. V.

We begin with the gyrocenter electric-dipole moment
�gy�e��gy�, where

��gy� = −
e

B0

�

��
�
�̃gc�0� − �

b̂0

B0
� �
A�gc� . �C10�

In the zero-Larmor-radius limit, we find

�gy = −
mc2

B0
2 	��
� −

p�

mc
��
A�
 + �1 − ��

eb̂0

B0
� 
A�,

�C11�

which, in the gyrocenter Hamiltonian model ��=0�, is
identical to Eq. �59� derived by the variational method.
Extension of the gyrokinetic polarization density to
gyrobounce-kinetics leads to the neoclassical polariza-
tion density �Fong and Hahm, 1999; Brizard, 2000c� as
discussed in Appendix D.2.

The intrinsic gyrocenter magnetic-dipole moment is

�gy �
e

2c
��gy �

dgy�gy

dt
� = − �b̂0 + ¯ , �C12�

which is identical to Eq. �60� derived by the variational
method; by taking into account the background
magnetic-field nonuniformity, a moving-electric-dipole
contribution is added to the guiding-center magnetiza-
tion current �Kaufman, 1986�.

The push-forward and variational methods yield iden-
tical expressions for the polarization and magnetization
effects appearing in the reduced Maxwell’s equations.

APPENDIX D: EXTENSIONS OF NONLINEAR
GYROKINETIC EQUATIONS

In this appendix, two extensions of nonlinear gyroki-
netic theory are presented. First, extension of the non-
linear gyrokinetic equations presented in the text by in-
troducing the effects of an inhomogeneous equilibrium
electric field are discussed. Two new ordering param-
eters must first be introduced: the dimensionless param-
eter �E represents the strength of the equilibrium E
�B velocity �e.g., compared to the ion thermal velocity�,
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while the dimensionless parameter �S represents the
gradient-length scale of the E�B shear flow �e.g., com-
pared to the ion thermal gyroradius�.

The second extension of the nonlinear gyrokinetic
equations presented in this appendix involves the deri-
vation of nonlinear bounce-kinetic equations, in which
the fast bounce-motion time scale of trapped guiding
centers is asymptotically removed by Lie-transform per-
turbation methods.

1. Strong EÃB flow shear

In Sec. II the various expansion parameters appearing
in nonlinear gyrokinetic theory originate from different
physical reasons, and the standard nonlinear gyrokinetic
ordering is not a unique ordering. In this appendix, an
example in which a further ordering consideration is
necessary is presented. This example not only demon-
strates the flexibility and the power of the modern Lie-
transform perturbation approach, but also addresses
highly relevant forefront research issues in magnetically
confined plasmas. While the nonlinear gyrokinetic
theory based on the standard ordering captures most of
the essential physics associated with tokamak core tur-
bulence, significant experimental progress in reducing
turbulence and transport in the past decade has demon-
strated that a new parameter regime characterized by a
strong shear in the E�B flow, a steep pressure gradient,
and a low fluctuation level can be reproduced routinely.
This motivates further improvement of the standard
nonlinear gyrokinetic ordering.

The analytic nonlinear theories of the E�B shear
decorrelation of turbulence �Biglari et al., 1990� and of
transition dynamics �Carreras et al., 1994; Diamond, Li-
ang, et al., 1994� in cylindrical geometry have demon-
strated a possible important role of the E�B shear in
the �low-confinement� L-mode to �high-confinement�
H-mode transition �Wagner et al., 1982; Burrell, 1997�.
Consequent generalization of the E�B shearing rate to
toroidal geometry �Hahm, 1994; Hahm and Burrell,
1995� with a proper dependence on the poloidal mag-
netic field B� has made this hypothesis applicable to core
transport barriers in reversed-shear plasmas �Mazzucato
et al., 1996; Burrell, 1997; Synakowski et al., 1997� and
has been utilized in analytical threshold calculations for
transport bifurcation �Diamond et al., 1997; Lebedev
and Diamond, 1997�.

