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ABSTRACT
A simple, physical derivation of the continuity equation for wave action is obtained from Hamilton’s
principle and an averaged Lagrangian density. As an example we briefly discuss electrostatic plasma
waves, but the primary purpose of the paper is to derive the form of the wave action density for galactic
spiral waves in a manner that is both simpler and more easily generalized than that of Shu. The wave
action density is expressed in terms of a linear response function that may either be taken from previous
work, or found from the single-particle averaged Lagrangian.

I. INTRODUCTION

Toomre (1969) has shown that the higher-order WKB result of Shu (1970) for the
propagation of the amplitude of a galactic spiral may be interpreted as a continuity
equation for wave action density. This continuity equation for wave action is important
in that it gives the variation of wave amplitude with radius, in fact predicting a rapid
rise near the inner Lindblad resonance, a prediction which appears to be qualitatively
correct (Mark 1971). The fact that waves originating in the outer parts of the galaxy
can produce a large disturbance in the inner parts may also have a bearing on the prob-
lem of the origin and maintenance of spiral waves. The existence of an action-conserva-

. tion result is a property shared with many other waves in physics, yet Shu’s derivation

required rather formidable analysis and did not bring out the general nature of the result,
being derived specifically for a Schwarzschild velocity distribution. The primary purpose
of this paper is to confirm a suggestion by Lin (1970a) (see also Toomre 1969) that this
continuity equation might follow naturally from the general method of Whitham (1965),
based on the use of an averaged Lagrangian.

In § IT we review the Whitham method for linear waves. In § IIT we apply the method
to electrostatic plasma waves in a medium with known dielectric constant, and thereby
obtain a generalization of the well-known principle of energy conservation for plasma
waves (Stix 1962). In § IV a closely analogous method is applied to the case of density
waves on an infinitely thin disk. In an Appendix we also use a more explicit method to
derive a specific form for the “dielectric constant” of the disk. We show that this form
agrees with that of Lin, Yuan; and Shu: (1969).

II. REVIEW OF SMALL-AMPLITUDE AVERAGED LAGRANGIAN THEORY

) The wave equation for small disturbances in a nondissipative system can usually be
derived from Hamilton’s principle

oSS Padty =0, (1)

where & is the Lagrangian density for linear waves, and is quadratic in the wave
amplitude. Whitham (1965) has observed that, in cases where the perturbation is about
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a background state that is slowly varying compared with the period and wavelength of
the wave (WKB approximation), equation (1) may be replaced by an asymptotically
equivalent equation (this is actually true to all orders, Dewar 1970)

o S S Bxdt(R) = 0, (2)

where (L2) is the averaged Lagrangian denSIty The averagmg may equivalently be re-
garded as local space, time, or phase averaging. Representing the wave function ¥ (say)
in terms of the WKB Ansatz

¥ = g cosf, 3)

the averaged Lagrangian quite generally assumes the form (to lowest order in the WKB
expansion)
(%) = $D(k, w)a?, (4)
where D(k, ) is a function of the wave vector and frequency, which are defined by
k=Vl, w=-—0 = —da8/dt. (5)

The amplitude @ and the phase 6 may be varied independently, and the corresponding
Euler equations are

0(R)/0a = 0 ‘ (6)
and 0 o) , &) _
5 a0, TV ove ™

Substitution of equation (4) in equation (6) leads to the dispersion relation
D(k,w) =0, whichimplies (®)=0. (8)
Using equations (5) and (9) and defining the action density IV by

|_S§E_ 9)
we may write equation (7) as a continuity equation:
S+ V- = 0, (10)
where /s
d kO _
Y= T 3D/ow ~ ok (11)

is the group velocity of the wave. Only in the case of a time-independent background
state does the canonical wave energy density (Dewar 1970),

E= 3(&) (6(82)) (12)

obey a continuity equation also, because w is constant on a characteristic. This time-

-independent case occurs frequently, however, and the galactic-spiral problem is a case

in point. When E is negative, we speak of a negative energy wave, and this is found to
have profound implications for linear stability (when dissipation is included) and also
for nonlinear stability when coupling to other waves is considered. These considerations
are outside the scope of the present paper, however.
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III. ELECTROSTATIC PLASMA WAVES

Regarding the plasma simply as a dispersive, linear dielectric, we may write the
perturbed charge density p as a linear functional of the electric potential ¢:

po(x,t) = S S Bxdt[x — x',t — t; (x+ 2)/2, ¢ + )/2]e(x', '), (13)

where the linear response kernel II is the “dielectric polarizability.” If II(Ax, At x,1)is
an even function of Ax and Af (i.e., unchanged by interchange of x, ¢ with x’ t’), then
Poisson’s equation may be derived from the Lagrangian

_ _ s, (v¢)
= — 22+ (14)

and if II is a slowly varying function of x and Z, we may use the averaged Lagrangian
method outlined in the previous section.
Defining the frequency- and wavelength-dependent dielectric constant by

ek, w; x,0) = 1 — 2T EI(k, w5 5,0 (15)

