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CHAPTER 2

Waves and First Order Equations

We start the detailed discussion of hyperbolic waves with a study of
first order equations. As noted in Chapter I, the simplest wave equation is

p,+cop, =0, ¢, =constant. (2.1)

When this equation arises, the dependent variable is usually the density of
something so we now use the symbol p rather than the all-purpose symbol
@ of the introduction. The general solution of (2.1) is p=f(x—cyt), where
f(x) is an arbitrary function, and the solution of any particular problem
consists merely of matching the function f to initial or boundary values. It
clearly describes a wave motion since an initial profile f(x) would be
translated unchanged in shape a distance ¢, to the right at time 7. At two
observation points a distance s apart, exactly the same disturbance would
be recorded with a time delay of 5/c,.
Although this linear case is almost trivial, the nonlinear counterpart

b+ c(p)p, =0, (22)

where ¢(p) is a given function of p, is certainly not and a study of it leads
to most of the essential ideas for nonlinear hyperbolic waves. As remarked
earlier, many of the classical examples of wave propagation are described
by second or higher order equations such as the wave equation c;Vip=q,,
but a surprising number of physical problems do lead directly to (2.2) or
extensions of it. Examples will be given after a preliminary discussion of
the solution. Even in higher order problems, one often searches for special
solutions or approximations that involve (2.2).

2.1 Continuous Solutions

One approach to the solution of (2.2) is to consider the function p(x,1)
at each point of the (x,r) plane and to note that p,+ c(p)p, is the total
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20 WAVES AND FIRST ORDER EQUATIONS Chap. 2
derivative of p along a curve which has slope

dx

“dT=C(P) (2.3)

at every point of it. For along any curve in the (x.7) plane, we may
consider x and p to be functions of ¢, and the total derivative of p is

dp _dp  dx dp
dt ot  dt Ox’

The total derivative notation should be sufficient to indicate when x and p
are being treated as functions of 7 on a certain curve; the introduction of
new symbols each time this is done eventually becomes confusing. We now
consider a curve ¢ in the (x,7) plane which satisfies (2.3). Of course such a
curve cannot be determined explicitly in advance since the defining equa-
tion (2.3) involves the unknown values of p on the curve. However, its
consideration will lead us to a simultaneous determination of a possible
curve © and the solution p on it. On ¢ we deduce from the total
derivative relation and from (2.2) that

dp _ dx _

We first observe that p remains constant on (. It then follows that c(p)
remains constant on ©, and therefore that the curve ¢ must be a straight
line in the (x,¢) plane with slope c¢(p). Thus the general solution of (2.2)
depends on the construction of a family of straight lines in the (x,7) plane.
each line with slope ¢(p) corresponding to the value of p on it. This is easily
done in any specific problem.

Let us take for example the initial value problem

p=f(x), t=0, —oo<x<co,

and refer to the (x,) diagram in Fig. 2.1. If one of the curves ¢ intersects
t=0 at x=¢ then p=/f(¢) on the whole of that curve. The corresponding
slope of the curve is ¢(f(£)), which we will denote by F(§); it is a known
function of ¢ calculated from the function ¢(p) in the equation and the
given initial function f(§). The equation of the curve then is

x=£+ F(é)t.

This determines one typical curve and the value of p on it is f(§). Allowing
¢ to vary, we obtain the whole family:

p=f(8).  e=F(&)=c(f(£)) (25)
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Fig. 2.1. Characteristic diagram for nonlinear waves.

on
x=£+ F(E)1. (2.6)

We may now change the emphasis and use (2.5) and (2.6) as an
analypc expression for the solution, free of the particular construction.
That is, p is given by (2.5) where &(x,1) is defined implicitly by (2.6). Let us
check that this gives the solution. From (2.5),

p=r(0E  p=T(§E,
and from the 7 and x derivatives of (2.6),

O0=F(&) + {1+ F (&)1,
Therefore Sl

L) £(8)

p!= sr= °
P 14+ F'(&):

L+ F (&) (27)

and we see that

p,+clplp,=0
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since c(p)= F(§). The initial condition p=f(x) is satisfied because {=x
when 1=0.

The curves used in the construction of the solution are the
characteristic curves for this special problem. Similar characteristics play an
important role in all problems involving hyperbolic differential equations.
In general, characteristic curves do not have the property that the solution
remains constant along them. This happens to be true in the special case of
(2.2): it is not the defining property of characteristics. The general defini-
tions will be considered later, but it will be convenient now to refer to the
curves defined by (2.3) as characteristics.

The basic idea of wave propagation is that some recognizable feature
of the disturbance moves with a finite velocity. For hyperbolic equations,
the characteristics correspond to this idea. Each characteristic curve in
(x,1) space represents a moving wavelet in x space, and the behavior of the
solution on a characteristic curve corresponds to the idea that information
is carried by that wavelet. The mathematical statement in (2.4) may be
given this type of emphasis by saying that different values of p “propagate”
with velocity c(p). Indeed, the solution at time 7 can be constructed by
moving each point on the initial curve p=f(x) a distance c(p)t to the right;
the distance moved is different for the different values of p. This is shown
in Fig. 2.2 for the case ¢’(p) >0; the corresponding time levels are indicated
in Fig. 2.1. The dependence of ¢ on p produces the typical nonlinear
distortion of the wave as it propagates. When ¢’(p) >0, higher values of p
propagate faster than lower ones. When ¢’(p)<0, higher values of p
propagate slower and the distortion has the opposite tendency to that
shown in Fig. 2.2. For the linear case, ¢ is constant and the profile is
translated through a distance ¢ without any change of shape.

It is immediately apparent from Fig. 2.2 that the discussion is far from
complete. Any compressive part of the wave, where the propagation
velocity is a decreasing function of x, ultimately “breaks” to give a

X

Fig. 2.2. Breaking wave: successive profiles corresponding to the times 0, 7, 75, 15 in Fig. 2.1.
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triple-valued solution for p(x.r). The breaking starts at the time indicated
by t=1, in Fig. 2.2. when the profile of p first develops an infinite slope.
The analytic solution (2.7) confirms this and allows us to determine the
breaking time 75. On any characteristic for which F'(£§)<0, p, and p,
become infinite when
1
F'(¢)

Therefore breaking first occurs on the characteristic {=§, for which
F'(§) <0 and |F'(§)| is a maximum; the time of first breaking is

5= e (2.8)

This development can also be followed in the (x,7) plane. A compressive
part of the wave with F’(§) <0 has converging characteristics; since the
characteristics are straight lines, they must eventually overlap to give a
region where the solution is multivalued, as in Fig. 2.1. This region may be
considered as a fold in the (x,7) plane made up of three sheets, with
different values of p on each sheet. The boundary of the region is an
envelope of characteristics. The family of characteristics is given by (2.6)
with ¢ as parameter. The condition that two neighboring characteristics £,
£+ 8¢ intersect at a point (x,7) is that

x=&+ F(EH)t
and

x=E+ 08+ F(E+688)
hold simultaneously. In the limit §é—0, these give
x=¢+ F(&)r and O=1+F'(¢é)1

for the implicit equations of an envelope. The second of these relations
shows that an envelope is formed in 1 >0 by those characteristics for which
F’(§) <0. The minimum value of  on the envelope occurs for the value of ¢
for which — F’(¢) is maximum. This is the first time of breaking in
agreement with (2.8). If F”(£) is continuous, the envelope has a cusp at
t=1,, §=§;, as shown in Fig. 2.1.

An extreme case of breaking arises when the initial distribution has a
discontinuous step with the value of ¢(p) behind the discontinuity greater
than that ahead. If we have the initial functions

o, x>0
pyp  x<0

flx)=
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and

F(x)={c'=c(p’)’ 0
e=clpy). x<0

with ¢,>c,. then breaking occurs immediately. This is shown in Fig. 2.3
for the case ¢'(p)>0, p,>p,. The multivalued region starts right at the
origin and is bounded by the characteristics x=c,;1 and x=c,t; the
boundary is no longer a cusped envelope since F and its derivatives are not
continuous. Nevertheless, the result may be considered as the limit of a
series of smoothed-out steps, and the breaking point moves closer to the
origin as the initial profile approaches the discontinuous step.

On the other hand, if the initial step function is expansive with ¢, <c¢,,
there is a perfectly good continuous solution. It may be obtained as the
limit of (2.5) and (2.6) in which all the values of F between ¢, and ¢, are
taken on characteristics through the origin ¢=0. This corresponds to a fan
of characteristics in the (x,?) plane as in Fig. 2.4. Each member of the fan
has a different slope F but the same & The function F is a step function
but we use all the values of F between ¢, and ¢, on the face of the step and
take them all to correspond to £=0. In the fan, the solution (2.5), (2.6) then

reads

c=F, x=Ft, for ¢, <F<¢y,

c=cp> ¢ c=c X
P
P=P2
[ /
P| P=P|

Fig. 2.3. Centered compression wave with overlap.
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Fig. 2.4. Centered expansion wave.

and by elimination of F we have the simple explicit solution for ¢:

_ X X
€= cz<7<c,.

The complete solution for ¢ is

X
S Cl, o < 7
c=. X z
—" P C2<7<Cl, (29)
¢y X <.

!

"Sl;l;e rcela>txon ch=c(p).can be solved to 'determine p. For the compressive
" fv,vnzin ?;gt 2e.?)f.an in the (x,7) plane is reversed to produce the overlap
denSiItn r;lfost physmal. problem§ \yhere this theory arises, p(x,?) is just the
breaki}rll Osomo: rznedlum and is mherent'ly single-valued. Therefore when
prOblemg Eccurs.( .2) must cease to be valid as a description of the physical
S, };ei V}f[n 1fn ;ases such as water waves where a multivalued solution
that (2.2 i§ ! oCl the surface coqld at least be interpreted, it is still found
. aissumnza equate to dgscrnbe the process. Thus the situation is that
o ption or'appr0x1.ma.te relation in the formulation leading to

-2) 1s no longer valid. In principle one must return to the physics of the
problem, see what went wrong, and formulate an improved theory. How-
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ever. it turns out, as we shall see, that the foregoing solution can be saved
by allowing discontinuities into the solution; there is then a single-valued
solution with a simple jump discontinuity to replace the multivalued
continuous solution. This requires some mathematical extension of what
we mean by a “solution” to (2.2), since strictly speaking the derivatives of p
will not exist at a discontinuity. It can be done through the concept of a
“weak solution.” But it is important to appreciate that the real issue is not
just a mathematical question of extending the solution of (2.2). The
breakdown of the continuous solution is associated with the breakdown of
some approximate relation in the physics, and the two aspects must be
considered together. It is found, for example, that there are several possible
families of discontinuous solutions, all satisfactory mathematically; the
nonuniqueness can be resolved only by appeal to the physics.

Clearly then, we cannot proceed further without discussion of some
physical problems. The prototype is the nonlinear theory of waves in a gas
and the formation of shock waves. When viscosity and heat conduction are
ignored, the equations of gas dynamics have breaking solutions similar to
the preceding ones. As the gradients become steep, just before breaking,
the effects of viscosity and heat conduction are no longer negligible. These
effects can be included to give an improved theory and waves no longer
break in that theory. There is a thin region, a shock wave, in which
viscosity and heat conduction are crucially important; outside the shock
wave, viscosity and heat conduction may still be neglected. The flow
variables change rapidly in the shock. This shock region is idealized into a
discontinuity in the “extended” inviscid theory. and only shock conditions
relating the jumps of the flow variables across the discontinuity need to be
added to the inviscid theory.

We will study all these various aspects in detail. However, gas dynam-
ics is not the simplest example, since it involves higher order equations,
and we shall discuss the essential ideas first in the context of the simpler
first order problems. It should be remembered, though, that these ideas
were developed for gas dynamics, and we are reversing the chronological
order. The basic ideas were elucidated by Poisson (1807), Stokes (1848).
Riemann (1858), Earnshaw (1858), Rankine (1870), Hugoniot (1889),
Rayleigh (1910), Taylor (1910)—a most impressive list. The time required
indicates that putting the different aspects together was quite a compli-
cated affair.

2.2 Kinematic Waves

In many problems of wave propagation there is a continuous distribu-
tion of either material or some state of the medium, and (for a one
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dimensional problgm) we can define a density p(x,7) per unit length and a
flux g(x.r) per unit time. We can then define a flow velocity ©(x.,7) by

q
t=—.

Assuming that the material (or state) is conserved, we can stipulate that the
rate of change of the total amount of it in any section x,> x > x, must be
balanced by the net inflow across x; and x,. That is,

d [~
Ef p(x,1)dx+q(x.1) —q(x,1)=0. (2.10)

X2

If p(.x,t) has continuous derivatives, we may take the limit as x,—x, and
obtain the conservation equation L

dp dgq

The simplest wave problems arise when it is reasonable, on either theoreti-

gal or emp'irical grounds, to postulate (in a first approximation!) a func-
tional relation between g and p. If this is written as

q=0Q(p). (2.12)
(2.11) and (2.12) form a complete system. On substitution we have
p,+c(p)p,=0 2.13
where I ( )
c(p)=0Q'(p). (2.14)

This lf:ads to our (2.2) and a typical solution is given by (2.5) to (2.6). The
breaking requires us to reconsider both the mathematical assumption that
p and g have derivatives and the physical assumption that g=Q(p) is a
good approximation. To fix ideas for the further development of the theory
some specific examples are noted briefly here. We shall return to them in
Chapter 3 for a more detailed discussion after the theoretical ideas are
complete.

An amusing case (which is also important) concerns traffic flow. It is
reasonable to suppose that some essential features of fairly heavy traffic
flow may be obtained by treating a stream of traffic as a continuum with
an observable density p(x,7), equal to the number of cars per unit length
anq avflow q(x,1), equal to the number of cars crossing the position x pe;
unit time. For a stretch of highway with no entries or exits, cars are
conserved! So we stipulate (2.10). For traffic it also seems reas’onable to
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argue that the traffic flow ¢ is determined primarily by the local density p
and to propose (2.12) as a first approximation. Such functional relations
have been studied and documented to some extent by traffic engineers. We
can then apply the theory. But it is clear in this case that when breaking
occurs there is no lack of possible explanations for some breakdown in the
formulation. Certainly the assumption g = Q(p) is a very simplified view of
a very complicated phenomenon. For example, if the density is changing
rapidly (as it is near breaking), one expects the drivers to react to more
than the local density and one also expects that there will be a time lag
before they respond adequately to the changing conditions. One might also
question the continuum assumption itself.

Another example is flood waves in long rivers. Here p is replaced by
the cross-sectional area of the channel, 4, and this varies with x and ¢ as
the level of the river rises. If g is the volume flux across the section, then
(2.10) between A and g expresses the conservation of water. Although the
fluid flow is extremely complicated, it seems reasonable to start with a
functional relation g=Q(A) as a first approximation to express the in-
crease in flow as the level rises. Such relations have been plotted from
empirical observations on various rivers. But it is again clear that this
assumption is an oversimplification which may well have to be corrected if
troubles arise in the theory.

A similar example, proposed and studied extensively by Nye (1960), is
the example of glacier flow. The flow velocity is expected to increase with
the thickness of the ice, and it seems reasonable to assume a functional
dependence between the two.

In chromatography and in similar exchange processes studied in
problems of chemical engineering, the same theory arises. The formulation
is a little more complicated. The situation is that a fluid carrying dissolved
substances or particles or ions flows through a fixed bed and the material
being carried is partially adsorbed on the fixed solid material in the bed.
The fluid flow is idealized to have a constant velocity V. Then if p; is the
density of the material carried in the fluid, and p, is the density deposited
on the solid,

p=pitp.  q=Vp.
Hence the conservation equation (2.11) reads
d d
—(p;+p,)+=—(Vp,) =0.
ot (pf ps) Ax ( pj) 0

A second relation concerns the rate of deposition on the solid bed. The
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exchange equation

dp,
o7 = ki(A=p)p—kyp(B~p))

is apparently the simplest equation with the required properties. The first
term represents deposition from the fluid to the solid at a rate proportional
to the amount in the fluid, but limited by the amount already on the solid
up to a cgpacity A. The second term is the reverse transfer from the solid
to.th.e fluid. (In some processes, the second term is Just proportional to p_;
this is thg limit B—oo, k,B finite.) In equilibrium, the right hand side (S>f
the equation vanishes and p, is a definite function of ps In slowly varying
conditions, with relatively large reaction rates k, and k,, we may take a

first. gpproximation in which the right hand side still vanishes (“quasi-
equilibrium™) and we have

klpf
k2B+(kl—k2)pf.

p,=A

Thus p, is a function of p;: hence ¢ is a function of p. When changes
become rapid, just before breaking, the term dp,/dr in the rate equation
can no longer be neglected.

‘ Ag a different type of example, the concept of group velocity can be
fitted into this general scheme. In linear dispersive waves, as already noted
following (1.26), there are oscillatory solutions with a local wave number
k(x,r) and a local frequency w(x,). Thus k is the density of the waves—
the number of wave crests per unit length—and w is the flux—number of
Wave crests crossing the position x per unit time. If we expect that wave

crests will be.conserved in the propagation, we have, in differential form
the conservation equation ’

ok, e _
ot + dx =0.