While there has been significant progress in both
shear-flow physics �see, for example, Diamond and Kim
�1991�; Terry �2000�� and transport-barrier physics �see,
for example, theory reviews by Connor and Wilson
�2000� and by Hahm �2002�, and experimental reviews
by Burrell �1997� and by Synakowski et al. �1997��, non-
linear gyrokinetic simulations are desirable for more
quantitative comparisons to experimental data and ex-
trapolation to future machines. The existing nonlinear
gyrokinetic formalism in the absence of the equilibrium
radial electric field �Er=0� needs to be improved further
for an accurate description of plasma turbulence in a

core transport barrier region with significant Er shear.
We note that many previous works, which contain the
modification of the gyrokinetic Vlasov equation due to
plasma flow �Bernstein and Catto, 1985; Hahm, 1992;
Artun and Tang, 1994; Brizard, 1995�, consider a situa-
tion in which the toroidal flow of ions is the dominant
contributor to the radial electric field �Hinton et al.,
1994�. Therefore, those equations cannot be applied to
some core transport barriers where either the poloidal
or diamagnetic flow plays a dominant role �Bell et al.,
1998; Crombé et al., 2005�. Furthermore, since the indi-
vidual guiding-center motion is determined by the elec-
tromagnetic field rather than by the equilibrium mass-
flow velocity, it is natural to develop a gyrokinetic theory
in terms of Er �Hahm, 1996� in the laboratory frame.
This approach is also conceptually simpler than a formu-
lation in terms of the relative velocity in the frame mov-
ing with the mass flow �Hahm, 1992; Artun and Tang,
1994; Brizard, 1995� because one can formally treat the
guiding-center motion part separately from the equilib-
rium mass-flow issue, which is related to the determina-
tion of the ion distribution function from neoclassical
theory.

A general formulation can be pursued with uE /vth
�1, in addition to the standard gyrokinetic ordering
� /��e
� /Ti��ik� �� and k��i�1. Here uE is the
equilibrium E�B velocity.16 Only electrostatic fluctua-
tions are considered in this appendix.

We begin with the unperturbed guiding-center phase-
space Lagrangian,

�0 � 	 e

c
A + muE + mv�b̂
 · dX +

�B

�
d� − H0dt , �D1�

where the equilibrium E�B velocity uE��cb̂ /B���	
�Littlejohn, 1981� is associated with the equilibrium po-
tential 	, and the guiding-center Hamiltonian is

H0 = e	 + ��B + BE� +
m

2
�v�

2 + �uE�2� , �D2�

with

BE �
B

2�
· � � uE =

c

2
�� · 	�	

�

 +

�	

�
· �b̂ · �b̂��

�D3�

the finite-Larmor-orbit-average reduction of the equilib-
rium potential �Brizard, 1995�. While the term �BE in
the guiding-center Hamiltonian �D2� might be smaller
than m�uE�2 /2, we choose to keep it because of its clear
physical meaning.

Introducing the electrostatic perturbation 
��x , t�, the
Lie-transform perturbation analysis can be carried out
as described in Sec. V and further details can be found

16A tokamak-specific ordering, B� /B�r /qR�1, with further
subsidiary orderings, simplifies the formulation for applica-
tions. This exemplifies the nonuniqueness of the standard non-
linear gyrokinetic ordering; details can be found in Hahm
�1996� and Hahm, Lin, et al. �2004�.
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in Hahm �1996�. Perturbation analysis up to the second
order is required for energy conservation up to O��


2� in
the formulation in terms of the total distribution func-
tion �Dubin et al. 1983; Hahm, 1988; Brizard, 1989a�.
The total phase-space Lagrangian is given up to the sec-
ond order by

�̄ = 	 e

c
A + muE + mv̄�b̂
 · dX̄ +

�̄B

�
d�̄

− �H0 + e
�gy�dt , �D4�

where the effective gyrocenter perturbation potential is


�gy � �
�gc� −
e

2B

�

��̄
�
�̃gc

2 � .