Ok, w; x,8) = S S BAxdATI(Ax, AL; x, t) exp [—i(k-Ax — wA)],  (16)

we find the averaged Lagrangian to be

() = e(k w; %, 1) , (17)

" with a, k, and w being defined by equations (3) and (5) (with ¥ = ¢). Thus there is an

action-density continuity equation for electrostatic plasma waves, and the action density

is given by
] _ {(ve)
N = 8r

This generalizes the energy-conservation principle (Stix 1962) to cases where the back-
ground plasma is time dependent. The requirement that II(A x, A¢) be an even function
of Ax and Af implies that II(%, ) is real, thus eliminating the possibility of damping or
growth by other than purely convective means. Thus such phenomena as Landau
damping are outside the scope of the averaged Lagrangian method.

(18)

IV. GALACTIC SPIRAL WAVES

Let p1 and Vi be respectively the perturbations in mass density and gravitational
potential in a galaxy. Then, assuming a linear response formula analogous to equatlon
(13) to apply, the wave Lagranglan density is

pVi  (VV)?
2 8rG ’

where G is the gravitational constant. We now make the approximation of an infinitely
thin galaxy, and adopt cylindrical polar coordinates (7, 6, z) with origin at the galactic
center, axis perpendicular to the plane. Adapting equation (3) to geometry, and taking
account of Laplace’s equation off the plane (Shu 1970), we may write

= A(r) cos [®(r, £) + mb] exp (— |kz|),
0P

Lol
k(r1 t) = 797 ’ w(r, ) = — 79'[ . (20)

82 = - (19)
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The “number of arms” m must be an integer to ensure single-valueness of V;. By the
assumption of linear response, p; must be given by

pL = 6(Z)H(k7 w; m, 1’) Vi, (21)
where the frequency- and wave-vector-dependent linear response coefficient I will be

discussed later. Including an integration over 2 in the averaging process { ), we find an
averaged Lagrangian surface density

_ _(wV)») _
(82> - 8rG é(k, w; f) 3 (22)
(V) _ [k] 42
87G 8xG ’ (23)
ek, w;m, 7) = 1+ 2,’,‘;? T0(k, w3 m, 7). (24)
In this case the averaged Hamilton’s principle, equation (2), may be written
8 S S 2wrdrdi) = 0. (25)
Varying A still leads to equation (8), so that the dispersion relation is just
eb,w) =0.
Varying ® leads to the action-conservation equation
&+ 2 ) = (26)
Q
N = 2wa—§%, 27)
_ _ 0¢/dk _ dw
T 9¢/dw Ok’ (28)

the action density now being defined so that Ndr is the total wave action between » and
r + dr.

The linear response function II(k, w) has been obtained by Lin ef al. (1969), who used
the epicyclic approximation and a Schwarzschild distribution function

H(k, w) k [a*%,(x) 1+—U:§v(y) (xa)] (29)
vs“}ﬁg (30)

where «(r) and Q(r) are respectively the epicyclic and orbital frequencies of the stellar
motions, ¢, and g are the surface mass density of stars and gas, respectively, and
(x) and §,@(x,) are reduction factors modifying the cold-disk results to take into
account random motions, x# and x, being- defined by

£ = B0/ | BRE
Bl (32)

where ((,2)ay) V2 and ¢, are the rms radial velocity and equivalent sound speed at radius.
With g9 = 0, equations (27) and (29) lead to a wave-action density agreeing with that
obtained by Toomre (1969).
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Alternatively we may derive the averaged Lagrangian from first principles, starting
(in the case of a purely stellar disk) from the Lagrangian density of Low (1958) (see also
Dewar 1972; Galloway and Kim 1971) for a collisionless plasma:

@) = S PG, ;)L — T (33)

where L, is that part of the single-particle Lagrangian quadratic in 4, time-averaged
over part of an unperturbed orbit. In the Appendix it is shown that

R4 7 .2(ka)

Ly = 4 =, (0 — mQ+ nk)? — «*’ (34)
where @ is the amplitude of the radial excursions, defined by
2
K2 = 12 + (fxﬁ 792 . | (35)

Comparing equations (33) and (34) with equations (22)-(24), we find

For a Schwarzschild distribution
= ___Kﬂ'f_ —y272 2
- f(a) 47rﬂ<vr2>av exp ( Ka /2(1),' >3V) (37)
we find Kalnajs’s (1965) form of the response:
2k? a* e 1 (%)

x = o

Ik, w) = (38)

Lin, Yuan, and Shu (1969) have shown this form to be equivalent to theirs by use of the
Mittag-Leffler theorem in their corrected Appendix C. We may also prove equivalence

" by summing the series before doing the integration over velocities, using a formula used

by Coppi, Rosenbluth, and Sudan (1969):
J2(z) =1 —

>

W — v sin ( ») J,(2)J () - (39)