In addition, k and w are related by the dispersion relation

w=w(k).
Hence "
Dk, Ok
o +w(/<)§—0.

(\)z’ethhaxe a Waxe propag'ation for the variations of the local wave number
¢ “carrier” wavetrain, and the propagation velocity is dw/dk. This is
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the group velocity. These ideas will be considered in full detail in the later
discussion of dispersive waves.

The wave problems listed here depend primarily on the conservation
equation (2.11), and for this reason they were given the name kinematic
wares (Lighthill and Whitham, 1955) in contrast to the usual acoustic or
elastic waves which depend strongly on how the acceleration is determined
through the laws of dynamics.

After this review of some of the physical problems, we return to the
study of breaking and shock waves in order to complete the theory.
Further details of the physical problems are pursued in Chapter 3.

2.3 Shock Waves

When breaking occurs we question the assumption ¢ = Q(p) in (2.12)
and also the differentiability of p and ¢ in (2.11). But, provided the
continuum assumption is adequate, we still insist on the conservation
equation (2.10).

Consider first the mathematical question of whether discontinuities
are possible. Certainly a simple jump discontinuity in p and in g is feasible
as far as (2.10) is concerned; all the expressions in (2.10) have a meaning.
Does (2.10) provide any restriction? To answer this, suppose there is a
discontinuity at x=s(¢) and that x, and x, are chosen so that x, >s(?)
> x,. Suppose p and ¢ and their first derivatives are continuous in x; > x
>s(1) and in s(f)> x > x,, and have finite limits as x—s(t) from above and
below. Then (2.10) may be written

_d s(1) d s
q(x5,1) q(xl’t)—dtfxz p(x,t)dx+dt£(r)p(.x,r)dx

s(1) X

=p(s ,t)s—p(sT.1)5+ o,(x,1)dx+ lp()c,t)a'x,
X ! s(1) !
X2

where p(s~.t), p(s*.1) are the value of p(x,1) as x—s(t) from below and
above, respectively, and §=ds/dt. Since p, is bounded in each of the
intervals separately, the integrals tend to zero in the limit as x,—s™.
x,—s . Therefore

g(s ) —q(s*.0)={p(s7,0) —p(s™,1) }5.

A conventional notation is to use a subscript 1 for the values ahead of the

Sec 2.3 SHOCK WAVES 31

§hock and a subscript 2 for values behind. Then if U is the shock velocity
5, ,

=¢=U(p,—p,). (2.15)

The condition may also be written in the form

= Ulp]+[q]=0, (2.16)

»\there the brackets indicate the jump in the quantity. This form gives a
nice ?onespondence between the shock condition and the differential
equation (2.11), the correspondence being

3
So-Ul ], %(——)[ ). (2.17)

. We can now extend our solutions of (2.10) to allow such discontinui-
ties. In any continuous part of the solution, (2.11) will still be satisfied and
the assumption (2.12) may be retained. Since ¢= Q(p) in the continuous

parts, we have 9= Q(p,) and q,= Q(p,) on the two sides of any shock, and
the shock condition (2.15) may be written

_ Q(Pz) - Q(Pl)
U ————_Pz—p, . (2.18)

The problem then reduces to fitting shock discontinuities into the solution

25), (2.6) i i e . .
g i )av(0 ide): c;n such a way that (2.18) is satisfied and multivalued solutions

The simplest case is the problem

p=p, c=c(p)=c,, x>0,

t=0,
p=py c=c(p,)=c, x<0,

with ¢,>¢,. The breaking solution was indicated in Fig. 2.3. Now a

sin e-val d . . . . . . . .
(2.%); ued solution is possible which is just a shock moving with velocity

P=P|, X>Ut’
p=p, x<Ut

This is represented schematically in Fig. 2.5.

solu? p(;pular way to derive the shock condition is to view this particular
lon from a frame of reference in which the shock is at rest, as shown
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u
—-
P=P; P=P
9=q2 =Qlp2)| a=q =Qlp))
R —_—

Fig. 2.5. Flow quantities for moving shock.

PP P=P
a=6z2-Upp | g=q; -Up
—_— - =

Fig. 2.6. Flow quantities relative to stationary shock.

in Fig. 2.6. The relative flows become ¢, — Up, and g, — Up,. The conserva-
tion law may be stated immediately in the form

q,— Up,=q,— Upy,

and (2.15) follows. o
Before proceeding with the general problem of shock fitting, we

consider the alternative view that the differential. gquation (2.11) is
adequate but that the assumed relation (2.12) is insufficient.

2.4 Shock Structure

As a particular case, we need to find and examine a more accurate
description of the simple discontinuous solution represented in Fig. 2.5.
This is the problem of finding the “shock structure.” A

In many problems of kinematic waves, it would be a better approxi-
mation to suppose that g is a function of the density gradient p, as well as
p. A simple assumption is to take

q=0Q(p) ~rp,, (2.19)

where » is a constant. In traffic flow, for example, we may argue that
drivers will reduce their speed to account for an increasing density ahead.
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and conversely. This argument would propose a positive value for », and
we see below that the sign is important. If » is small, in some suitable
dimensionless measure, (2.12) is a good approximation provided p_ is not
relatively large. At breaking, p, becomes large and the correction term
becomes crucial, however small » may be. Now in rhis formulation.
consider continuous solutions. From (2.1 1) and (2.19), they satisfy

petelp)o=rp..  c(p)=0(p). (2.20)

The term c(p)p, in (2.20) leads to steepening and breaking. On the
other hand, the term »p__ introduces diffusion typical of the heat equation

pf=VpXX'

For the heat equation, the solution of the initial step function problem

P=P|, X>Oa] t=0

p=py x<0,
is

Py =Py X/ VA,
p=pt e [ e,
T — o0

This represents a smoothed-out step approaching values p,, p, as x— * o0,
and with slope decreasing like (»7)~ '/ The two opposite tendencies of
nonlinear steepening and diffusion are combined in (2.20). The signifi-

cance of » >0 can be seen from the heat equation; solutions are unstable if
r<0.

We now look within the framework of this more accurate theory for
the solution to replace the one shown in Fig. 2.5. One obvious idea is to
look for a steady profile solution in which

p=p(X), X=x-Ui,
where U is a constant still to be determined. Then from (2.20),

(c(p)= U)oy = rpyy.
Integrating once, we have

O(p) —Up+A=rpy, (2.21)

where 4 is a constant of integration. An implicit relation for p(X) 1s
obtained in the form

£=f%dp“’ (2.22)
v Q(p)—Up+4
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but the qualitative behavior is more readily seen directly from (2.21). We
are interested in the possibility of a solution which tends to constant states
p—p, as X—+ 0, p—p; as X—— 0. If such a solution exists with py—0
as X — = oo, the arbitrary parameters U, 4 must satisfy

0(p,)— Up,+A=0Q(py) — Up,+4=0.
In particular,

yo 20p) ~ Qo) (223)
P27 Py

In such a solution, the relation between the velocity U and the two states
at + oo is exactly the same as in the shock condition!

The values p,, p, are zeros of Q(p)— Up+ A, and in general they are
simple zeros. As p—>p, OT p, in (2.22), the integral diverges and X— * co as
required. If Q(p)— Up+ 4 <0 between the two zeros, and if » is positive,
we have p, <0 and the solution is as shown in Fig. 2.7 with p increasing
monotonically from p, at +o0 to p, at —o0. If Q(p)— Up+A4>0 and
»>0, the solution increases from p, at —oo to p; at + . It is clear from
(2.21) that if p,,p, are kept fixed (so that U, A are fixed), a change in » can
be absorbed by a change in the X scale. As »—0, the profile in Fig. 2.7 is
compressed in the X direction and tends in the limit to a step function
increasing p from p, to p, and traveling with the velocity given by (2.23).
This is exactly the discontinuous shock solution seen in Fig. 2.5. For small
nonzero » the shock is a rapid but continuous increase taking place over a
narrow region. The breaking due to the nonlinearity is balanced by the
diffusion in this narrow region to give a steady profile.

One very important point is the sign of the change in p. A continuous
wave carrying an increase of p will break forward and require a shock with
p,>p, if ¢/(p)>0; it will break backward and require a shock with p, <p,
if ¢'(p)<0. The shock structure given by (2.21) must agree. As remarked
above, v is always positive for stability, so the direction of increase of p
depends on the sign of Q(p)— Up+ A between the two zeros p, and p,. But

PP P

PP

Fig. 2.7. Shock structure.
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()= Qi'(p).. Hence when f‘/(p)>0, Q(p)— Up+ 4 <0 between zeros and
the solution is as seen in Fig. 2.7 with p,>p, as required. If ¢’(p) <0, the

step is reversed and p, <p,. The breaking ar
: ument
ture agree. g arg and the shock struc-

In the special case of a quadratic expression for Q(p). taken as
O(p)=ap’+ fp+y, (2.24)

the lintegral”in (2.22) is easily evaluated. The sign of « determines the sign
of ¢’(p)=Q"(p) and we consider a >0, for definiteness. We may write

Q—Up+A= —alp=p,)(p,~p),
where

U=:8+a(Pl+Pz)s A=wap,p,—v.
Then (2.22) becomes
{)zhf dp D Sl
' alo=p)p—p)  alpy—py) “p—py (2.29)

?12 Xfoo, PP, exponentially, and as X— —c0, p—p, exponentially
ere 1s no precise thickness to the transition region, but we can introduce:
various measures of the scale, such as the length over which 90% of the

change occurs or (p, — ivi 1
»—py) divided by the maximum slope Cl
such measures of thickness are proportional to Pe lpxl. Clearly al

14
alpy—p,) (2.26)
Lfl th(iis his small cpmpgred yvilh other typical lengths in the problem, the
coplf. shock trans1t19n 1s satisfactorily approximated by a discontinuity’ We
shn llrm that the thickness tends to zero as »—0 for fixed 01, P, but it.also
m:tu]d be noted .that sufficiently weak shocks with (pz—pl)z/p —0 ulti-
alwe y become th.lck for fixed », however small. For weak shocks]Q(p) can
thata}(/; ;;:)apprlqmméted by a suitable quadratic over the range p; to p,, so

.25) applies. Even for moderately st it i ,
appTORmAT to the. e y strong shocks it is a good overall
ve n}"izitsléigk sttyucture 1s 1only one special solution of (2.20), but from it

' ect 1n general that when »—0 in some suitabl i
sional form, solutions of (2.20) tend to sclutions of eble nondimen-

p,+c(p)p,=0
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together with discontinuous shocks satisfying

_ 0(py) —Q(py)
P27 P '

This is true when the solutions are compared at fixed (x.7) with »—0.
However, the fact that the shock transition becomes very wide as (p,—p,)/
p,—0, for fixed », means that in any problem where the shocks ultimately
tend to zero strength as r—oo, there may be some final stage with
extremely weak shocks when the discontinuous theory will be invalid. This
is often a very uninteresting stage, since the shocks must be very weak.

Otherwise, we can say that the two alternative ways of improving on
the unacceptable multivalued solutions agree. The use of discontinuous
shocks is the easier analytically and can be carried further in more
complicated problems.

Confirmation in more detail would require some explicit solutions of
(2.20) which involve shocks of varying strength. Although solutions are not
known for a general Q(p), it turns out that (2.20) can be solved explicitly
when Q(p) is once again a quadratic in p. If (2.20) is multiplied by ¢(p), it
may be written

U

¢+ e, =vc'(p)pu
=vc . —vc" (p)pl- (2.27)
If Q(p) is quadratic, c(p) is linear in p, then ¢”(p)=0 and we have

c,+cc, =Vl (2.28)

This is Burgers’ equation and it can be solved explicitly. The main results
are given in Chapter 4. For the present, we accept the evidence for
pursuing discontinuous solutions of (2.2) bearing in mind that for ex-
tremely weak shocks it will not be appropriate. For the extremely weak
shocks, Q(p) can be approximated by a quadratic and Burgers’ equatior
can be used.

The arguments in this section depend strongly on »>0. As noted
previously, this is required for stability of the problem. Interesting cases of
instability do occur, however, in traffic flow and flood waves. They are
discussed in Chapter 3.

2.5 Weak Shock Waves

In a number of situations the shocks are weak in that (p,—p1)/ P s
small, but they are not so extremely weak that they may no longer b¢
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treated as discontinuities. It is useful to note some a 0
. 1t tes roxi 1
e pproximations for such

The shock velocity

o Q00) = 0(p))

P2 =Py
tends to the characteristic velocity
d
c(p) =42
dp

:;ptrllzSili)rrrln;oistht:f;hsohc(l)(ck ]stre;ngtll} (p2—p1)/p,—0. For weak shocks the
velocit i ies i
ity y U may be expanded in a Taylor series in

_ ’ 1 14
U=0Q'(p))+5(p2=p)Q" (0))+ O(p,—p,)°.
The propagation velocity c(p)= Q'(p,) may also be expanded as

N c(pa)=c(p) +(p,=p) Q" (p,) + O(py—p,)>.

U= (Cl+cz)+0(Pz_P1)2, (2.29)

0| —

where ¢, = = i i
N mezln ch(fﬁz3 al}lld c,= c‘(pz). To this approximation, the shock velocity is
characteristic velocities on the t i i
e . e two sides of it. In the (x,¢
geeteotllllet hShOl(;k curve.blsects the angle between the characteristics w(hiclz
: e shock. This property is useful for sketching in the shocks, but

..l . . I B ]
118 ExaCt cn Q(p) IS a qua Ia[lc' l r

2.6 Breaking Condition

A conti 1
ontinuous wave breaks and requires a shock if and only if the

\% C][y & deC] €ases as x
X Increases. Iheref()le When the Shock

c;>U>¢, (2.30)

Where all it
ve itive i
locities are measured positive in the direction of x increasing
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and the subscript 1 refers to the value of ¢ just ahead of the shock (i.e.,
greater value of x) and the subscript 2 refers to the value of ¢ just behind
the shock. A shock produces an increase in c. and it is supersonic viewed
from ahead and subsonic viewed from behind. As regards the jump
condition alone, it would be feasible to fit in discontinuities with -, <cy.
However, shocks with ¢,<¢, could never be formed from a continuous
wave and they are never required; they are excluded from consideration
for this reason.

One question about this argument is the point that the solution
represented in Fig. 2.5 might be set up with ¢, <¢, (by some complicated
but probably highly unrealistic device). Of course we have already noted in
(2.9) and in Fig. 2.6 a satisfactory continuous solution for such initial
conditions. Still, to be particularly awkward, one might insist that Fig. 2.5
gives an alternative solution. The answer is that this proposed solution is
unstable. That is, small perturbations would change the flow into some-
thing quite different—the expansion fan solution of (2.9). This is a
“disintegration argument” which is complementary to the “formation
argument.” The instability will not be considered in detail in this chapter
since the formation argument is convincing and unambiguous. For higher
order equations the shock formation becomes harder to study and the
instability arguments sometimes give an easier method to decide whether a
particular shock satisfying the shock conditions is really possible.

For gas dynamic shocks, the inequality corresponding to (2.30) 18
equivalent to the condition that the entropy of the gas increases as the gas
passes through the shock. The entropy condition was the first argument for
the irreversibility of shock waves, that is, that the shock transition goes only
one way. However, conditions like (2.30) are more general. In some
problems there is no obvious counterpart to entropy; in others, such as
magnetogasdynamics, the entropy condition does not rule out some inad-
missible shocks.

An alternative view of these criteria is that any acceptable discon-
tinuous shock must have a satisfactory shock structure when described by
more accurate equations. This is a more satisfactory point of view, since it
appeals to a more realistic description of the phenomenon. However, the
analysis may become prohibitive and one often resorts to the indirect
arguments in the framework of the simpler theory.

This alternative approach was checked in the discussion of shock
structure in Section 2.4. When ¢'(p) >0 we found only a shock structure for
p,>py; since ¢'(p)>0, this is equivalent to c¢,>c¢,. When c'(p)<0, we
found p,<p,, but the change in sign of ¢'(p) means that ¢;>¢,. Since
c(p)= Q'(p), the shock velocity lies between the values ¢, and ¢, by Rolle’s
theorem.
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2.7 Note on Conservation Laws and Weak Solutions

Mathematically, the composi i
' | . posite solution co 1 /
differentiable parts satisfying mposed of continuously

dp  9Q(p)
3t e =0 (2.31)

together with jump discontinuities satisfying

—Ulp]+[Q(p)]=0 (2.32)

can be considered a weak solution of (2.31 i - .
Associare with (2.31) the equation (2.31). Briefly, the idea is as follows.