The corresponding Euler-Lagrange equation is

−
eB*

c
�

dX̄
dt

− mb̂
dv̄�

dt
= �̄�H0 + e
�gy� , �D5�

which can be decomposed into the following gyrocenter
equations of motion:

dX̄
dt

= v̄�

B*

B�
* +

cb̂

eB�
* � �e�̄�	 + 
�gy� + �̄�̄�B + BE�

+
m

2
�̄�uE�2� . �D6�

and

dv̄�

dt
= −

B*

mB�
* · �e�̄�	 + 
�gy� + �̄�̄�B + BE�

+
m

2
�̄�uE�2� . �D7�

Although Eqs. �D6� and �D7� are mathematically con-
cise, they can be written in the following form, which is
closer to the results of previous work in terms of the
mass flow �Artun and Tang, 1994; Brizard, 1995�:

dX̄
dt

= uE + v̄�b̂ +
cb̂

eB�
* � �e�̄
�gy + �̄�̄�B + BE�

+ m�uE + v̄�b̂� · �̄�uE + v̄�b̂�� �D8�

and

dv̄�

dt
= −

B*�0�

mB�
*�0� · �e�̄�	1 + 
�gy� + �̄�̄�B + BE

�0��

+ m�uE
�0� + v̄�b̂� · �̄�uE

�0� + v̄�b̂�� . �D9�

Here uE
�0�� b̂��	�0� /B, B*�0��B+ �m /e�� � �uE

�0�+v�b̂�,
and B�

*�0�� b̂ ·B*�0�. Although Eq. �D8� is valid for an
arbitrary 	, Eq. �D9� can be only obtained from Eq.
�D7� via a perturbative analysis �Brizard, 1995�. The
equilibrium electrostatic potential, in general, consists of
two parts 	�	0+	1. In most cases, 	 can be approxi-

mated by a flux function 	0��� satisfying b̂ ·�	0=0. The
poloidal-angle-dependent 	1�� ,�� can be produced, for

instance, by the centrifugal-force-driven charge separa-
tion in strongly rotating plasmas �Hinton and Wong,
1985; Connor et al., 1987�. According to the ordering in
this section, 	0=O��E

−1� and 	1=O�1�. The theory of E
�B flow-shear suppression of turbulence has also been
extended to include the poloidal-angle-dependent po-
tential 	1�� ,�� �Hahm and Burrell, 1996�, exhibiting the
tensor nature of the shearing process, which can also
occur when small eddies �e.g., from ETG turbulence� are
sheared by large convective cells �e.g., from ITG turbu-
lence� �Holland and Diamond, 2004�.

With Eqs. �D8� and �D9�, one can write explicitly the
gyrokinetic Vlasov equation for the gyrocenter distribu-

tion function F̄�X̄ , �̄ , v̄� , t�,

�F̄

�t
+

dX̄
dt

· �̄F̄ +
dv̄�

dt

�F̄

�v̄�

= 0. �D10�

Note that d�̄ /dt�0 and �F /��̄�0 have been used. The
accompanying gyrokinetic Poisson equation expressed
in terms of the gyrocenter distribution function

F̄�X̄ , �̄ , v̄� , t� is �Hahm, 1996�

�2�	 + 
�� = 4�e�ne − N̄i� , �D11�

where the ion gyrofluid density

N̄i �
 d3p̄�e−�·�	F +
e
�̃gc

B

�F

��̄

�

includes the ion polarization density, and the electron
density ne can be obtained from the drift-kinetic equa-
tion ��e ·�→0�. The invariant energy for Eqs. �D10� and
�D11� is obtained by transforming the energy constant of
the original Vlasov-Poisson system,

E =
 d6Z̄F̄i��̄�B + BE� +
m

2
��uE�2 + v̄�

2��
+
 d6zfe	me

2
v2
 +
 d3x

8�
�E�2

+
e2

2B

 d6Z̄F̄i	 �

��̄
�
�̃gc

2 �
 , �D12�

where E�−��	+
�� is the total electric field. In this
total-F formulation, the second-order nonlinear correc-
tion to the effective potential should be kept alongside
the sloshing energy in order to ensure energy conserva-
tion.