We obtain a new form for the response function, valid for an arbitrary distribution
function:

Ik, @) = SO 2 17, keI (ka)) (40)

k% sin (1rv)
Using the representation (Erdelyi et al. 1954)

x/2

T(2)J_(z) = % S To(25 cos 0) cos (2)d8 (a1)

and the Schwarzschild distribution equation (37), we may easily prove the equivalence
of equations (38) and (29).
V. DISCUSSION

We have shown that the action-conservation equation can be derived from a general
physical principle without going through a lengthy higher-order WKB analysis. This
automatically generalizes Shu’s result to include arbitrary background stellar distribu-
tion functions, and also the response of the gas. Generalization to finite disk thickness
should also be a fairly trivial matter.
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Simple though the method is, it has the limitation of not handling dissipation pro-
cesses. Away from resonances one may generalize the action conservation equation (10)
in an ad hoc manner by replacing 0 on the right-hand side with the term 24N, where v
is the imaginary part of the frequency as derived from the local dispersion relation with
real k. This prescription is no doubt valid when v/w is small, but it breaks down near
resonances (Mark 1971).

As it has been shown (Toomre 1969; Shu 1970) that the group velocity of tightly
wound spirals is directed toward the center of the galaxy, it appears that these waves
must originate in the outer parts of the galaxy, in the neighborhood of the corotation
radius. Lin (1970b) has suggested that ‘“‘structural irregularities” due to Jeans instability
may excite the waves at this radius. Thus it would appear desirable to have a fuller
understanding of propagation in this region than we have at present. In the presence of
only mild instability it may transpire that the unstable waves connect coherently with
the spiral waves. As particle resonance occurs in this neighborhood (although its effect
cancels in the lowest order response), the averaged Lagrangian method is probably not
suitable for this part of the problem.

The author takes pleasure in acknowledging Professor C. C. Lin for suggesting the
problem, and for some stimulating conversations. Also, the encouragement and help of
Professor Russell Kulsrud are gratefully acknowledged, as well as discussions with Drs.
Frank Shu and James Mark. Thanks are also due to Dr. G. Contopoulos for reading an
earlier version of this manuscript.

This work was initiated under the auspices of the Air Force Office of Scientific Re-
search, contract F44620-70-C-0033, and completed with the aid of a Fellowshlp from
the Center for Theoretical Physics, University of Maryland.

APPENDIX

We wish to find the time average of the single-particle Lagrangian over several wave,
epicyclic, and rotation periods. We shall work within the epicyclic approximation, so
we let (7, ) be the position of the guiding center in its circular motion around the
galactic center. Added to these coordinates we have the epicyclic motion (£, #/r), and
the perturbation due to the wave (r, s1/7). Consistently with the tight-winding (WKB)
approximation, we take %, £ and 7 to be O(1), » to be O(¢™!), where ¢ is the smallness
parameter. We do not explicitly order the wave amplitude except to say that it is small
compared with a wavelength or epicyclic radius, but not as small as O(e), since we would
otherwise have to correct the epicyclic approximation. One does not anticipate that such
corrections would produce any qualitative change in the results, except perhaps near
the corotation radius, where the method is not suitable anyway.

Expanding the single-particle Lagrangian in powers of € up to O(e?), we have

L= EL + 0(&) ,

n==2

L, = 1rQ2 — V(r),
Q=4, (A1)
Lo = 3(8 + Q% + 408 + #%) — 3V (e, (A2)

OVilr + &6 + /1)
1 ag .

= 302 + Pr? + 40086 + si2) — LV () — r (A3)
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We have omitted L; and L_, as they are linear in one or other of the perturbations, and
average to zero (we define £, 7, r; and s, to average to zero). The dots denote convective
derivatives along the guiding center orbits.

- We take as epicyclic trial functions

§=asin¥, n5n=~bcosV¥, (A4)

and define the epicyclic frequency « by the derivative of the phase function ¥ (which

will later be varied), .
k= Vv, (AS)

Inserting equation (A4) into equation (20), we find

Vi(r + £,0+ /") = Re §4 exp [i(® + m6)] > Ju(ka)ens} + 0(@) . (A6)

n=—cn

For consistency with equation (A6) we must adopt as trial functions

(o]

rn = Re gexp [i(® + mh)] D rlne‘”‘l'z ,

51 = Re gexp [i(® + mb)] > slnef"‘l’i . (A7)
Averaging over ®, 6, and ¥ we find
S Jo*(ka)

Fo_ 1,202 _ 1,202 . o2} — 112 42
L 279 V(f)+4a (K KO) 4kAn=z_:m (w__ mﬂ+1’l/K)2'—'K02,

k' = V"(r) + 30(r), (A8)

where we have eliminated b, 71, and s1, by use of their respective Lagrange equations.
Variation of @ leads to the equation for the epicyclic frequency

K = ke + 0(4?) . (A9)

The nonlinear correction to the epicyclic frequency is not needed here, so we may take
k = ko and obtain equation (34).
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