- fRf {pé+0(p)o, } dxdr=0, (2.33)

‘v‘vher’e’: R is an arbitrary rectangle in the (x,7) plane, and ¢ is an arbit
test” function with continuous first derivatives in R and =0 onrztilrlz
bzo;;dary of R If p and Q(p) are continuously differentiable, (2.31) and

(2.33) are equivalent. On the one hand, if (2.31) is multiplied by ¢ and

integrated over R, we may deduce (2.33) after i i
4 W . ter integration b ts.
other hand, integration by parts on (2.33) leads to Y parts On the

fRf { % + EQa—ipl }¢dxdt=0,

:Inoci; since this must hold for all arbitrary continuous ¢, (2.31) follows
functei:ver, (2.33) allows more general possibilities, since the admissiblé
035 (;ns p(x,t) need not have derivatives. Functions p(x,r) which satisf

:33) for all test functions ¢ are called “weak solutions” of (2.31). ’
aCh'Wed now investigate what this extended meaning of solution has
satigvg . Consider lhe possibility of a weak solution p(x,¢), that is, one
. O}f'm]% (2.33), vi/hich 1s.continuously differentiable in two parts R,’ and
béundary, ;ugetwnh ;Slmé)le Jump discontinuity across the dividing

» 2, between R, and R,. We may integrate by parts in each of

S€parate regions R, R,, and deduce from (2.33) that ’ ol the

o 90(p) o 30
L:[{ 5 + ix }qbdxdt+fRf[a~?+ anp) }(j:d,xdr

+fs{[pl/+[Q(p)lm}¢ds=0.
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where (/,m) is the normal to S and [p]. [Q(p)] denote the jumps across S.
The line integral on S consists of the two contributions from the boundary
terms of R, and R, obtained in the integration by parts. Since this equation
must hold for all test functions ¢, we deduce that (2.31) holds inside each
of the regions R, and R,, but in addition we deduce

[p]i+[Q(p)Jm=0  on 5.

This is the shock condition (2.32), since U= —1/m. Thus weak solutions of
this type would satisfy (2.31) at points of continuity and allow jump
discontinuities satisfying the shock condition. Just what we want!

At first sight, the weak solution concept appears to bypass the more
involved and less precise discussion of the real physical processes. But it is
not really so. Corresponding to the differential equation

dp

+c( a'0—0
ot C")ax’

there are an infinite number of conservation equations

of(p)  9glp) _
Any choice which satisfies
g'(p)=f"(p)c(p) (2.35)

will do. For differentiable functions p(x,1), these are all equivalent. How-
ever, their integrated forms are rnol equivalent and lead to different jump
conditions. The weak solution of (2.34) will require the shock condition

~U[f(p)]+[g(p)]=0; (2.36)

different choices of f and g lead to different relations between py, pa, and
U. Therefore a discussion of the physical processes is still necessary 1in
order to pick out which weak solution is relevant to the particular physical

problem at hand.
From the differential equation 2.34 we can propose a candidate for a

conservation equation in integrated form:

%L—:]f(l))dx'*[g(ﬁ))]i;:(). (2.37)

But whether this holds for nondifferentiable p can be decided only by
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returning to the original formulation of the problem. In Section 2.2
argued in the correct order: first (2.10) then (2.11). The reverse (.)rdwe
going .from an equivalent partial differential equation to an inte eg
form, introduces the lack of uniqueness. e
If (2.37) 1s the true conservation equation, then (2
as the shock condition by the same argument that W(21;3L163€??I?1/ 1tS):cctiieo(ilu;zd
Thus ‘t}.le correct choice of weak solution is made on the basis of wh"h'
qugntltles are really conserved across the shock. In view of the lacklcf
}quueness.and possible confusion, it is felt that the weak solution conc Ot
is nqt particularly valuable in this context and it is better to stres tfxp
physmal problems are first formulated in the basic integrated form Sf N
Wthl.l both the partial differential equations and th ate jump
conditions follow. © appropriae Jump
.A. looser form of the weak solution idea i i i
prehmmary look at a problem. If, for example, wésassli)r\zflziﬁi (;S;fll)ll i hal
admit moving discontinuities as part of the solution, we might tr.y e

flp)=fo(x)H(x— Ut) +f,,
g(p)=go(x)H(x—Ut) +g,

::flhere.: H(x) is the. Hf:avi§ide step function and f;, g, are continuous
nctions. On substitution in the equation we obtain 8 function terms

(= Ufo+80)8(x—Ur)
plus less singular terms. We deduce that
—= Ufg+g0=0,

a .. ..

a\r:gictihéiéslthi shfock.condmon (2.36), since f,=[f], go=[g]. This does not
Sightly 0 sc of uniqueness, of course, and it also uses & functions in a
i, exCludedloll-js way. The use of § funcpons in nonlinear problems usually
brodeen o ec;tuse therf: 1S no sgtlsfactory meaning to powers and
linearity A esuc generahzed functions; we have retained an artificial
expresSionyforxpre(s)sfmg f(p) and ‘g(p). .sepgrately, rather than using a single
o o on I p. Of course, the justification of the § function argument is

solution.

I . . . .
1~ .. .

dp  0Q(p) 3%

N =p—

ot ox ax?’
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If p and Q(p) are expressed in terms of H(x— Ut). the term 3%p/ 0x* will
have a term [p]d'(x— Ur) and there is no other term as singular as
§'(x — Ur) to balance it. We conclude that [p]=0 and that discontinuities
are not possible. This is clearly a useful tool for a preliminary assessment.

2.8 Shock Fitting; Quadratic Q(p)

After discussion of these various points of view we now turn to the
analytic problem of fitting discontinuous shocks satisfying

yo 2 =000 (2.38)
P M

into the continuous solution
p =f(€)’
x=(+F(§)t

(2.39)

Any multivalued part of the wave profile must be replaced by an
appropriate discontinuity, as shown in Fig. 2.8.* The correct position for
the discontinuity may be determined by the followng ingenious argument.
Both the multivalued curve and the discontinuous curve satisfy conserva-
tion. Therefore f pdx under each curve must be the same; hence the
discontinuity must cut off lobes of equal area, shown shaded in Fig. 2.8.

Fig. 2.8. Equal area construction for the position of the shock in a breaking wave.

*The figure is drawn for the case ¢'(p) >0 but all the formulas in this section are correct for
either case.
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This determination, although quite general. is not in a convenient
form for analytic work. The general case gets complicated and it is
worthw.hlle to do a special case first. The special case is again a quadratic
expression for Q(p). This includes the case of weak disturbances about a
value p=p,. since Q(p) can then be approximated by

0=0(po)+Q'(0) (b=05) + 30" (po) (6= )"

and for this reason it has considerable generality.
We consider

(p)=ap’+
Then Q(p)=ap~+ fBp+y.

c(p)=0Q'(p)=2ap+p
and the shock velocity (2.38) becomes

1
U='2‘(C1+Cz)s

where ¢, =c(p,), c;=c(p,).

The simplicity of this case is that the whole problem can be written in
terms of c¢. The continuous solution is

c=F(§),
24
x=£+F(&)1, (240
and shocks must be fitted in such that
1 ]
U—5(cl+cz)=5{F(£l)+F(§2)}, (2.41)

w

arlll(;:re 3 apd &, are the values of £ on the two sides of the shock. Since p

that? are lmea.rly related, the conservation of p implies conservation of ¢;
15, [ cdx is conserved in the solution. Therefore for this special case

It is convenient t
o note for future reference that thi 1on 1
1s sol
of ¢ solves the equation whon i ferms

¢, +cc, =0, (2.42)
Wi N .
ith weak solutions chosen to satisfy the conservation law

¢, +(4c*) =0 (2.43)
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F ¢ =62

| | :
52 El £ 5(1) X

a b

Fig. 2.9. Equal area construction: (@) on the initial profile; (b) on the transformed breaking
profile.

so that the shock condition is

1,2_ 1.2
2672601 _ 1
= — = + . 2‘44
U C2—Cl 2(Cl C2) ( )

Equation 2.42 is true for general Q(p), since it is ¢’(p) times p,+ c(p)p, =0;
(2.44) is always a possible weak solution, but it is the correct choice only
when Q(p) is quadratic or approximated by a quadratic since it is only in
that case that the integrated form of (2.43) holds across discontinuities.
The shock construction can now be combined with the continuous
solution (2.40). Since we now work with ¢ the awkward distinction between
the two cases ¢’(p) 20 does not arise. According to (2.40) the solution at
time ¢ is obtained from the initial profile c = F(£) by translating each point
a distance F(£)! to the right, as shown in Fig. 2.9. The shock cuts out the

£o 8 € X

Fig. 2.10. The (x,?) diagram associated with the shock construction in Fig. 2.9.
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part corresponding to & >¢> ¢, If the discontinuity line in Fig. 2.9b is
also mapped back as in Fig. 2.94, it is a straight line chord between the
points §é=§, and £=§, on the curve F(§). Moreover, since areas are
preserved under the mapping, the equal area property still holds in Fig.
2.9a; the chord on the F curve cuts off lobes of equal area. The shock
determination can then be described entirely on the fixed F(£) curve by
drawing all the chords with the equal area property. The pairs é=¢,, £é=¢
at the ends of each chord relate characteristics which meet on thelshockz.
The (x,t) plane is shown in Fig. 2.10. The equal area property can be
written analytically as

1 1
3 P&+ Fe) 66 = [F@ae (245)

§ince the left hand side is the area under the chord and the right hand side
ils the area under the £ curve. If the shock is at x=s(¢) at time ¢, we also
ave

s(r)=&+F(§)t (2.46)

s(1)y=&+ F(&)r (2.47)

from the se.cond of (2.40). The three equations (2.45)~(2.47) determine the
.three functlons s(1), £,(1), and &,(¢). The determination of s(7) is implicit
involving the two additional functions §,(7) and &,(¢) which determine the
characteristics meeting tne shock at time 7. The values of ¢ on the two sides
((:)f the shock are ¢, = F(¢,) and ¢,= F(¢,); the values of p are obtained from
S{nce the shock determination (2.45)-(2.47) was obtained geometri-
Cally,. 1‘t is interesting to check directly that it does indeed satisfy the shock
C.Ondltlon (2.41). We may write this verification as an independent deriva-
1101} of the result in (2.45). We have to find three functions s(1), £(¢), £&(1)
which satisfy (2.46), (2.47), and e

S(0)=1 (F&)+ (&) (2.48)

(Dots denote « derivatives.) From (2.46) and (2.47), we have

_ ‘E]“‘gz
F(§)—F(&)°

(2.49)
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and

&(t)={1+fF'($1)}é|+F(gl)~

§(1)={1+1F (&) &+ F(£).

If we take the mean of these last two expressions for § in order to preserve
symmetry, substitute for ¢ from (2.49). and then substitute in (2.48). we
obtain

L b+ ek e -+ 5 (Fen+ A& ) (§6)

= F(El)él - F(gz)ér

This may be integrated to (2.45); the constant of integration may be
dropped since the starting point of the shock, &, =¢,, must be a solution.

The expression (2.49) for the time can be used to follow the develop-
ment of the shock. Since #>0, all the relevant chords in Fig. 2.9a must
have negative slope. Since £, >¢, by the choice of notation, F(&,)> F(§)).
that is, ¢, >c, as we decided from the breaking condition. The earliest time
for the shock corresponds to the steepest chord. This is the limit when the
chord is tangent at the point of inflexion £=§g, say. Then F(&,)= F(&,) so
the shock starts with zero strength and the time is

1
fo= — ———.
This all fits with the conditions for the first point of breaking discussed i
(2.8). For an F curve like Fig. 2.9a, the chords tend to the horizontal a-

1—00, with F(&,)— F(¢,)—0; hence ¢,— ¢,—0 and the shock strength tend~
to zero as (—oo.

Single Hump.
To study the shock in detail, we suppose first that F(§) is equal to v

constant ¢, outside the range 0 <¢< L, and F(¢)>c, in the range. Equation
2.45 may be written as

£
LR+ Fe) -2 ) (68 = [ (F(O —a ) ds

As time goes on, {, increases and eventually exceeds L. At this stage
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F(gl)_= ¢o and the shock is moving into the constant region c=c, The
function £,(r) can then be eliminated. for we have

Ly e 8 S
E{F(gz)_co}(&‘gz):j;z {F(g)_CO}dg‘ = F(ilz)fzco'

Therefore

1 2
3R )= [T(F©) =) e

At this stage, the shock position and the value of ¢ just behind the shock
are given by

s(1)=&+F(&)1,

= F(Ez)‘

(2.50)

where §,(7) satisfies

SR o= [ (RO —a) de

As 1—o0, we have §,—0 and F(§,)—c,; hence the equation for
N ;
takes the limiting form 2o 4 (1)

| - 2
E{F(gz)_co} I~A,
where

A=f0L{F<s>—co}dg

1s the area of the hump above the undisturbed value ¢, We have &—0.

F(&)~c,+ \/2A/r . Therefore the asymptotic formulas for s(7) and ¢ in
(2.50) are

s~col +V2Ar

(2.51)

at the shock. The shock curve is asymptotically parabolic and the shock
strength (¢ — ¢,)/ ¢, tends to zero like 1~ !/2,

The solution behind the shock is given by (2.40) with 0<¢<&,. Since
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Fig. 2.11. The asymptotic triangular wave.

§,—0 as 1—0, all the relevant values of £ also tend to zero and the
asymptotic form is

c~§, cot <x<cot+V2At . (2.52)

The asymptotic solution and the corresponding (x,?) diagram are shown in
Fig. 2.11. Notice that the details of the initial distribution are lost; only

L
A =f0 {F(§) — ¢, } d§ appears in the ultimate asymptotic behavior.

N Wave.

Other problems can be worked out in a similar way. One importan!
case is when F(£) has a positive and a negative phase about an undisturbed
value ¢, as in Fig. 2.12. There are now two shocks, corresponding to the
two compression phases at the front and at the back where F'(§)<0. The
families of chords for each are shown in the figure. As r—a. the pair
(&,.¢)) for the front shock approach (0.2), whereas for the rear shock.
(§,.§)) approach (— =,0). Asymptotically the front shock is

S~y + VIAL

F

A\

Fig. 2.12. Shock construction for an N wave.

Cot+ V2AT

xY

Fig. 2.13. The asymptotic N wave.
49
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and the jump of ¢ is

24

C— Ch~ e
0 !

where A is the area of the F curve above ¢ = ¢,. The rear shock has

x~cot — V2Bt |

.‘/ZB
c—co~—\/— -

where B is the area below ¢ = c,. The solution between the shocks is again
asymptotically

c~§, col — V2Bt <x<cot+V2Ar. (2.53:

The asymptotic form and the (x,7) diagram are shown in Fig. 2.13.

Because of the shape of the wave profile, it is known as the N wave.

Periodic Wave.

Another interesting problem is that of an initial distribution

c=F(§)=c0+asin£71§. (2.54;

A

In this case, the shock equations (2.45)-(2.47) simplify considerably for a
times 7. Consider one period 0<{<A as in Fig. 2.14. Relation 2.4~

becomes

(¢, —§&)sin %(51 +§&,) cos %(51 —-&)= % sin %(51 —§,)sin %(51 +£).

F

. /[
e/

I

0g, £

oy

Fig. 2.14. Shock construction for a periodic wave.
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and the relevant choice is the trivial one

w4
sm——l}\—i)=0. thatis, &, +§,=A.

From the difference and sum of (2.46) and (2.47). we have
‘El _52
[= 7. bl
2asin X’(él -§)

S=C0[+5,

respectively. The discontinuity in ¢ at the shock is

27T£l . 277%2
A asin X

¢, —c¢;=asin

=2asin—;€(§] -§).

If we introduce

we have

(2.55)

iThe shock has constant velocity ¢, and this result could have been deduced
sItl advance from the} symmetry of the problem. The shock starts with zero
rength corresponding to #=0 at time r=\/27a. It reaches a maximum

jie;l)gth of 2a/c, for §=7/2, t1=A/4a. and decays ultimately with § >,

DO A (2.56)

Co Col
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¢
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Fig. 2.15. Asymptotic form of a periodic wave.

It is interesting that the final decay formula does not even depend
explicitly on the amplitude a. However, the condition for its applicability is
1>\/a. For any periodic F(£), sinusoidal or not, &, —§,—\ as 1—0c0; hence
from (2.49)

CZ—CI_F(gz)_F(gl) A

Co ¢o co!

Between successive shocks, the solution for ¢ is linear in x with slope 1/1
as before, and the asymptotic form of the entire profile is the sawtooth
shown in Fig. 2.15.

Confluence of Shocks.

When a number of shocks are produced it is possible in general foi
one of them to overtake the shock ahead; they then combine and continuc
as a single shock. This is also described by our shock solution. Consider
the F curve in Fig. 2.16. Two shocks are formed corresponding to the
points of inflexion P and Q with families of equal area chords typified by
P,P, and Q,Q,. As time goes on the points Q and P, approach each other
until the stage in Fig. 2.16b is reached where a common chord cuts off
lobes of equal area for both humps. At this stage the characteristict
corresponding to P; and Q; are the same, and therefore the shocks have
just combined into one as shown in the (x,7) diagram Fig. 2.17. All the
characteristics between Q; and P| have now been absorbed by one or
other of the shocks; a single shock proceeds using chords P'Q;’ as in Fig.
2.16¢. counting only roral areas above and below the chord in the equal
area construction.

A

Q2
o)
O F2
o Y
Py
0 3
Q2
Qf
P
P{
b 3

F m
F
Qz
P!
c 3

Fig. 2.16. Construction for merging shocks.