In a related subject, namely, extension of nonlinear
gyrokinetic formulations to edge turbulence, a different
ordering is desirable due to the high relative fluctuation
amplitude in low-confinement L-mode plasmas and the
strong E�B flow shear in high-confinement �H-mode�
plasmas �Hahm, Lin, et al., 2004�. Gyrokinetic simula-
tions of edge turbulence began to appear recently �Scott,
2006�. With a rigorous derivation additional terms �other
than the radially dependent Doppler-shift-like term� ap-
pear in the gyrocenter equations of motion. Some of
these terms are kept in comprehensive gyrokinetic sta-
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bility analysis addressing the E�B shear effects �Re-
woldt et al., 1998; Peeters and Strintzi, 2004�.

For nonlinear gyrokinetic simulations of turbulence
much of the emphasis in the past decade has been con-
centrated on the study of zonal flows that are spontane-
ously generated by turbulence �Diamond et al., 2005�.
The self-generated zonal flows are radially localized
�krLF
1�, axisymmetric �k%=0�, and mainly poloidal E
�B flows.

There have been early indications from a fluid simu-
lation �Hasegawa and Wakatani, 1987� that self-
generated zonal flows can be important in drift-wave
turbulence. In the 1990s, the importance of Reynold’s
stress in zonal-flow generation was recognized �Dia-
mond and Kim, 1991; Diamond et al., 1993; Diamond,
Liang, et al., 1994� while nonlinear gyrofluid simulations
�Dorland, 1993; Hammett et al., 1993; Waltz et al., 1994;
Beer, 1995� have shown that zonal flows can regulate the
ion-temperature-gradient turbulence and its associated
transport. Based on nonlinear gyrokinetic simulations
�Lin et al., 1998; Dimits et al., 2000� with a proper treat-
ment of undamped zonal flows in collisionless toroidal
geometry �Rosenbluth and Hinton, 1998�, it is now
widely recognized that understanding zonal-flow dynam-
ics in regulating turbulence is essential in predicting
transport in magnetically confined plasmas quantita-
tively. The important role of zonal flows has been recog-
nized in nearly all cases and regimes of plasma turbu-
lence so that the plasma microturbulence problem can
be referred to as the “drift wave–zonal flow problem,”
thereby emphasizing the two-component nature of the
self-regulating system. Both nonlinear gyrokinetic simu-
lations and theories have made essential contributions to
this paradigm shift as recently reviewed �Diamond et al.,
2005; Itoh et al., 2006�, and have influenced experiments.
For instance, characterization of the experimentally test-
able features of zonal-flow properties from nonlinear gy-
rokinetic simulations �Hahm et al., 2000� have motivated
some experimental measurements �see, for example,
McKee et al., 2003; Conway et al., 2005�.

One important effect of zonal flows on drift wave tur-
bulence is the shearing of turbulent eddies. While the
shearing due to mean E�B flow is well understood and
pedagogical explanations are available, the complex spa-
tiotemporal behavior of zonal flows introduces two im-
portant modifications. The first one is the time variation
of zonal flows. High kr components of zonal flows can
vary on the eddy turnover time scale �Beer, 1995�, unlike
externally driven macroscopic E�B flows, which vary
on a much slower time scale. It has been shown that fast
time-varying components of zonal flows are less effec-
tive in shearing turbulence eddies �Hahm et al., 1999�.

The fundamental reason for this is that the zonal-flow
shear pattern changes before the eddies can be com-
pletely torn apart. The turbulent eddies can then recover
some of their original shape, and the shearing effect is
reduced. This effect was first characterized via the “ef-
fective shearing rate” �Hamh et al., 1999�. Later, this
trend was confirmed in particular turbulence models
�Kim et al., 2004�. This is also the reason why the geo-

desic acoustic mode �GAM� �Winsor et al., 1968�, with
�GAM�vth /R, does not reduce the ambient turbulence
significantly for typical core parameters �Miyato et al.,
2004; Angelino, 2006�. At the edge, sharp pressure gra-
dients make the diamagnetic drift frequency at the rel-
evant long wavelengths closer to the GAM frequency,
i.e., �* /�GAM��k�R��i /Lp�1. Therefore, the GAM can
possibly affect the edge ambient turbulence �Hillatschek
and Biskamp, 2001; Scott, 2003�. The second reason is
the chaotic pattern of the zonal flows. As a result, the
shearing due to zonal flows is better characterized by a
random diffraction derived from statistical approaches
�Diamond et al., 1998, 2001; Diamond, Lebedev, et al.,
1994� rather than the coherent stretching, which is appli-
cable to the shearing due to the mean E�B shear. It has
also been shown that the evolution of the mean E�B
flow and that of the zonal flow can be quite different
during transport-barrier formation �Kim and Diamond,
2002�.