%

Fig. 2.17.

@ Q Q P3P, PP P/ X
Qi

The (x.1) diagram for merging shocks corresponding to Figs. 2.16.

53
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2.9 Shock Fitting; General Q(p)

For the general dependence of g on p. the shock determination can be
put into an analytic form similar to (2.45)~(2.47). The complication is the
nonlinear relation between ¢ and p, so that the construction in Fig. 2.8 1s
correct for p but not for c. Accordingly, we must work with p. But if we
then plot (p,x) curves similar to Fig. 2.9, the discontinuity line does not
map into a straight chord because the translation is proportional to ¢ and
not to p. Thus the mapping back onto the initial curve is no particular

advantage.
However, we can proceed as follows. Introduce the function &(p).

which is the inverse of

p=f(§),

and introduce also the function X (p, 1), which is the inverse of the function
p=p(x,7) in the multivalued solution. That is, we fix attention on a
particular value of p and note where it is now, X(p,1), and where it was
initially, £(p). From the equation for the characteristics we have

X(p,1)=c(p)i+&(p). (2.57)

Consider the shock at s(r) and let p, and p, be the values ahead and
behind the shock, respectively. The equal area construction in Fig. 2.8 may

be written

fp"‘X(p,r,)dp=<m—p2>s<r>.

2

[This is true for either case ¢'(p) 2 0. We always take p; to be the valuc
ahead of the shock and p, to be the value behind. If ¢'(p) >0, then p, >p;:
if ¢'(p) <0, then p,<p,.] Hence from (2.57),

fp"'{c<p>r+s<p>}dp= (01— py)s(1).

Since ¢(p)= Q'(p), this may be written
Py
(1420t (o= pa)s(1) == [ "&(p)d. (2.58)

The right hand side can be integrated by parts and rewritten as

£
—p.£,+p2£2+f€, p(£) dE.
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The shock position s(7) is given by

s(r)y=¢& +cyt,

()=t et (2.59)

these may be solved for s(7 ; : .
broomes s(1) and r and substituted in (2.58). Finally, (2.58)

51_52 3]
=] pd§, (2.60)

{(a2— 1) = (pyc2—picy) )
c—¢y g

where p, ¢, and ¢ are all to be evaluated ;
. ’ as fu
relations nctions of £ through the

p=f(&). ¢=0(f(§)). c=0(f(9)) (2.61)

and subscripts indicate values for §=¢ 1 1

. =§, and £=§&,. [This makes it a little
clearer tha.n using f(£) for o, F(§) for ¢ and introducing a new symbol for ¢
as a function of &.] Equations 2.59 and 2.60 give three relations for s(¢)

§,(1), &(1). Again it may b ifi i .
> y be verified d ot
shock condition ! irectly by differentiation that the

_h™ 4
. . pz_pl
; . . L .
tz s(z;tljgl)ed’h:l;en gl is qulglziratlc In p, it is easily verified that (2.60) reduces
45). roblems like a single hump or an N wave can b
. . e
?28 5l;efore and are .qualltatlvely similar. The asymptotic formulaasm(gySZT;i
:32), and (2.53) still apply with the modification that o

A=C’(po)]0L(p—p0)dg,

and B i imi

thoserls chan'ged 51mllar.ly. The expressions for p may be deduced from

o _or ¢, since the disturbance is weak in the asymptotic limit and
Po=(c—cy)/c'(py) to first order.

2.10 Note on Linearized Theory

Wh i i
“linearizzg” g;st:ézlanses alrleb weak, nonlinear equations are often
_ ecting all but the first ord
e ‘ . order powers of the per -
ns. For weak disturbances with (¢ — o)/ co<1, the equation perturoa

¢, +ecc,=0
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would be linearized to

¢, +coe,=0.

As noted earlier the solution of this equation is ¢ —cy=f(x—cof). The
breaking effect and the formation of shocks are completely absent, yet w.
see from Figs. 2.11, 2.13, and 2.15 that these become crucial after .
sufficient time, however weak the initial disturbance may be. Thus it is clea:
from comparison of the answers that the linearized approximation cannc:

be uniformly valid as t—cc.

This may also be seen directly, by looking at the linear theory as the
first term in a naive expansion in powers of a small parameter. Suppose =
measures the maximum initial value of (¢ —cg)/ ¢, and a solution is sough:
in the form

c=cotec,(x,0)+ e, (x,0)+

When this expansion is substituted in ¢, + cc, =0 and coefficients of €” ar
equated to zero, we have a hierarchy of equations starting with

¢t cocix=0,
Coy T €= T 11
C3F CoC3, = T €201~ €1l
These are easily solved successively since at each step we have

¢t+c0¢x=¢)(x’t)’

where @ is known from the previous step. If we introduce the characteristic

coordinate y = x — ¢,t, this may be written

d¢
(E)y=const.—¢’(y " COt’t)'

Therefore

¢=f’<1>(y+c07,7)d7+\1r(y).
0

The initial condition on ¢ may be written
c=co+eP(x) at t=0,
and 1t 1s satisfied by

c,=P(x), ¢,=0 (n>1) atr=0.
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Hence the com‘plementary functions ¥(y) are zero in the solutions for the
¢, N> 1. The first three ¢, are found to be

c;=P(y).

= —1tP(y)P'(y),
o
C3=7(PP)/.

It is clear that in general ¢, will contain a term of the form "~ 'R (»)
Therefore the successive terms in the assumed series for ¢ are of (;rder‘
¢""~1 and the series is not uniformly valid as r—oc.

The failure of the linearized theory, brought out strongly in the
splutmn fgr the higher order terms, is that it approximates the characteris-
tics as l.m.es x — cot =constant. The slight inclination of the true
characteristic lines, relative to each other, accumulates to a large dis-
placement as t—oo. The correct solution may be written as a telescoping
function:

c=cyteP(x—cr),
=co+eP(x—[cy+eP 1),

'and 50 on. The naive perturbation expansion can then be obtained by an
inadvisable use of Taylor series!

2.11 Other Boundary Conditions; The Signaling Problem

AThe solution for the initial value problem has been given in great
fietall. Other boundary value problems can be solved in similar fashion. It
15 clear from the characteristic form (2.4) that the solution is determir;ed
ggzz tlslz \}llalucla) of p 1s_given on any curve thaF ‘intersects each characteristic
e t. cha oundary .value' provides the initial conditions for integrating

> two or@ngry equations in (2.4) along the characteristic through that
ﬁzﬁg In prmc1ple,. this. is repeated at each point of the boundary curve to
row 1}11pththffb solucilon in the whole region covered by the characteristics
don) fc;ur eA](;uCn dary curve. If the curve intersects characteristics twice, as
otheres veh 3C in Filg. 2.18,‘the data can only be posed on 4B or BC,
o o selt eBmteg.ratlon starting frqm .AB, say, will conflict with the data
regi()n“c]a at dC. Since the c.ha.rgc}er1stlcs may depend on the solution, the
b deCidce)\(;eirs aj\?fnz}: admissibility of the boundary curve cannot always
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C

Fig. 2.18. Characteristics and initial data.

A standard boundary value problem is the so-called signaling problem

for which
pP=py fOI'X>O,t=O’

p=2g(1) for1>0, x=0,

and the solution is required in x>0, 1>0. Of course. this problgm only
arises in the case ¢=Q'(p)>0. The (x,r) diagram is shloyvn in E1g. 2.19.
Characteristics start from the positive x axis and the posmve [ axis. Those
from the ¢ axis have p=p, c=c(py)=c, and are straight lines x—cy/

= constant. Thus they predict
pP=pyp C=Cp, InXx>cyl. (2.62)
For the characteristics starting from the ¢ axis, let a typical one start at
t=r7. Then
p=g(1),

x=G(r)(t—1),

(2.63)

t
o=
o
H
Q.
t=1
_—
//
— //
— -
////////
- X
x=¢& P=Po

Fig. 2.19. The (x,) diagram for the signaling problem.
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where G(7)=c{ g(7)}. This gives the solution implicitly in terms of 7(x,).
The solution can be related to the solution of the initial value problem
in two ways. The first method is to note that the two solutions agree if

§=—1G(7).  f(&)=g(7).

This corresponds to continuing the characteristic through /=7, x =0, back
to the x axis and denoting the point of intersection as x=¢:in this way the
signaling problem is formulated as an initial value problem. The alterna-
tive method is to interchange the roles of x and r. and of g and p; in the
formulas, dp/dg=1/¢ will appear in place of dq/dp=c.

Any multivalued overlap in the solution (2.63) has to be resolved by
shocks. If G(0+)> ¢, there will be an overlap immediately since the first
characteristic x=1G(0+) of the disturbed region is ahead of the last
characteristic x = ¢, of the undisturbed region. In that case a shock of
finite strength will start from the origin. The shock determination can be
taken from the results for the initial value problem using either of the
above methods, or it can be developed independently. If characteristics
7(1) and 7,(r) meet the shock at the time 7. then from (2.63),

F(§)=G(r). (2.64)

s()=(t=7)c;.  ,=G(r,).

(2.65)

s(t)=(1—-1,)cy =G (1),

and the formula corresponding to (2.60) may be written

{(42*0262)01_((71_131%)?2} i == LTZQ(T)dT' (2.66)

7'2_
676
Equations 2.65 and 2.66 provide the three implicit equations for the
functions 71(1). 75(2), s(¢). The most important case is that of a front shock
formed at the origin [i.e., G(0+)>c,] and propagating into the undjis-
tu'rbf:d region. Then we have p, =Po: €, =Cp 4,=¢qy and 71, can be
eliminated from (2.65) and (2.66). At the same time we drop the subscript 2
and reduce the shock relation (2.66) to

{(q_qo)_(P—Po)C}(l—T)=_'/(;T{Q(T’)—qo}d’r'. (2.67)

Here P, g, and ¢ are functions of = determined from

p=g(7).  ¢=0Q(g(r)). c=0Q'(g(7)):

they are all known functions of each other and when one is prescribed as a
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function of 7 the others follow. Equations 2.63 determine the solution in
the disturbed region behind the shock; (2.67) determines the appropriate
value 7(r) at the shock and on substitution in (2.63) we have both the
position of the shock and the value of p just behind it.

In the initial motion of the shock, the value of 7(z) in (2.67) is smali

and we have
((g—40) — (0= po) ¢, (1=7) = = (g;— qo)T + O(7?),

where p,, ¢,, and ¢; are the initial values on x=0; that is, p,=g(0+), and sc
on. Therefore

T= { o }t+ o(1?).
(p;—po) ¢
From (2.63), the shock position is

x=(t—71)c;+0(1*)

q,—4q
= Yiv0(1%).
PPy

The shock starts with velocity (¢, — ¢,)/(p; — po). and this result can be seer
directly from the shock condition. If g(7) remains constant and equal to p,.
this is exact for all + and the solution is a shock of constant velocit:
separating the two uniform regions p=p, and p=p,.

If g(7) returns to p,, the shock ultimately decays. For a single positiv:
phase with g(7) returning to p, at 7= 7, the asymptotic behavior corre-
sponds to 7— T, t—>00, p—p, in (2.67). In this limit, (2.67) becomes

1, 2 T , ,
5¢"(po) (P =po) f~f {a(7') =q0) ar,
0
and the expression for the shock position in (2.63) becomes
x~cot+ " (pg) (p—pg)t-

Therefore at the shock we have

1 24 24

- C_C0~ s

- t
¢'(po) (2.68)

P~ Po

X~cCol + V2Ar,
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where
T
A=c(po) [ (g=a0)ar.
0
In the region behind the shock,

X —
e~ Col <x<cot+V2Ar

2.69
(c—cqp) 1 x—cot (26

T ) Clpy)

These results are very similar to those for the initial value problem. Other
cases may be studied in the same way. If the positive phase is followed by
a negative phase, there is a second shock whose asymptotic behavior is
given by (2.68) with the modifications that A4 is replaced by the corre-
sponding integral over the negative phase and the signs are changed
appropriately. The ultimate form is an N wave with the formulas (2.69)
extended back to the rear shock.

[

2.12 More General Quasi-Linear Equations

The general quasi-linear equation of first order is linear in p, and p,
but may also have an undifferentiated term. The coefficients of p,» p, and
the undifferentiated term may be any functions of p, x, 7. If the coefficient
f)f p, is nonzero, the equation may be divided by this quantity and written
in the form

p,+cp,=b, (2.70)

where b and ¢ are functions of p, x, and ¢. Such equations can again be
reduced to the integration of ordinary differential equations along
characteristic curves by writing (2.70) in the characteristic form

dp ‘ d
— =b(p.x.1), d—f=c(p.x.z). (2.71)

In particular the initial value problem with initial data
p=f(x). =0

1S solved by integrating the coupled ordinary differential equations in
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(2.71) subject to the initial conditions
p=f(§). x=& atr=0.

Each choice of £ leads to the determination of the characteristic through
x=¢ and the value of p along it. The solution in a whole region is obtained
by varying the parameter &.

When b0, p is not constant along the characteristics and generally
the characteristics are not straight lines. But the method of determination
is qualitatively the same. Again waves may break with the characteristics
overlapping in the (x.7) plane. Again the multivalued solutions may be

avoided by including suitable discontinuities.
Some interesting cases concerning breaking arise and we will consider

two examples here.

Damped Waves.

Consider as a first example the case

¢, +cc,+ac=0, (2.72

where g is a positive constant. In characteristic form it is written

de = —dac i{=c. (2.73:

dr ’ dt

If we take the initial value problem, the first equation may be integrated tc:

c=e “f(§). (2.74°
Then the second equation is

dx _

T f(€).

and we require x =¢ at 1=0. The solution is

l—e 275
x=¢{+ —f(§). (2,755
a
The nonlinearity gives the typical distortion of the wave profile. but
simultaneously the wave is damped due to the presence of the un
differentiated term in the equation.
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Consider now the question of breaking. This is most easily investi-
gated by seeing whether the characteristic curves (2.75) have an envelope.
An envelope of these curves satisfies the derivative of (2.75) with respect to
the parameter §:

|—e ¥

0=1+-—"—/(%). (2.76)

Since ¢ >0, ¢t >0, this is possible if and only if

f¢§)<-—a. (2.77)

Thus breaking occurs if and only if the initial curve has a large enough
negative slope; the damping may prevent breaking if the compressive
phase is not steep enough.

Although the appropriate equations are more complicated than those
just considered (see Chapter 3), this type of inequality determines whether
the tidal variation propagating up a river will be strong enough to produce
breaking into a bore. or whether the friction will dominate. For most rivers
the frictional effects dominate. However, those famous rivers that have a
bore have high enough tides at the mouth and additional reinforcement
from rapid narrowing of the river to overcome the various frictional
effects. This theory has been discussed and applied by Abbott (1956). It
will be referred to again in Section 5.7.

Waves Produced by a Moving Source.

If b 1s independent of p in (2.70), it may be interpreted as an external
source of the fluid. A particularly interesting case is when the source
distribution moves with constant velocity V. There is a recent example, in
the more complicated context of magnetogasdynamics, where a wave
motion is produced by applying a moving force to the fluid (Hoffman,
1967). We can examine some of the qualitative effects in our simple model.

We take

b=B(x— V1),

where 1/ is constant and B(x) is a positive function tending rapidly to zero
as |x|—-o. We assume that p has a constant value p=p, at r=0. If
€= c(py), there are important differences depending on whether the source
moves supersonically with V' > ¢, or subsonically with V' <c¢,,.

The surprising result is that a supersonic source need not produce a
shock, whereas a subsonic source always does. This can be seen quite
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simply by looking for a steady profile solution with

p=p(X). X=x-Vt. (2.78)

Since we are only looking at models anyway, with the aim of showing
qualitative effects, let us take the special case

c,+cc,=B(x—Vi). (2.79)

Then in the steady profile solution

(c=V)ey=B(X),
%(V—c)z—%(v—co>2=—f:’B(y)dy.

In the supersonic case, V' > ¢, the solution for ¢ is

o 1/2
c=V~{(V~%f—2L’BUﬁ@» . (2.80)

If

" 1/2
V—co>{2f B(y)dy} . (2.81)

(2.80) is a satisfactory single-valued solution for all X and no shock is
required. The criterion (2.81) is an inequality between the speed V' — ¢, and
the total source strength

oo N
f B(y)dy.
—oC

We can get a feeling for the result by the following argument. If the
source moves with a large supersonic speed, the only shock that could keey:
up with it would be strong. But if the source is relatively small, a strong
shock cannot be produced and is not required.

When the inequality (2.81) does not hold, (2.80) breaks down fo:

X <X, where

V—rco= {2];:B(y)dy}l/2.

At X=X, c=V and transients from the starting conditions can and do
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oyertake the wave. The solution cannot be completed without a detailed
discussion of the transients. Similarly, in the subsonic case the solution
cannot be established without full discussion of the transients. In both

these cases shocks are found to occur. A detailed discussion is of ,
Hoffman (1967). lon 1s given by

2.13 Nonlinear First Order Equations

The Fhscussion of quasi-linear equations has raised many questions
that require further consideration. Before proceeding, however, we note
briefly that similar constructions using characteristics go throu’gh in the
general case of fully nonlinear first order equations. These results will also
be needed later.

. It‘ will be useful to have the characteristic form for an equation
in n independent variables (x,,..... x,). We consider, then, a function
¢(xy,....x,) which satisfies a differential equation

H(p.¢.x) =0, (2.82)

wh;re P and x denote the vectors with components p, and x,, i=1,....n
- ; o seen,

_0¢
P (2.83)

W(; may motivgte the characteristic form by asking whether there are
curves in x space with special properties akin to the characteristics of the

quas¥-11near equations. Any curve € in x space may be written in para-
metric form

x=x(A).

The total derivative of ¢ along the curve ¢ js*

do _ 0 &y dy
d\ ~ox, dN "~ Pian

Czntiler;: a choice of the direction vector dx;/dA which has special signifi-
€ Tor the solution of (2.82)? In the quasi-linear case where we have

*W
e . .
| use the summation convention that a re

77777 " peated subscript is automatically summed over
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H=c(o.X)p,— h(¢.x). we choose

dx;

E}\{ = Cj(¢~x)

so that d¢/d\=c, p;: we then use the equation to obtain

do
N b(¢,x).

But generally the p, cannot be eliminated in the expression for do/dA
whatever the choice of the dx;/d\. We do not have an ordinary differen-

tial equation for ¢ alone: the p, are involved. However, consider in
addition the total derivatives of the p, on €. We have

dp, 4 (o) _ 0% 4
ZX‘E(EZ)” ax,0x, dA’ (2.84)
and the x; derivative of (2.82) yields
3 ¢ d
©_ oM OH —(—P—+§11=0. (2.85}

dx,dx; —a-pj M 3¢ dx,  Ox;

Comparing the two, we se¢ the special advantage in choosing curves ¢
defined by

dx; 9H
VI ?p? (2.86
For in that case (2.84) may be calculated from (2.85) as
dp, oH OoH .
ﬁ——pi'ga—gx—i. (287
Then if we add
do  9H ,
iy =pf—817j' (2.88

(2.86)—(2.88) are a complete set of (2n+1) ordinary differential equation:
for determining a “characteristic curve” x,(\) and the values of ¢ and ;'
along it. In principle, the solution in a whole region can be obtained b:

integrating these characteristic equations along the characteristics coverin:
the region.
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In the special case of the quasi-li 1
S quasi-linear equation. H =c. — »
(2.86) and (2.88) reduce to duanon GO Do),

dx.

I3

dx ci{o.x).

do
FX =P/Cj:b(¢’-x).

which may be solved independently of (2.87). In the earlier discussion one

of the x; was the time ¢, the corr i :
. esponding ¢,
was 1 itself. P g ¢; was unity and the parameter A



CHAPTER 3

Specific Problems

In this chapter the basic ideas developed so far are applied in more
detail to the particular cases raised in Section 2.2. At the same time, the
general ideas can be taken further on the basis of specific sets of equations,

3.1 Traffic Flow

The application of these ideas to traffic flow was formulated and
discussed independently by Lighthill and Whitham (1955) and Richards
(1956). It is clear in this case that the flow velocity

Q(p)
P

Vip)=

must be a decreasing function of p which starts from a finite maximum

value at p=0 and decreases to zero as p >0, the value for which the cars .

are bumper to bumper. Thus Q(p) is zero at both p=0 and p=p; and has a
maximum value ¢, at some intermediate density p,. [t has the general
convex form shown in Fig. 3.1. Actual observations of traffic flow indicate
that typical values for a single lane are p,~225 vehicles per mile. p,, ~80
vehicles per mile. g, ~ 1500 vehicles per hour. It appears to be roughly
correct to multiply these values by the number of lanes for multilane
highways. Tt is interesting that, according to these figures. the maximum
flow rate g, is attained at a low velocity in the neighborhood of 20 miles
per hour.

The propagation velocity for the waves is

c(p)=0Q (py=V(p)+pl (p).

Since }'(p) < 0. the propagation velocity is less than the car velocity; waves
propagate backward through the stream of traffic and drivers are warned
of disturbances ahead. The velocity ¢ is the slope of the (g.p) curve so the
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N
g X

I
Pm P p

Fig. 3.1. Flow-density curve in traffic flow.

waves move forward or backward relative to the road depending on
whether p<p,, or p>p,. At the maximum flow rate, p=p, , the waves are
stationary relative to the road, so the propagation velocity relative to the
cars is then the same as ¢,,/p,,~20 mph.

Near p=p,, we can make a rough estimate on the basis of a simple
reaction time argument. If we assume that a driver and his car take a time
& to react to any change ahead, then the gap between cars should be kept
al Vo for safety. If A 1s the headway, defined as the distance between the
front ends of successive cars, and L is the typical car length, this leads to

Since h=1/p, L= l/pj. we have

V(p)=%(%—1)~ Q(p)=%(pj—ﬁ))-

One <hould probably interpret this as an estimate of the slope of the O(p)
tWe at p,. rather than as a realistic prediction of a linear dependence on
P In any event. it gives ¢;=—L/& for the propagation velocity there. In
the 1raffic flow context 8 is usually estimated in the range 0.5-1.5 sec.
although in other circumstances the human reaction time can be much
faster, With L =20 fi. §=1 sec. we have ¢,~— 14 mph.

Gireenberg (1959) found a good fit with data for the Lincoln Tunnel in
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New York by taking

_ P,
Q(p)=a¢310g;~

with «=17.2 mph, p, =228 vpm (vehicles per mile). For this formula, the
relative propagation velocity ¥ —¢ is equal to the constant value « at all
densities. The values of p,, and g,, are p,, =83 vpm. g, = 1430 vph (vehicles
per hour). The logarithmic formula does not give a finite value for V' as
p—0. but the theory would be on dublous ground for very light traffic so
this point alone is not important. With a finite maximum V" and a finite
I'(p), we have c— V' as p—0. s0 one should expect V' — ¢ to decrease at the
lighter densities.

Since Q(p) is convex with Q7(p) <0, ¢ itself is always a decreasing
function of p. This means that a local increase of density propagates as
shown in Fig. 3.2 with a shock forming at the back. Individual cars move
faster than the waves, so that a driver enters such a local density increase
from behind; he must decelerate rapidly through the shock but speeds up
only slowly as he leaves the congestion. This seems to accord with
experience. The details can be analyzed by the theory of Chapter 2. In
particular the final asymptotic behavior is the triangular wave which is the
last profile in Fig. 3.2. The length of the wave increases like (/2 and the
shock decays like 1 /2 The actual analytic expressions are

X X6l 7
e~ pP—pPo~"— for cot — V2Bt <x <y,
[ c'(pg)t
where
, >
B=Ic(po)l [ (p—po)d.
M o)
P
EEYS =1, T t=tz  x

Fig. 3.2. Breaking wave in traffic flow.
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The shock 1s at
.(=COI——\FQ_BT~

and the jumps of ¢ and p at the shock are
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Traffic Light Problem.

A more complicated problem is the analysis of the flow at a traffic
licht, We construct the characteristics in the (x,7) diagram. These are lines
of constant density and their slopes ¢(p) determine the corresponding
values of p on them. So the problem is solved once the (x.7) diagram has

been obtained. . . ‘
Suppose first that the red period of the light is long enough to allow

the incoming traffic to flow freely at some value p; <p,,. Then we may start
with characteristics of slope ¢(p;) intersecting the 7 axis in the interval AB
in Fie. 3.3: AB is part of a green period. [The (x,¢) diagram is plotted with
« vertical and ¢ horizontal since this is the usual practice in the references
on traffic flow.] Just below the red period BC, the cars are stationary with
p=p,. hence the characteristics have the negative slope c(p,). The line of
sepatation between the stopped queue at the traffic light and the free flow
must be a shock BP, and from the shock condition its velocity is

distance

[ cars
here

i ears
Liere

. i o / ,'
SR SRS SOV AU SNSru (Spay S S S AT T

- red - SpTeen e epprd e = dreen —

Fig. 3.3. Wave diagram for an efficient traffic light.
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When the light turns green at . the leading cars can go at the maximum
speed since p=0 ahcad of them. (The finite acceleration could be allowed
for roughly by extending the effective red period.) This is represented by
the characteristic 'S with maximum slope ¢(0). Between €S and CP we
have an expansion fan with all values of ¢ being taken. Exactly at the
intersection Q. the slope ¢ must be zero. But this corresponds to the
maximum g = g,,. Therefore we have the interesting result that ¢ attains its
maximum value right at the traffic light. The shock BPQR is weakened by
the expansion fan and ultimately accelerates through the intersection,
provided the green period is long enough. The criterion for whether the
shock gets through is easily established. The total incoming flow for the
time BQ is (7, + ¢, }g, where ¢ _is the red period BC and ¢, is the part of the
green period before the shock gets through. The flow across the intersec-
tion in this time is ¢ g,. These two must be equal; therefore

{rql
Qm o qf ‘
For the shock to get through and the light to operate freely. the green
period must exceed this critical value.
If the shock does not get through. the flow never becomes free and the
notorious traffic crawl develops. It is perhaps sufficient to show the
corresponding (x,/) diagram Fig. 3.4 without comment!

=

3

Higher Order Effects; Diffusion and Response Time.

There are two obvious additional effects one may wish to include in
the theory. One was mentioned in Section 2.4: the dependence of ¢ on p,
as well as p. This introduces in a rough way the drivers’ awareness of
conditions ahead. and it produces a diffusion of the waves. The simplest
assumption with the correct gqualitative behavior is
y

v=V(p)— —p,. (3.1)
o

and one does not have much basis for any more complicated choice.

The second effect 1s the ume lag in the response of the driver and of
his car to any changes in the flow conditions. One way to introduce this
effect is to consider the expression for v in (3.1} as a desired velocity which
the driver accelerates toward: therefore the equation

g=0(p)~rp,.

[‘,+L‘L“=A%{L‘—l’(.O)'*':";p‘\_} (3.2)

TRAFFIC FLLOW

fig. 3.4, Wave diagram for the slow crawl at an overcrowded traffic light.

may he introduced for the acceleration. The coefficient 7 is a measure of
the response time and is akin to the quantity § mentioned earlier. Equation
3.2 15 16 be solved together with the conservation equation

o+ (pr), =0, (33)

When #. 7 are both small in a suitable nondimensional measure, (3.2) is
approximated by ©v=VF(p). and we have the simpler theory. With the
higher order terms included in (3.2). we expect shocks to appear as smooth
Steps and so on. This is true on the whole. but the situation turns out to be
More complicated.

15 always helpful to get a first feel for a nonlinear equation by
loo’f\ing at the linearized theory, even though the linearization may have its
OWn <hortcomings. as we discussed in Section 2.10. If (3.2) and (3.3) are
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linearized for small perturbations about p=p,. t =1v,= F(p,). by substitut.
ing

p=pytr. =1+ w,

and retaining onty first powers of # and w, we have

T(w, +ogw, )= — Jw— Viipy)r+ —V—r‘ ]
’ L Pg - [

r+ vgr, + pew, =0,
The kinematic wave speed is
COZPOV/(P()) + Vipg):

hence V'(py)= — (v, ¢y)/pe- Introducing this expression and then
eliminating w, we have
ar or _ 0% ( g 3 )zr

=p—r—1| - Uy
ar O 9x

91 Coé._\' a'\rz (34)

When #=7=0. we have the linearized approximation to the kinematic
waves: r=f(x —cyf). The term proportional to » introduces typical diffu-
ston of the heat equation type. The effect of the finite response time 7 1s
more complicated. but a quick insight can be gained as follows. In the
basic wave motion governed by the left hand side, r=f(x — ¢y, so that ¢
derivatives are approximately equal to — ¢, multiplied by x derivatives:

B J

e 3.5
ar 0 Oy ( )
If this approximation is used in the right hand side of (3.4). the equation
reduces to

dr dr 2y 0%

— 4y =lr—(ry,—Cy) T} . 36

ar - Yax { (ro= ) } ax? (36)

There 1s a combined diffusion when

-

r>(tg— )T (3.7)
but instability if

L’<(L‘0—CU)ZT. (3.8)
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This i~ reasonable: for stability a driver should look far enough ahead to
ke up for his response ume. N .

I'he stability criterion can be verified directly from the complete
equittion (3.4) in the traditional way. There are exponential solutions of
(3.4 with

roce th—iwt

prm;dcd that
Tlw— vk ')2+ lw—cgk)— vk?=0.

The gxponential solutions will be stable provided 9w <0 for both of the
roots . It is easily verified that the requirement for this is (3.7), so the
result of the approximate procedure is confirmed and extended to all
wavelengths.

Hicher Order Waves.

{7 is important to note that the right hand side of (3.4) 1s itself a wave
operator and we may write the equation as

ar or J Jd \f o J
L7 /A (RPN A I 3.
TRELEE T( o T+ a.\»)( TR )” (39)

where
C+=r0+\/v/"r. c_=ty— Vv/7.

It woeuld be expected therefore that waves traveling with speeds ¢, and ¢ _
also play some role. It would be premature to go deeply into this question
at this stage, but one remark has great significance in interpreting the
stabihity condition. We shall sce later in our discussion of higher order
equaiions that the propagation speeds in the highest order derivatives
alwivs determine the fastest and slowest signals. Thus in the present case
however small 7 may be provided it is nonzero, the fastest signal travels
with speed ¢, and the slowest with speed ¢ _. It is clear therefore that the
dpproximation

dr dr

- Coax_o (3.11)
could only make sense if

C_<C0<C+- (312)



76 SPECIFIC PROBI.EMS

But this is exactly the stability criterion (3.7). So the flow is stable only if
(3.12) holds, and then it is appropriate to approximate (3.9) by (3.11) for
small 7. There is a nice correspondence between stability and wave
Interaction.

Equation 3.9 arises in several applications and a full discussion is
given in Chapter 10.

Shock Structure.

The more complicated form of the higher order corrections introduces
a new possibility in the shock structure. For the simple diffusion term used
in Section 2.4 with » >0, a continuous shock structure was obtained. We
shall see now that this is not always the case when there are additional
higher terms. We look for a steady profile solution of (3.2)—(3.3) with

p=p(X). v=¢c(X), X=x-U

where U is the constant translational velocity. Equation 3.3 becomes

— Upy+(vp) =0 (3.13)
and may be integrated to

p(U—v)=4, (3.14)
where A4 1s a constant. Equation 3.2 becomes

tp(v— Uy +rpy+pr—Q(p)=0. (3.15)

Since v = U~ A4 /p, this may be reduced to

(V*%T)p)(:Q(p)—pU'FA. (3.16)

For r=0, it is the same as (2.21), as it should be. For 70, the possibility
that » — 4%r /p* may vanish introduces the new effects.

As before we are interested in solution curves between p, at X = + o0
and p, at X = —oc. These values will be zeros of the right hand side of
(3.16). For traffic flow ¢'(p)= Q" (p)<0. so p, <p, and the right hand side
of (3.16) is positive for p,<p<p,. If y— A% /p? remains positive in this
range, then p, >0 and we have a smooth profile as in Fig. 3.5. In view of
(3.14). the condition for » — 4’1 /p? to remain positive may be written

p>(r—U) . that 1s. 17—\/;/7<U<L‘+\/V/;. {3.17)
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P=F
‘ T
: PP p
PP J
- X X
Fie 3= Continuous shock structure. Fig. 3.6. Shock structure with an inner dis-

continuity.

This 1s similar in form to the linearized stability criterion (3.7) with ¢,
replaced by the local velocity ¢ and ¢, replaced by the shock velocity U.
We might also interpret it in a way similar to (3.12) as a warning of
possible complications if a shock tries to violate the higher order signal
speeds. However, it is not necessarily an unstable situation. The conditions
for the uniform states at = oo to be stable are

o - N/ e <o+ Vi/r 0~ V/r <ey<ey,+Ve/r o (3.18)
It is possible. in general, for these to be satisfied and yet (3.17) to be
violated. When this is the case, » — A% /p? changes sign in the profile. as in
Fig. 3.6. and a single-valued continuous profile is no longer possible.

In most problems of shock structure, when the profile turns back on
itself in this way, it 1s rectified by fitting in an appropriate discontinuity.
The situation again corresponds, strictly speaking, to a breakdown of the
assumptions for the particular level of description, but the introduction of
a discontinuity, provided it corresponds to a valid integrated form of the basic
equalions. avoids an explicit discussion of yet higher order cffects. In the
tase of (3.2) and (3.3), it is not clear which conservation forms are
appropriate for the discontinuity conditions nor what additional effects
should be introduced. One expects a discontinuous profile shown by the
full curve in Fig. 3.6, but the precise determination of the discontinuity is
not clear for this case. In other cases discussed later the details can be
completed. The point to stress here is that the discontinuities in the simple
Ih(.’(\t':\ using

o,+c(p)p, =0

May }
acey,

e only partially resolved into continuous transitions in a more
rate formulation.,
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A Note on Car-following Theories.