2. Bounce-center-kinetic Vlasov equation

As a second example of the extension of the nonlinear
gyrokinetic formalism presented in the text, we derive
the bounce-center-kinetic Vlasov equation. A conven-
tional derivation with an emphasis on application to
trapped-particle-driven turbulence can be found in
Gang and Diamond �1990�. We construct nonlinear
Hamilton equations for charged particles in the presence
of low-frequency electromagnetic fluctuations with char-
acteristic mode frequency � such that

�d,� � �b � � , �D13�

where �b and �d denote the bounce and drift frequen-
cies of a trapped guiding-center particle. This new time-
scale ordering allows the removal of the fast gyration
and bounce angles, i.e., the new reduced dynamics pre-
serves the invariance of the magnetic moment � and the
bounce action J=Jb. While this represents a typical situ-
ation in magnetically confined plasmas, one can consider
a more general case without a specific ordering between
�b and �; this interesting example has been studied pre-
viously by Dubin and Krommes �1982�.

In deriving these reduced equations, we ignore finite-
Larmor-radius effects associated with the electromag-
netic field perturbations �i.e., we consider the long-
wavelength limit k�

2 �i
2�1�, and refrain from ordering

the perpendicular and parallel wave numbers since
k� /k� may not be very small for some macroscopic in-
stabilities.

In the presence of electromagnetic field fluctuations,
the background magnetic field becomes perturbed. De-
pending on the characteristic time scales of the fluctuat-
ing fields, this situation typically may lead to the destruc-
tion of the guiding-center adiabatic invariants � and/or

J̄. The electromagnetic field fluctuations are represented
by the perturbed scalar potential 
�, the parallel com-

ponent of the perturbed vector potential 
A� ��b̂0 ·
A�,
and the parallel component of the perturbed magnetic
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field 
B� ��b̂0 ·��
A�. We assume that the characteris-
tic mode frequency � is much smaller than the bounce
frequency �b, i.e.,

�

�b
� ��, �D14�

where �� is a small ordering parameter; we henceforth
set �d equal to 1 for clarity.

The perturbed guiding-center phase-space Lagrangian
can be written as

�̄ = �̄0 + �
�̄1, �D15�

where the first-order guiding-center phase-space La-
grangian is �Brizard, 1989a�

�̄1 �
e

c
	
A�bc

�s

�ū�
dū�, �D16�

and the first-order guiding-center Hamiltonian is

H̄1 � e
�gc + �̄
B�bc. �D17�

Dependence on the fast bounce-angle "̄ is reintroduced

in �̄n �n�1� because the perturbation fields

�
�gc ,
A�bc,
B�bc� depend on "̄ through s�ū��s�u� �to
lowest order in �d� and y� ȳ+
b. For example, the per-
turbed scalar potential 
�gc�ȳ , ū� is defined as


�gc�ȳ,ū ;t� � 
�„ȳ + 
b,s�ū� ;t… . �D18�

In what follows, no assumptions about the orderings of
the parallel and perpendicular wave numbers are made.
In Eq. �D17�, the gyrocenter magnetic moment

�̄ � � + �
� e�

B0
· �̄	
�gc −

v�

c

A�bc
 − �


B�bc

B0
� + ¯

�D19�

is an adiabatic invariant for the low-frequency nonlinear
gyrocenter Hamiltonian dynamics �Brizard, 1989a�,
while � is the �unperturbed� guiding-center magnetic
moment and � is the gyroradius. The second-order gy-
rocenter Hamiltonian �in the limit �2k�

2 �1� is

H̄2 � −
mc2

2B0
2��̄�	
�gc −

v�

c

A�bc
�2

− e
A�bc ·
b̂0

B0
� �̄�	
�gc −

v�

c

A�bc
 , �D20�

The new bounce-gyrocenter phase-space Lagrangian
is chosen to be

�̂ �
e

2c
!abŷadŷb + Ĵd"̂ − ŵdt , �D21�

i.e., all electromagnetic perturbation effects have been
transfered to the bounce-gyrocenter Hamiltonian

Ĥ�ŷ,t ; Ĵ� � Ĥ0 + �
Ĥ1 + �

2Ĥ2, �D22�

where the second-order bounce-center Hamiltonian
contains low-frequency ponderomotive terms associated
with the asymptotic decoupling of the bounce-motion
time scale. The first-order bounce-center Hamiltonian is

Ĥ1 � e�
�bc�b = �e	
�gc −
v�

c

A�bc
�

b
+ �̄�
B�bc�b,

�D23�

where the bounce-angle averaging with respect to "̂ is
denoted � �b. The second-order bounce-center Hamil-
tonian is

Ĥ2 � �H̄2�b +
e2

2mc2 ��
A�bc�2�b −
e2

2�b
��
�̃bc,
�̃bc�bc�b,

�D24�

where 
�̃bc��
�̃bcd"̂ and � , �bc denotes the unper-
turbed bounce-center Poisson bracket.

The nonlinear bounce-gyrocenter Hamiltonian is

Ĥ � Ĥ0 + �
�e	
�gc −
v�

c

A�bc
 + �̄
B�bc�

b

+ �

2��H̄2�b +

e2

2mc2 ��
A�bc�2�b

−
e2

2�b
��
�̃bc,
�̃bc�bc�b� . �D25�

This expression generalizes the previous works of Gang
and Diamond �1990� and Fong and Hahm �1999�, who
considered electrostatic perturbations only. The nonlin-
ear bounce-gyrocenter Hamilton equations presented
here contain terms associated with full electromagnetic

perturbations and include classical ��H̄2�b� and neoclas-

sical ���
�̃bc,
�̃bc��b� terms. The bounce-center-kinetic

Vlasov equation for the distribution F̂ of bounce centers
is expressed as in terms of the nonlinear bounce-
gyrocenter Hamiltonian �D25� and the bounce-center
Poisson bracket �B36� as

�F̂

�t
+

c

e

�F̂

�ŷa!ab �Ĥ

�ŷa = 0, �D26�

where the trapped-particle E�B nonlinearity

��d
ŷa /dt��
F̂ /�ŷa� plays a crucial role in the nonlinear
saturation of the trapped-electron mode �Gang et al.,
1991; Hahm and Tang, 1991� and the trapped-ion mode.

The bounce-center phase-space transformation �ȳ , ū�
→ �ŷ , û� is defined up to first order in �
 as

ŷa = ȳa + �
�S̄1, ȳa�bc,

û� = ū� + �
�S̄1,ū��bc + �
�e/c�
A�bc�s̄,ū��bc, �D27�

where S̄1�e
�̃bc/�b. The neoclassical polarization den-
sity can be defined in terms of the push-forward expres-
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sion �neopol�−�e� · ����, where � � denotes a momentum
integration over the bounce-center distribution function
and

��
a � − �
�S̄1, ȳa + $b

a�bc.

The neoclassical polarization density �neopol accounts for
the difference between the bounce-center density and
the gyrocenter density �Fong and Hahm, 1999�. This is
related, via a continuity equation, to the neoclassical po-
larization current �Hinton and Robertson, 1984�, which
plays a crucial role in zonal-flow evolution �Rosenbluth
and Hinton, 1998�. By definition, the bounce-center mo-
ment ���

a� involves a bounce-angle average and to lowest
order in the bounce-kinetic ordering we find

���
a�b = �


e

�b

�

�Ĵ
�
�̃bc$b

a�b,

where $b
a denotes the bounce radius defined in Eq.

�B37�. We see that each asymptotic decoupling of a fast
time scale introduces a corresponding ponderomotive-
like nonlinear term in the reduced Hamiltonian. These
ponderomotive-like terms, in turn, are used to introduce
polarization and magnetization effects into the reduced
Maxwell’s equations.
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