Considerable work has been done on discrete models where the
motion of the ath car in a line of cars is prescribed in terms of the motion
of the other cars. [See. for example. Newell (1961) and the earlier re.
ferences given there.] If the position of the ath car is 5,00y at time ¢, the
assumed laws of motion usually take the form

5, (0+3)=G {5, (1} —s,(1)}. (3.19)

between velocity §, and headway h,=s,_, —s, with a time lag A to account
for the driver response time. If G(4,) is chosen to be linear in h,. or if the
equation is linearized to study fluctuations about a uniform state, solutions
can be obtained by Laplace transforms. In general, however, one must
appeal to computer studies.

This type of model takes a more rigid view of how each individual car
moves, so It is narrower in scope than the continuum theory, where the
whole complicated behavior of the individuals is lumped together in the
function Q(p) and the parameters » and 7. But each model leads to a
particular form for these quantities. which may be helpful in interpreting
observational data. Moreover, such models may lead to additional effects
that cannot be seen in the continuum theory.

To see the correspondence of the particular car-following model in
(3.19) with the continuum theory, we first note the relation of G(h) to
Q(p). In a uniform stream with equal spacing 4, the velocities in (3.19) are
all equal and are given by the relation ¢ = G(4). Since /= 1/p,e=¢q/p, the
function Q(p) in the corresponding continuum equations is

S
Qfp) pG(p)-
If empirical or other information is known about G(4), it may be trans-
ferred to information about Q(p) near p=p,. Of course at lower densities
Q(p) will be affected more by cars overtaking and changing ianes.

The wave propagation described by (3.19). in which the motion of a
lead car is transmitted successively back through the stream, should be a
typical finite difference version of the earlier continuum results with this
choice of Q(p). The finite difference form of (3.19) also introduces higher
order effects equivalent to those in (3.2) and we can make a detailed
comparison. If we let

A0 =5,0000 s, (0 =s (1) =h (1) (3.20)

e 3.1 TRAFFIC FLOW 79

(3.09) 1 equivalent to the pair of equations

i+ 2)=G(h,). (3.21)
dh

L=y - . 322
i lnfl(’) Ln(f) ( )

1 this form we introduce continuous functions v(x.r) and A(x, 1) such that
1,'(.5-ﬂ,1‘)=t,'n(,r), {3.23)

S, T8,
]z(—T.I)=hn({). (3.24)

and obtain corresponding partial differential equations in the approxima-
tions of small A and small A,. Equation 3.21 may be written

ntreanea) =6 (i ]|
and it may be approximated by

t+(u,+ctx)£\.=G(h)+%—hG’(/z)h‘,, (3.25)

wheie the Tunctions are evaluated at x=35,(¢) and the errors are of order
A k7. Equation 3.22 may be written

d Snfi+sn
dth(_?_*q’[): (S, 1) —uls,.0)

and approximated by
S + S

h+ch, =he, at x = - (3.20)

The error in (3.26) is third order in A [due to the centering of & at the
Midpoint (s, +5,)/2], so the equation is correct to both first and second

Ordei- In terms of p=1/h. V(p)= G(h), (3.25)—(3.26) become

. L)
v+l +ee 1A= Flp)+ 3

o (3.27)

p,+{pr), =0 {3.28)
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To lowest order in A and A, we would have

v=F{p). o, +(pr), =0,

which is just the kinematic theory. The differencing has been arranged so
that the next order corrections leave the conservation equation (3.28)
unchanged.
Equations 3.27 and 3.28 are identical with (3.2) and (3.3) if we take
1

T=A, 1»=—EV'(,()).

Since V—c= —pk'(p). the stability criterion (3.7) may be written
2p2| V’(p)|A < 1.

or, equivalently.
2G'(hYA<L.

This is exactly the condition found in the car-following theories {Chandler,
Herman. and Montroll, 1958; Kometani and Sasaki, 1958). Similarly the
shock structures discussed earlier on the basis of (3.2) should be close to
those discussed by Newell (1961) on the basis of (3.19).

An effect that cannot be covered by the continuum theory 1s the
actual collision of cars. In a queue described by (3.19}. this occurs if
s, _;— 5, ever drops to the car length 7. In the special case

n

s,0t+A)=als, (1)~ _§'"(f)7L}‘

which can be solved by Laplace transforms, it may be shown that the
criterion for avoiding collision 1s

1
o< —;
e

this is slightly more stringent than the stability criterion 2ad <1 found
above. The analvsis would take us too far afield and the reader is referred
to the discussion of local stability in the paper by Herman. Montroll. Potts,
and Rothery (1959).

3.2 Flood Waves

For flood waves. the “density”™ in the sense of the general theory
presented in Chapter 2 is the cross-sectional area of the riverbed. 4 (x.1), at

Gec 3.2 FLOOD WAVES g1
asition x along the river at time 7. [f the velume flow across the section 1s
S( ;_,, per unit time. the conservation equation is
d ,
— [ Alx.)dx+glx;.t)—q(x,1)=0,
dr . x> ’
or. In differentiated form.
94 | 94
— + —=0. 3.29
ar dx ( )

Flow in a river 1s obviously so complicated that any flow model for the
cecond relation between ¢ and A must be extremely approximate, giving
onlv qualitative effects and general order of magnitude results for propaga-
tion speeds. wave profiles, and so on. However, observations during slow
chanses in the river level may be used also to establish the dependence of
depth and the arca 4 on the flow g. These provide empirical curves for the

function

4= 0(A4.x) (3.30)

in steady flows. This relation can be combined with (3.29) to give a first
approximation for unsteady flows which vary slowly. Then A (x,r) satisfies

94,0004 _ 90
or T 94 ox ox (3.31)

We have again the theory discussed in Chapter 2 with the propagation
velocity

_30 _ 109
T4 b oh (332)

[The sccond form introduces the breadth » and depth A. and dA4 = bdh.]
This i« the Kleitz-Seddon formula for flood waves. apparently established
first by Kleitz (1858, unpublished) and thoroughly discussed and used
effectively by Seddon (1900).

Fmpirical relations for (3.30) can be viewed against simple theoretical
models, The relation is an expression of the balance between the [rictional
force of the river bed and the gravitational force. In theoretical models, the
frictional Torce is usually assumed to be proportional to v*. where ¢ is the
averave velocity

q

ljzg.

and o proportional 1o the wetted perimeter P of the cross-section at
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position x. This force is then expressed as p,C,Pr? per unit length of river,
where pg is the density of water and ¢ is a friction coefficient. The
gravitational force 1s p, g4 sina per unit length. where o is the angle of
inclination of the surface of the river. Hence

g8In
(_,«

(3.33)

=4 A
0= F

The wetted perimeter P is a function of 4, and C; may also be allowed to
depend on A. For broad rivers P varies littie with the depth of the river
and may be taken to be constant. If C; and o« are also taken to be
constants. (3.33) gives the Chezy law

/7 - ‘3
rox A2 Qx 432

‘Then the propagation velocity

More generally. P and C, are functions of A. and power law dependences
for these give rec A’ Qo A" with other values for »n. For example, a

[rmnwular uo\s section gives P o A" and leads to n=1: : Manning's law
G, d 72 leads o n=%. For all these power laws the pmpagdtmn velocity
s

={l+n)c

As expected. flood waves move faster than the fluid but the propagation
velocity may not be very much greater than the fluid velocity.

Seddon turns the calculation around and uses his observations of the
propagation velocity to deduce the effective shape of the bed. that is. the
dependence of P on A. This is a valuable idea in all kinematic wave
problems: use observations of the propagation velocity ¢ to infer the g-p
relation.

If the dependence of Q on x is omitted. (3.31) reduces to

A+ c(A)A, =0

and the general solution may be taken from Chapter 2 with shocks fitted in
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. dicontinuities satisfying
% 4y 4
A, — A,

for the power laws susgested (and this is also borne out by observations),
SO0 i A = i , e .
k 4n increasing function of A: hence waves due to an increase n

el . . . . N
neiciit break forward. and shocks carry an increase n height. 4, >4,

Hicher Order Lffects.

A« in the other examples discussed, a more accurate treatment of the
relation between ¢ and A than that expressed in (3.30) involves higher
dcm_n"\ es. [n unsteady flow the frictional and gravitational forces do not
balance exactly and their difference is proportional to the acceleration of
the fluid: the difference between the slope of the water surfacc and the
slope of the bottom also makes a contribution.

11 will be valuable to express the equations in conservation form so
that. when necessary. appropriate discontinuity conditions can also be
deduced. For simplicity, we consider the case of a broad rectangular
channel of constant inclination « and work with the depth h‘ and mean
velocity © as basic variables in place of 4 and ¢. The conservation of fluid
for unit breadth can then be written

%Lj'hdx+[hu]i;=0, (3.34)

and we need to add a more detailed formulation of the conservation of
momentum. The appropriate equation in hydraulic theory 1s

Xy

d Xy . 2 X, l hz‘ ‘
EL ht dx + [ he ]_\»2+[ 58 (.osa]‘

2

= [ “ghsinade— [ Citax. (3.35)
X3 X3

Apart from the common factors p, (the constant density of water) and the
breadth b which have been cancelled through. the five terms in this
equation are, respectively, (1) the rate of increase of momentum In the
S€elion x, < x < x|, (2} the net transport of momentum across x, and x,. (3)
the net total pressure force acting across x; and x,, (4) the component of
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the gravitational force down the incline, and (5) the frictional effects of the
bottom. The pressure term requires some comment perhaps. In hydraulje
theory the dependence of the velocity on the coordinate y normal to the
bed is averaged out 1o ¢(x,7) and the fluid acceleration in the y direction ig
neglected. The latter assumption means that the pressure satisfies g
hydrostatic law

dp .
3y Py ECOs .

Hence
p—po=(h—y)pygcosa

and the total contribution of the perturbed pressure integrated over a cross
section of the river is

h
bj;) (p—po)dv= %thogbmsa;

this is the origin of the third term in (3.35).
Equations 3.34 and 3.35 are the two conservation equations for A and
v. If h and ¢ are assumed to be continuously differentiable, we may take
the limit x, — x,—0 to obtain partial differential equations for 4 and v. It
will be a minor saving in writing to introduce g'=gcosa and the slope
S=tana. The equations for # and ¢ are then
h+{he) =0,

[/ N I (336)
(hr), + (/it“+ Egllllz) =g'hS—Cct.
We may also use the first equation to simplify the second and take the
equivalent pair

B+ ch,+ he =0,
(3.37)

2
v, tee,tgh=g'S— Cf%

The kinematic wave approximation to (3.37) neglects the left hand
side of the second equation and takes

1/2

h,+ (he) =0, t=(gC) h'/2, (3.38)
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In this kinematic theory, discontinuous shocks must satisfy the shock
condition
Uy~ A

U=—h (3.39)

Siability; Roll Waves.

We now consider the consequences of the additional terms in (3.37).
For simplicity, S and C, are assumed to be constant. As in the traffic flow
problem, we look first at the linearized form of the equations for small
perturbations about a constant state v=uv, A= h, where

2
Crhe =E'S: (3.40)

If we substitute
v=105+w, h=h,+n
and neglect all but the first powers of w and 5, we have

1, + vgn, + Agw, =0,

w,+uowx+g’nx+g’8(2u—‘: - hic)=0.

We may then eliminate w and write the single equation for 7 in the form

3 3 \( 0 9 28'S (4 R
(at+c+é;)(57+c~a)n+ o (ax+c08x)7]—0, (341)

where

3¢
c+=vo+\/g’h0 . c_=v,— Vghy, Co= —. (3.42)

Tb;‘ ¢quation is now the same as in the earlier discussion of (3.4) and (3.9),
Wit appropriate changes in the expressions for ¢,, ¢_, and ¢, Accord-
ingly, the stability condition is

c_ <<y, (3.43)
an< this also ensures that the lower order approximation

oy an

3 * oz =0 (3.44)
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Fig. 3.7. Roll waves.

does not violate the characteristic condition. Equation 3.44 is the linearized
version of (3.38), of course.
The stability conditions may also be written, using (3.42), as

cas 2V ek,
or, again, from (3.40) as
S<4C,

For rivers. 1 is usually much less than \/g’ho . but spillways from dams
and other man-made conduits easily exceed the critical values. The result-
g flow is not necessarily completely chaotic and without structure. In
favorable circumstances. it takes the form of “roll waves.” as shown in Fig.
3.7. with a periodic structure of discontinuous bores separated by smooth
profiles. Early observational data and photographs of the phenomenon
were obtained by Cornish in 1905 and are beautifully described in his
classic book (Cornish, 1934), which summarizes his observations of waves
in sand and water. The most specific data refer to a stone conduit in the
Alps (the Griinnbach. Merligen) with a slope of 1 in 14. On an occasion
when the mean depth was approximately 3 in., the mean flow velocity was
estimated as 10 ft/sec and the whole roll wave pattern moved downstream
at an average speed of 13.5 ft/sec. For these figures the Froude number

o/ \/g'htv, is 3.5. considerably in excess of the critical value of 2. These
values would give S/ C,=12.5 and lead to C,=0.006.

Jeffreys (1925) proposed the instability argument and noted that for
smooth cement channels (for which he performed experiments) the friction
coefficient is C,~0.0025: this value of C; agrees with current values. For
the latter value. uniform flows should become unstable when the slope S
exceeds 1in 100. Jeffrevs found his own experiments on the production of
roll waves inconclusive. but he felt that long channels with slopes con-
siderably in excess of 1 in 100 were needed. Much later Dressler (1949)
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o0k up the subject and showed how to construct nonlinear solutions of
C , .. . o

+ 26y, with appropriate jump conditions. to describe the roll wave pattern.

'[]'qc details will be indicated after the question of steady profile waves for
(he stable case has been considered.

yonnclinal Flood Ware.

(he structure of the shocks arising in the kinematic theory (3.38 apd
119, i particularly important in the flood wave problem. since in reality

12D

;ﬁe “iock thickness is of the order of 50 miles! 1t is obtained as usual. by
for steady profile solutions in a more detailed description which.

Se;[i‘x?liﬂg » .
in thes case. I8 provided by (3.37). We look for solutions with
h=h(X). r=v(X), X=x- UL
The cquations may be written
de dh v’
U)o g =g S G 3.45)
(b= Uy T8 x =827 by (
h(U—t)=8. (3.406)

where the continuity equation has been integrated to (3.46) an'd B 1s the
constant of integration. The uniform states (h,.t,) at X =0 satisfy

t t% 'S Ctg_
gS—C_fh_l_g fhz_‘

h(U—e)=h(U=1))=B.

If v.c express all flow quantities in terms of h, and h,. we have

=2y 1= Sy (3.47)
o= —=g'h,. v, =<8 hy (3.
1 Cf i 2 Cf
S v ht
™4 g 1
= - h l’ = — — A (348)
B (izz*h,) 12 ( f) hll/q_hzlu
/2 ..,
o Tt _(gS) Rk (3.49)
S iy G hy—hy '

Tie last of these is exactly the shock condition governing discontinuities in
the kinematic theory (3.39). This is the usual pattern and we expect the
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solutions of (3.45) and (3.46) to provide the structure of these kinematic
shocks.
When ¢ is eliminated from (3.45) and (3.46), the equation for A(X)
takes the form
an (B=UR)YC—gh’s

= 3.50
dX g/h.?_BZ ( )

Since the numerator must vanish for h= /4, and h=#,, these two values
must be roots of the cubic. Then the third root is

C, 2

H-—L_B
S ¢'hin
i,

—
(lzllf2+/rz'/z)
Since H < h,, h,, and the solution has & between h, and h,. this third root
h=H is never a value taken in the solution considered.

Equation 3.50 may now be written

fﬁi:_S(hz——h)(_li—h])(h“f]). (3.51)
ax }13_82/g1

and the behavior of the solution depends critically on the sign of the

denominator #°— B?/g’ and its possible change of sign in the profile.
From (3.46).

Wh = Bl=g = (U-¢ )zlz2

= gh—(U-1v)'}:
hence the sign is positive or negative depending on whether
USr+ \/g//; .
[From (3.48). B >0: therefore from (3.46). U >v¢ and U is always greater
than ¢ — \-‘/g;h ]
When f,— A . we see from (3.49) that

i)

172
. 3f&S 12 3
L——);( (,f ) III’ —”j(].

<
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h=ho

h=h|

_—

Fig. 3.8. Structure of the monoclinal flood wave.

In the stable case, Jv,<v,+ Vg'h ; thus for weak waves we gtart the
intezral curve of (3.51) from A=1h, X =cc, with the denorr_unator in (3.51)
pogftive. Accordingly, hy < 0, k increases, g'h’ — B? remains positive and
we have a smooth profile as shown in Fig. 3.8. This is the so-called mono-
clinal flood wave. The fact that 4, > &, is required for this profile agrees
with the tendency of breaking of the kinematic waves, since this is a prob-
lem with ¢'(h) > 0. A smooth profile of this type will continue to hold for
the range of shock velocities.

3
—;l<U<vﬁ- g'h, . (3.52)

From (3.47) and (3.49) it is easily shown that this is the range

hz 1/2 1+{1+4(S/Cf)|/2}|/2 |
1<(h_]) 2s/cp)t?

But (3.52) is the more significant form, in view of the physical interpreta-
tion of the velocities. The shock moves faster than the lower order waves
but slower than the higher order waves in the flow ahead.

When

o+ Vgh <U<v,+Vigh,,

the denominator in (3.51) changes sign in the profile and the integral curve

Fig. 3.9. Structure of the monociinal flood wave with an inner discontinuity.
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turns back on itself as in Fig. 3.9. A single-valued profile is recovered by
fitting in a discontinuity as indicated. In contrast with the case of traffi¢
flow. basic conservation equations in integrated form, (3.34) and (3.35), are
known, and these apply whether the solution has discontinuities or not. Jf
the same procedure developed in Section 2.3 is used on these* the
appropriate jump conditions at a discontinuity located at x=s(1) are

—§[h]+|hc)=0. (3.53)

—§[he]+ [intz+ %g’hz} =0. (3.54)

It should be especially noted that the right hand side of (3.35) makes no
contribution in the final limit x,—x,. These discontinuity conditions go
along with the equations (3.36). just as (3.39) goes along with (3.38). One
must be careful to pair correctly the equations and shock conditions at
each level of description. In a change of the level of description. both the
equations and shock conditions change in number. The discontinuities
described by (3.53) and (3.54) are in reality the turbulent bores familiar in
water wave theory as “hydraulic jumps™ or breakers on a beach.

In the present context, the proposal is to fit a discontinuity satisfying
(3.53) and (3.54) into the steady profile solution of (3.36): hence 1t will also
have the velocity U. In view of (3.46) any discontinuity between branches
of the profile [including the lines A= h, and &= h, as possible solutions of
(3.51)] will automatically have A(U —©) continuous to satisfy (3.53). The
second requirement (3.54) determines where it should be placed. The
condition (3.54) requires

hoic—-U)+ ég’hz
to he continuous. IFrom (3.46). this can be modified into

B 1 ..,
,_.__.+__
i tagh

should be continuous. If the discontinuity is chosen to take the profile
from A= h, to a point 1= #* on the upper branch as shown in Fig, 3.9, the

*Here to complete the physical problem we are requiring results from the later mathematical
development in Chapters 5 and 10. but it seems better to include them here. with a minimum
of explanation, rather than delaying completion of the solution.

Chap. 3 I
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requircment 15

B’ 1 ope2_ B;Z + 1 ‘h?
W T8 p T2
i Lo 1/2
that! e (1+8B2/gn 1
o 2 '
This van be expressed in terms of 7, and ’hz 3usir1g2(3.48). It can be \;er.i_fied
(hat 11 meets the requirements (1) that g'A*" — B >0 so that A=A~ 15 0n

the upper pranch. and (2} that h* < h, provided §<4C}. .

The overall conclusion, then, is that the original discontinultly of the
kinematic theory (3.38 and 3.39) is resolved. into a smooth pI”Ofllﬁli whc?n
viewed from the more detailed description (3.36), pro.tzided‘(}.lSZ) Is satis-
fied. For stronger shocks that violate (3.52). some cﬁscontmulty rfmams
and corresponds to a shock discontinuity in the solutvlon of (3.3‘6). Further
interpretations of the significance of (3.52) will be.gwen (see Chapter 10)
after the theory of characteristics and shocks for higher order systems has
been developed in detail. o

The roll wave patterns referred to earlier are obtained by piecing
together smooth sections satisfying (3.50) with discontinuous bores sgtlsfy-
in; (3.53) and (3.54). 1t may be shown that g'h*— B? must cha'nge sign in
thg profile but the smooth parts are kept monotonic by demgndmg Fhat the
numerator of (3.50) also vanish at the critical depth. This requirement
relates the two parameters 8 and U; one or the other may be kept as a
basic parameter in the family of solutions and 1s determined by the total
volume flow. For further details. reference should be made to Dressler’s
(1949) paper.

3.3 Glaciers

Nie (1960,1963) has pointed out that these ideas on flood waves
apply éaluallyf to the study of waves on glaciers and has developed the
paritcular aspects that are most important there. He refers to Finsterwalder
(1907, for the first studies of wave motion on glaciers and to independent
forriititions by Weertman (1938).

in view of the difficulties of collecting data on the flow curves for
glaciors. due to both the inaccessibility and the slowness of the flow, more
reliinee is placed on semitheoretical derivations. These consider i more
det ) the shearing motion in two dimensional steady flow down a constant
slope Let u(y) be the velocity of the layer at a distance v from the ground
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and let 7(y) be the shearing stress. For ice it seems

to be appropriate t,
take the stress-strain relation as

du
yz =7", (3.55)
where na3 or 4. (Newtonian viscosity would be the case n=1,) Ip
addition. ice slips in its bed according to the approximate law
ruf{0) =1"(0). (3.56)

where ma1(n+1)~2. On the layer between y and v + §v, the difference n

shearing stress must balance the gravitational force. If « is the angle of the
slope and p is the density of ice, we have

dr= —pdrgsina.
That is,

% = —pgsina. (3.57)

Since 7 vanishes at the surface y = k. the solution for 7 is
7= (h—y)pgsina.

Then, integrating (3.55) with boundary condition (3.56). we have

(pgsina) h™ | (pgsina) atl . A+l
$+ET{’J —(h=y)"""}. (3.58)

The flow per unit breadth is

u(y)=

A
Q*(h)= [ u ey

Y0

(pgsinn)mh ml (pgsin a)nh ntl
B v * n+2 ) (3.59)

For order of magnitude purposes, one may take
O*(hyeh®,
with ¥ roughly in the range 3 10 5. The propagation speed is

T

where ¢ is the average velocity Q*/h. Thus the waves move about three to
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five times faster than the average flow velocity. Typical velocities are of the
v

10 to 100 meters per year. ‘
Order\/ii’ious problems can be solved using the results and ideas of Chapter

7. An interesting question considered‘by Nye is.the effect of 'pe;loil'c
. mulation and evaporation of the ice; depending on the period, this
accQ fer either to seasonal or climatic changes. To do this a prescribed
me roeterm f(x,1) is added to the continuity equation; that is, one takes

ource
S ho+gr=f(x,0), ¢*=0Q*(hx). (3.60)

The consequences are determined from integration of the characteristic
equalions

%} =f(X,t) - Q:(h’x)’

d
?‘%:Q;,"(h,x).

The main result is that parts of the glacier may be very sensitive, and
relatively rapid local changes can be triggered by the source term.

3.4 Chemical Exchange Processes; Chromatography; Sedimentation
in Rivers

The formulation of equations for exchange processes between a solid
bed and a fluid flowing through it was given in Section 22 The exchange
may involve particles or ions of some substance, or it may be. heat
exchange between the solid bed and the fluid. Another instance is sediment
transport in rivers. ‘ ' .

The equations coupling the density p; in the fluid and the density p,
on the solid are

J 9 =0 (3.61)
E(Pf+Ps)+ ax(fo) d

0
a;’?:kx(A_Ps)Pf—kzps(B*Pf)- (3.62)

For telatively slow changes in the densities and relatively high reactio_n

rates k|, k,, the second equation is taken in the approximate quasi-

€quilibrium form in which the dp, /37 is neglected and
kiApy

k,B+ (k,— kz)Pf.

p,=R(p)= (363)
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When this relation is substituted inte (3.61), we have

A, % dpy

T — =0
U 1+ R'(p;) Ox (3.64)

Thus the density changes propagate downstream at the rate

— ¥ ,
€= I+ R’('pf)‘ (3.65)
and
) ki k,AB

2
(KkaB+ (k= ky)p;)
If the densities concerned are small this is approximately

k,B

Tk A+k,B

V. (3.67)

The propagation speed depends on the reaction rates involved. being
slower for substances with larger attraction toward the solid. If a4 mixture
of substances is present in the fluid at the entrance of the column and the
components have different reactions rates, they will travel down the
column at different speeds. In this way the column can be used to separate
the mixture into bands of the individual components, If they are also
colored. a spectrum 15 formed. This is the basic process of chroma-
tography., The nonlinear effects produce heavier concentrations at the
beginning or end of a band depending on the sign of ¢'(p,). Of course, the
nonlinear equations for a single component apply only after the separation
has aken place.

The shock structure and other aspects can be studied from the full
cquations 3.61 and 3.62. [t is remarkable in this case that the full equations
can be transformed (exactly) into a linear equation. This was shown by
‘FThomas (1944). First. & moving coordinate system

RY A
2 V

T=1i—

is introduced: the equations then take the form

ap[ 3,0‘
a0 tar Y
(3.68)
dp

L
()T upf l[ln,\ /p‘\p/
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The first cquation is solved identically by

Pr= .- Py = — Vg (3.69)

ad the wecond equation provides an equation for .
A

Uy, T, + Y, + 1, =0, (3.70)

[f we now make the nonlinear transformation

v =logx. (3.71)

we ‘\i(.‘(‘:ilL'C
Xor Fax, + fx, =0 (3.72)
the nonlinear transformation eliminates the nonlinear term. In terms of the

opivina! variables the transformation is

+ 'y,
L A (3.73)
: Y X l YX
X+ Fx, tlatBix, +8Vx, =0 (3.74)

f he linear equation can be solved in general by transform methods so
that in this case the solutions of the approximate equation (3.64), including
shocks when necessary, may be compared in detail with the exact solution.
This has been investigated extensively by Goldstein (1953) and Goldstein
and Murray (1959). The exact solution endorses the views and methods for
including discontinuous shocks in solutions of (3.64). The details are not
giver here since Burgers' equation is simpler to deal with and provides the
sarie endorsement. Some of the relevant analysis will appear in Chapter 10
in . different connection.

or exchange processes, a=k,;4 and 8=k,B are both positive. For
these signs, the uniform state is always stable. This may be checked by
consdering perturbations in (3.74). We note that the lower order waves

travel at a speed

14
Co=""%
¢ o+ f3
Wiite the wave speeds given by the higher order terms are ¢_ =0 and
C_ =1 Thus for «>0. >0, the stability criterion ¢ <lcg< e, 18 salis-



CHAPTER 4

Burgers’ Equation

The simplest equation combining both nonlinear propagation effect,
and diffusive effects is Burgers' equation

¢, Fec.=we . (4.1
In (2.28) we saw that this is an exact equation for waves described by

q=0Q(p) —rp,. (4.2

in the case that Q(p) is a quadratic function of p. In general, if the two
effects are important in a problem, there is usually some way of extractinz
(4.1) either as a precise approximation or as a useful basis for rough
estimates.

For a general Q(p) in (4.2), for example. the equation may be writtes

pl+q.r=()"

¢, +ce =ve,, — v (p)pl. (4.%)

where ¢(p)= Q’(p) as usual. The ratio of rc"(p)pZ to rc, is of the order of
the amplitude of the disturbance. and we therefore expect that (4.1) 1 &
good approximation for small amplitude. We are then assuming that
omission of this particular small amplitude term does not produce ac-
cumulating errors (as t—oc. say) which eventually lead to nonuniform
validity. We know, in contrast, that to lnearize the left hand side bv
¢, + ¢y, where ¢, is some constant unperturbed value. would be disastrous
in this respect. But as a check, we may verify that in the shock structu<
solution (see Section 2.4). where the diffusion terms are greatest, the term
ve”(p)p? remains of smaller order than rc,, in the strength of the shock.
This kind of argument can be made the basis of formal perturbation
expansions in terms of appropriate precisely defined small parameters. Orn
the other hand, the fact that the terms retained in (4.1) represent ident:f-
able and important phenomena, whereas the term vc “{p)pl appears more >
a mathematical nuisance. leads one to suggest (4.1) as a useful overall
description even beyond the range of strict validity.

96
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In a similar fashion, Burgers’ equation is relevant in higher order
systems such as {3.2)«3.3), when nonlinear propagation is combined with
diffusion. Of course it is limited to the stable range and to parts of the
solution where the lower order waves are dominant. The appropriate form
is easily recognized and again can usually be substantiated by more formal
prOCedures. In the case of (3.2)~(3.3), we know from (3.6) that the effective
diffusivity is v*=u*(ro—c0)21- and we would use (4.1) with this value.
[ndeed, (3.6) 1s the fully linearized Burgers’ equation for this system.

Our general purpose now is to show that the exact solution of Burgers'
equation endorses the ideas regarding shocks that were developed in
Chapter 2. That is, we want to confirm that as »—0 (In appropriate
dimensionless form) the solutions of (4.1) reduce to sotutions of

¢, +ec, =10, (4.4)

with discontinuous shocks which satisfy

1
U=—2—(C|+€2). o, > U >y, {4.5)

and the shocks are located at the positions determined in Section 2.8,

4.1 The Cole-Hopf Transformation

Independently, Cole (1951) and Hopf (1950) noted the remarkable
resul.t that (4.1} may be reduced to the linear heat equation by the
nonlinear transformation )

Py
c=—2r—,
¢ {4.6)

This is similar to Thomas’ earlier transformation of the exchange equations

described in Section 3.4. It is again convenient to do the transformation in
two steps. First introduce

c=1,.
50 that (4.1) may be integrated (o

1
v, + EHL,?: Py
Then introduce

Y= —2rlogeg
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to obtain
({’I:I’q’xr‘ (4 !

The nonlinear transformation just eliminates the nonlinear term. Tig
general solution of the heat equation (4.7) is well known and can be

handled by a variety of methods.
The basic problem considered in Chapter 2 is the initial value proi.

lem:

c=F(x) at r=0.

This transforms through (4.6) into the initial value problem
q:=‘b(x)=exp{—Lf‘»F(n)dn] =0, ()
21’ 0 J,

for the heat equation. The solution for ¢ is

o 2

1 (x—mn) ‘

=— ®(n)ex — b . (4.9)
? Vdaqu j:oc ") P{ 4vt }71

Therefore, from (4.6). the solution for ¢ is

fOC ane_(;/z”dn

t

e(x )= —"—55 : (4.10)
f e—G/2ydn
where
(x n)z
" .
. = Ve A+ —— 4.1
G(n;x,0) fOF(n)dn+ - (

4.2 Behavior as r—0

The behavior of the exact solution (4.10) is now considered as - 0
while x, ¢ and F(x) are held fixed. [Strictly speaking this means we consider
a family of solutions with »=er, and take the limit as e—0, holdmz
ve, X, 1, F(x) fixed.] As r—0, the dominant contributions to the integrals 10
(4.10) come from the neighborhood of the stationary points of G. A

stationary point is where

3G _

X—n \
= () —— =0, 4,01
o (n) . 0 (
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Let n=£&(x,?) be such a point; that is, £(x, ) is defined as a solution of

(x=8) _

F(g)" [ 0. (4'13)

The contribution from the neighborhood of a stationary point, n=¢, in an
integral ’ ’

o0
(@) o@

— 0o

‘V__"'ﬂ’__ ~G(§)}/2v.
g(¢) G"(%) € ;

this is the standard formula of the method of steepest descents.

Suppose first that there is only one statio i :
satisfies (4.13). Then Y nary point £(x,) which

® x—7 x—£
e~/ Pgn 4av -G /20
'!‘_GO H t Gr/(g) € 3 (4.14)
fme‘G/Zvd«,,~ _Am -G 415
- G"(£) ; (4.15)
and in (4.10) we have
x—§
e~ r (4.16)

where i i i i i
o £(x,1) is defined by (4.13). This asymptotic solution may be rewrit-

c=F(§)
x=§(+F(&)r

::al: exactly [1.'16 solution of (4.4) which was discussed in (2.5) and (2.6); the
lonary point §(x,) becomes the characteristic variable.

somtiorol“:;?er, weff.sgw that in some cases (4.17) gives a multivalued

the SO]miOzr a431ix0 icient time, an,d dlscoptlnuities must be introduced. Yet

contipion { .11) for Burgers equation is clearly single-valued and

there. oo or all +. The exglanatxon is that when this stage is reached

a wo statlonary.pomts t_hat satisfy (4.13), and the foregoing
alysis of the asymptotic behavior requires modification. If the two

(4.17)
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' ints ; d &, with ¢ >§&. there will T¢
stationary points are denoted by §, and &, \”Q
;Lmtribut}iorrl)s as shown in (4.14) and (4.1‘5} from both £, and &,. Therefo:
the dominant behavior will be included if we take

x—&

. e . ” —1/2, - Gl& /2
X [El{G”(«fl)}fl/'f’img‘)/z +;————! {G (52)} €

{G ”(E\)}* 1/2p - Gl& )/2”-{»{(? "(52)}

{4.1%5)

- —GlE Y20
172~ &)/ 2

When G(£,)#G(&,), the accentuation by the small denominator » 1n '

exponents makes one or the other of the terms overwhelmingly large
r—0. If G(§)<G(&y), we have

x—&

C~—

H

5

if G(&,)>G(&y),

———

t

In each case (4.17) applies with either g, or &, for & But lhg ch.()xce(;hiCrt:?
unambiguous. Both £, and &, are functhns of (x.,1): t};e cqter;o(nr ,)(Sigbs{e
G(&,) will determine the appropriate choice of £, or & ﬁr iglve x, 0. L
changeover from &, to §; will occur at those (x.¢) for which

G(¢))=0G(%;).
From (4.11), this 1s when

2
’ —§,) |
& (x=%) Y () dn =) (4.19)
g, Mt _ o+
) Fn')dy + = fo (7 Y
Since £, and £, both satisfy (4.13), the condition may be written
(4200

gl . ‘ s

L)+ FiE) (6 =8) = [ F(n ) d'

1 1 o aoveTs

This is exactly the shock determination obtaingd in (;.45). The chcmgc :he

in the choice of terms in (4.18) leads to the dlscontmplty in g‘({.'r)lm \\\'e

limit »—0. All the details of Section 2.8 can be confirmed snmllallrb)e.1 .

conclude that solutions of Burgers’ equation approach those described b
(4.4) and (4.5) as »—0. o

In reality » is fixed, but it is : v

. . p . appro;

limit solution for »—0 will ofien be a 00 o _ "
'i:gument since » is a dimensional quantity, we have to introducc

~ 41 he
relatively small and we expect that ‘\17;
imation. For ¥
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pondimensional measure of » by comparing it with some other quantity of
the same dimension. This is not hard to do. In the single hump problem.
for example. where F(x) is as shown in Fig. 2.9, we may introduce the
parameter

A= [ (Flx) =) dx. (421)
-
The dimensions of 4 and » are both L2/ 7., so that
A
R= 3, (4.22)

is a dimensionless number, and by “» small” we mean R 1. If the length
of the hump is L. the number R measures the ratio of the nonlinear term
(¢ = colc, to the diffusion term we . in those regions where the x scale for the
derivatives is L. (Inside shocks. for example. the x scale is of smaller order.)
It will be convenient to refer to R as the Reynolds number, following the
practice in viscous flow.

Even with the meaning of “small v~ decided. there are distinctions
between the limit solution »—30 and the solution for fixed small ». As we
saw 1n (2.26). the shock thickness tends to infinity if the strength tends to
zero. Therefore for fixed R. even if it is large. any solution that includes
shock formation or a shock decaying as r—oc will not always be well
approximated by the discontinuity theory in these regions. As regards a
shock formation region. the precise details are not usually important: one
Just wants a good estimate of where it forms. without details of the profile.
and this is provided by the discontinuity theory. The effects of diffusion on
decaying shocks as r—a is of more interest. We will explore these
Questions through typical examples in the following sections.

43 Shock Structure

The shock structure for (4.1) satisfies

_ (,_’(1}‘, =+ CCX = PC.YX* ,Y =y — va.

Hence

%C:* Ue+ C=rcy.

It C>cney as Y-+ o,

1 ‘
L‘"=§((‘I+(.z)‘ C= 310
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and the equation may be written

(c—c Mey—c)=—2rey.
The solution is
X 2 G

= log :
yoooCy c—¢

this agrees with (2.25). since ¢=2ap+ f for guadratic Q(p). Solving for ¢,
we have
c,—¢ e+,
c=7, + & ‘ . U= : 7

C,—C
1 +exp 221} ](x—UI)

. (4.3

One can study how an initial step diffuses into this steady profile by
taking

¢y x>0,
;>0 x <0,

F(x)=

in (4.10) (4.11). The solution may be put in the form

4= C c,+ .
c=c+ Czicl ) U=—12——2. (4.24)
1+ hexp 22,, Lx—Ut)
where
foc. / efg’zdg
h= —(x—c)/Vanm (4:%)

el 2 '
j e Sdt
{x—cyty/ Ve

For fixed x /1 in the tange ¢, <x/1<¢; h—1 as 1—oc, and the solution
approaches (4.23).
4.4 Single Hump

A special solution with a single hump may be obtained by taking
F(x)=c,+ A8(x) (4.20!

as the initial condition. The parameter A agrees with (4.21) and tne
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Reynolds number is R=A4/2». The constant ¢, may be omitted without
Joss of generality. since the substitution

(‘=(’0+E'. »\':(\O‘r.f.‘i— (427)
in Burgers’ equation reduces it to
C,+ 00, =vl,,; (4.28)

Thus omission of ¢, is equivalent to viewing the solution from a frame of
reference moving with velocity ¢,. Accordingly we consider only

F(x)=48(x). (4.29)

The lower limit in the integral in (4.11) is arbitrary since it cancels out
in (4.10). Therefore we may choose it to be 0+ and include the § function
for <0 but not for n>>0. Then

' 2
(x—m)
. \ TR n >0,

/‘ (x—1)°

3 -4, 1<

The integrals in the numerator of (4.10) may be evaluated and those in the

denominator written in terms of the complementary error function. The
result is

R __ '*.x7/4vl
v (() l)(’ A
c{x.1)=Y%\~— = _ ]
(x.1)=Y/~ JE— - R=9-. (430)
Vo R e
S Jx Vet

The similarity form of the solution, that is,
YA )
A \'/p[ 4

tould have been predicted by dimensional arguments. The only dimen-
*onal parameters in the problem. A4 and ». both have dimensions L2/ T
there is g separate length and time with which to scale x and ¢ separately.

As R—0 we would expect the diffusion to dominate over the non-

hnearily. For R<1 the denominator in (4.30) is V& + O(R). uniformly in
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x.r.r: hence ¢ may be approximated by

i — 2 .
(‘(,\'.I)= “/_{ Re % /vt

e (4.5
Vet

This is the source solution of the heat equation ¢, = rc, ., so the expectaticn

1s verified.
To discuss the behavior for large R it is convenient to introduce ¢
similarity variable z = ,,r/\/i}it and to write (4.30) as

24

= - o Z.,R .

¢ gLk
(¥ 1)

gz R)y= " — e (4.3)
VR Va4 (eP o[ e
VR

] s

V2A:

We now discuss the behavior of g as R-»oc for different ranges of z. In I
cases, ¢® — 1 may be approximated by ¢® and we may use

R(1-:%)
| e (4.33)

g~ / > 2 '
VR Vg +eRf e 4 d¢
VR

[f z <0, the integral tends to

. )
f e Vdi=Vr;

e

therefore g—0 at least like 1 /V'R . If 2> 0. the integral becomes small o
we use the asymptotic expansion

asn—K.
Therefore

~ = . ->0. R-o=. (4.4
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1f0<z< 1. we have

g~z 0<z<1l, R-—ce. {4.35)

whereas if 2> 1. g~>01 as R—z=c. Thus g—0 except in 0<z < 1. and in that
range g~2. In the original variables, the result reads

in0<x< VA,

¢~ k"
)

This is the appropriate solution of (4.4) with a shock at x=V2A4r. The

X
[
0 outside.

shock velocity is /= VA /2t , and ¢ jumps from zero to V24 /; . 50 the
shock condition (4.5) is satisfied.

The same expression (with ¢,=0 to fit our assumption here) appeared
in (2.52) for the ultimate behavior of the solution of (4.4) for a general
single hump. That was asymptotic in a different sense: it was the b:havior
as 1—o0 within the description provided by (4.4). For a 8 function initial
condition, it is valid immediately.

‘ The shock is located at =1, and for large but finite R (4.34) shows a
rapid transition from exponentially small values in = > | to g¥: inz<1.In
the transition layer 2= 1, (4.34) may be approximated by

1
g2 .
1+ 2V R 2RGE-D

(4.36)

In the original variables this would give

24 1

!
L\/2A 55 27
l+exp{ 5, V7 (= Vaar )+ 3 log =2

It ;
1 agrees with the shock protue (4.23). with o= \/2,4/t and the shock
oC =V 4, :
th'afd at x=V24r 1o first order. From (4.36). the transition layer is of
ICkness O(R ~'y around z=1. )
isc Th.ereA 18 gnothe?r (weaker) transition layer at z=0 to smooth out the
e Ontinuity in derivative between g~0 in z <0 to g~zin 0<z <] It is
ar from (4.33) that this transition layer occurs for

[

z=0(R /2,
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and for these values (4.33) may be approximated by

5

— Rz

— *© 2
WR [ e
VR

(4.38

g~

In the original variables we have

—x2 /4
o v e ! G
e~ \[ L (439
f e dt

/N

The form of the solution for large R is shown in Fig. 4.1, whe.o

g(:)=c\/f/2A is plotted against =. As R—oc the shock layer becomes
discontinuity in ¢ and the transition layer at x =0 becomes a discontinuii:
In the scaled variables g and . the profile is independent of ..
ue of R provided by the initial condition is large, the
thin and the discontinuity theory of (4.4)1s a good
This is true cven though the shock strength

n c,.
Therefore if the val
shock remains relatively
approximation for all 1.
proportional to \/ZA/J and tends to zero as {—7x.

A significant point in this connection is that the arc
remains constant even with diffusion included. since

a under the profi'e

(% GCCd)c=[vc'_x— —12—02] ﬂc:().

Hence the “effective” Reynolds number defined as

] =
— d:
> xc X

-i/2

x (2 At}

-
R™V2 R

Fig. 4.1. Triangular wave solution of Burgers’ equation.
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r?matl.r:)s,nc:)r;stag;for'all I. The next example will show that the more usual
situation 1s for di fusion to take over ultimately in the final decav. and Llh
the single hump is exceptional in this respect. a "

45 N Wave

The final examples we consider are ily v i
appr(?prifale §olu[ions for ¢ to satisfy 1h?0ﬁ:afazziactifor:e(i ;)\ Ché)osmg
substltu'gng in ,(4‘6’) to obtain ¢, As a rough qualitative : )'dan e
a.pproprxate choice. the profile for ¢ will be soglething like g%llll N ;0 e
§lr}g'le hump we FOUld have taken the solution of qc-.corre(zwox d'uS -
mma'l step function. To obtain an N wave for ¢. we ch ~P<!1 " FO o
solution of the heat equation for ¢: . Fhoose the source

=1+ \/;T .~ x?/ant
¥ ;¢ : (4.40)

From (4.6}, the corresponding solution for ¢ is

o= — rq, _ N \/a/l o T
. . 4,
q ! I + \/([/I o 7\2/41’! ( 4! )

Sinc s a d func i
. i;g; lllas a 48 function behavior as 1—0. this is a little hard to interpret a
: s
. Fil 13 2valL.lE‘ plobie-n? on ¢. However, for any 7 >0 it has the form Izhown
g- 4.2, with a positive and negative phase. and we may take the profile

atany t=v1,>0 to be the initiz ;
solutions. 0 ¢ nitial profile. It should be typical of all ¥ wave

(t/28)72

<Folog /g

f

-— x(2A1)7V2
Rologt/ig

Fig. 4.2, N wave solution of Burgers® equation
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The area under the positive phase of the profile 18

e
4]

jjcca'xz —2oflogg]
]

=2V10g(]+\/?). {4.42:

The magnitude of the area of the negative phase is the same. Thus =
marked contrast with the previous case, the area of the positive phas:
tends to zero as r—oc. If the value of (4.42) at the initial time ¢, is denotei
by A, we may introduce a Reynolds number

A d -
=2 =] 1+\/— . 443
RO 2V Og( !O ) (
But as time goes on the effective Reynolds number will be
| = a -
= — =] 1 \ﬂ . 4.44
R(1t) ZVJ;) cdx og( +V- ) (4.44)

and this tends to zero as 1 —»oc. If Rg>> 1, we may expect the “inviscid
theory” of (4.4)-(4.5) to be a good approximation for some time, but o
(—oc, R(1—0 and the diffusion term will eventually become dominart.
This is different from the previous example in which the effective Reynol.is
number defined in the same way remains equal to the initial Reynolds
number. We now verify the details.

In terms of R, and ¢y, a= ro(eRU— 1)?; hence (4.41) may be written

X2/ Am
=211+ L £ (4.45)
! [0 C’RO“ 1
For Ry>» ! (corresponding to 7,<€a), it may be approximated by
=1
C~£{l+ L e(xz/ZA{])RO} (4»1‘ )
! V f

for all x and 7. Now for fixed 7 and Ry—c.

s

— V241 <x<V2Ar,

o~

x| > ViAr
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This is exactly the inviscid solution. Howeve '

' , 1 . r. for any fixed g and r w
directly from (4.41) [and it may be verified also from (4.46)] that T

O~ f.\: (_[ e*lz,"h’l

f as r— o0,

(4.47)
This is the dipole solution of the heat equation. The diffusion dominates

:l}ietnt(;:i]@hnf‘earlterm l; tlf]edﬁnal decay. It should be remembered, though
a s nnal period of decay is for extremely | i e
; v large times; the inviscic
theory is adequate for most of the interesting range inviscid

4.6 Periodic Wave

p Q i(. SO]U[[O“ ma k)e I) < l) [ak]“g l I a dlsll![)illl no
A CT'1 d y obt Illled )’ Q
heat sources ;paced da d]h [al]Ce }\ Llpd] t. I ]le” (r ’

o0 ; 2
¢=(4avt) '"? _y—nd)
' 23@ P 4pr ’ (4.48)

% {_(xfn)\)/f} exp{ —(xfn)\)z/élm}

C= —21r—=

iexp{ _(.r\‘*m\)z/4yt} - (499)

Wh 2 R . .
Wmeg;\m/i:;tre» I. the eﬁ(p(;nentlal with the minimum value of (x - nA)? /vt
. over all the others. Theref ith i
i / ore the term with »n=
minate for (m - HA<x <(m+ A, and (4.49) is approximately ol

X — mA 1 R
CN#‘ (.’?*5))\<X<(m+%))\_

This is - , i ) )
andlsclsj:nfamfm)th wa}\ve with a periodic set of shocks a distance A apart

§ — , , 3 \
(2-56)_ ps from /2t to Af21 at each shock. The result agrees with

To - the fi "
of the SOSIIUS} Ih%hfmal dega.}. A?/4pi< 1, we may use an alternative form
solution. lhe expression (4.48) is periodic in x, and in the interval

~A2< v <Ay,

¢—6(x) as 1—0.
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‘The initial condition can be expanded in a Fourier series as

d(y)= % { 1 +22 CoszT;iu
. 1

and the corresponding solution of the heat equation for ¢ is

1 - A7 n? 2mnax o
=y l+22lexp(* 2 vz‘)cosT . (4.5

It may be verified directly that this is the Fourier series of (4.48). In t:+
form

S - 47'n? . 2mnx
;\ ZITCXP(*TVI)SH] A

vy 1
o= ¥ , (4.5

¥ S 4r°n® . 2wnx
1+221exp(~ 2 vt |cos —

When »7/A*> 1, the term with n=1 dominates the series and we have

(4.°2)

C~

A 2 A

Bar iyt \ . 2mx

exp| — — sin =
This is a solution of ¢,=wc,,. and again the diffusion dominates in ihe
ultimale decay.

4.7 Confluence of Shocks

When a shock overtakes another shock, they merge into a single sl ck
of increased strength as described for the inviscid solution {r—0) on 1 f
curve in Fig 2.16. It is possible to give a simple solution of Burs«1®
equation that describes this process for arbitrary ».

The solution for a single shock is given in (4.23) and the Correspwi‘lJ'
ing expression for ¢ may be written n the form

. CJ'Y CJ‘T [

e=fi+f, f=exp ‘— 5 T b (4
In (4.23), the parameters b,. b, which locate the imtal position of 13“3{
(\

shock are taken to be zero. The expressions f,. f, are clearly solution-
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the heat equation (4.7). The expression for ¢ is

) rg, o fitef,

= - = c

For ¢, >c). f]. dominales as x—+ ¢ and we have c—c¢,: f, dominates as
x—— % 0 give c—c,. The center of the shock 1s where £, =, that is
x= e+ oy o

Now since any £ 1s a solution of the heat equation. we mayv clearly
add fgrther terms in (4.53} and generate more general solutions of‘Bureer;’
equation. Such solutions represent interacting shocks. We consider the case

30,

=/ +H+1 by=h,=0, by= —5
1'

—
_.b
h
N
~—

o= afitahtel
[ETEy S

If v is reasonably small. we can recognize shock transitions between the
states ¢, ¢,. ¢y by noting in which regions the corresponding / dominates.
At1=0, f; dommates in 0<x, f, in — 1< x <0, finx< — I. Thus we have
a shock transition from ¢, to ¢, centered at x=0. and one from ¢, to ¢
centered at x=—1. [For 7 >0. the regions in which ¢ =¢,. ¢ =c,. c~c cari
be found in the same way and the result is shown in lFiﬁ 43. For Larlv
times the transition from ¢, to ¢, occurs where #, = f, on ) )

X=—an (4.56)

Fig. 4.3, Merging shocks.
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the transition from ¢, to ¢ occurs for fr=fon

eyt ey

2

X=

—1. (457

Since (c,+ c3) > 3(c, +¢;). the second shock overtakes the first at ine
point (x*. r*) determined by (4.56) and (4.57). At this point

h =f,=f-

For ¢>*. there is no longer any region where f, dominates and rhe
continuing solution describes a single shock transition between ¢ and .,
moving with velocity (¢, +¢;) on the path

oy -,
x—x*¥= 5 (1—1%) (4.54)

determined by f, = f5.
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