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ABSTRACT

Velocities of 111 stars in the globular cluster M3 have been measured using the Palomar
cross-correlation radial-velocity spectrometer. Typical measuring accuracy is ~1 kms~'. No
velocity variation in nonpulsating stars is found; the implication that the incidence of binarism
with separations in the range 0.3-10 AU is very much smaller than in the population I field
is clear. “Thermal equilibrium” models of the King-Mitchie type with several components
and anisotropic velocity distributions are constructed and found to represent the cluster
dynamics and observed light distribution adequately. The existence of two very-high-velocity
objects and some difficulty with the Roche limit indicate that the thermal equilibrium models
do not describe the high-energy end of the distribution function adequately. There is no
evidence for any very heavy remnants, and no mass that is not accounted for by evolution
of the adopted mass function (which is steeper than the solar neighborhood one).

I. INTRODUCTION

The striking visual appearance of globular star clusters
naturally arouses much interest in the dynamical state
of these objects, the modeling of which has been a fa-
vorite pastime for theorists for many years. Since the
subject passed out of the realm of pure speculation at the
end of the last century with the discussion of star counts
in clusters by Pickering (1897), many authors have
contributed to the problem and not a few to its solution.
Among them we may mention von Zeipel (1908),
Plummer, (1911, 1915), Jeans (1916), Spitzer (1940)
and his collaborators (Spitzer and Hirm 1958; Ostriker,
Spitzer, and Chevalier 1972), Camm (1952), Woolley
(1954) and his cellaborators (Woolley and Robertson
1956; Woolley and Dickens 1961, 1962), von Hoerner
(1957), Oort and van Herk (1959), King (1962, 1966),
Mitchie (1963), Mitchie and Bodenheimer (1963),
Lohmann (1963, 1975), Petersen and King (1975), and
Da Costa and Freeman (1976).

The first models with a realistic distribution function
were probably those of King (1966), who summarizes
and gives references to previous work. King’s models use
only one component and have isotropic velocity distri-
butions, but the generalizations to models with stars of
different masses and with possible anisotropy (Mitchie
1963) is in principle straightforward. The work of Da
Costa and Freeman (1976) on M3, which we also study
in this paper, is probably the most careful modern
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treatment using King’s methods, although again only
isotropic distribution functions are considered.

A major stumbling block to all such efforts has been
the absence of dynamical data: The observational inputs
to all the discussions mentioned have consisted, at most,
of star counts and luminosity distributions. Although in
some cases (Oort and van Herk 1959; Lohmann 1963,
1975; Petersen and King 1975) deductions have been
made as to the velocity dispersions within individual
globular clusters, actual measurements of the internal
kinematics of clusters have been singularly lacking. The
reason is that the dispersions in both the proper motions
and in the radial velocities of individual member stars
have been too small to measure reliably. Proper motions,
even in favorable cases, can only amount to a few ten-
thousandths of a second of arc per annum, while ra-
dial-velocity measurements of the necessary accuracy
have not been possible for stars of such faint apparent
magnitudes as those of even the brightest members of
globular clusters until very recently. Recently Cudworth
(1976) has succeeded in treating globular cluster proper
motions in a semistatistical fashion. Popper (1947) and
Joy (1949), who were among the first to obtain spec-
trograms of globular-cluster stars, specifically stated that
the radial velocities measured from their plates were not
good enough to permit discussion of the velocity dis-
persions of the clusters concerned. Deliberate efforts
have been made to obtain the velocity dispersions in M92
(Wilson and Coffeen 1954), 47 Tuc (Feast and Thack-
eray 1960), and w Cen (Harding 1965), but in each the
observed dispersion was so close to the spread expected
from errors of measurement alone that an upper limit to
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the true dispersion was the only reliable result. Harding
(1965) did, however, show that the mean velocities of two
groups of stars, chosen on opposite edges of w Cen in
accordance with a preconceived hypothesis of rotation,
differed significantly from one another. Illingworth
(1976) has used spectrograms of the integrated light of
the cores of a number of globular clusters (not including
M3) to obtain characteristic central velocity dispersions
from the smearing of the spectra, and very recently Da
Costa et al. (1977) have obtained spectra of 11 stars in
the southern cluster NGC 6397 to sufficient accuracy
to derive a dispersion.

A careful dynamical study of a cluster clearly requires
the determination of accurate velocities for many stars
at many radii, for the core to the far outer reaches of the
cluster. It was primarily for that task that the Palomar
radial-velocity spectrometer (Griffin and Gunn 1974)
was constructed. A single observation with that instru-
ment is normally accurate to about 1 kms™!, a quantity
which is small in relation to the expected velocity dis-
persions in globular clusters; in rich clusters we can
readily measure ~100 stars within practicable total
observing times. We are, therefore, for the first time in
a position to discuss not only the velocity dispersion but
also the dynamical state of a globular cluster on the basis
of reliable radial velocities of a substantial number of
individual stars.

During the last seven years, the Palomar spectrometer
has been used to determine velocities in several clusters,
including M3, for which we have results on 111 stars;
those are the data which we wish to discuss here. Rather
more data exist for M13, which was the cluster we
studied first, but owing to its rotation (Babcock 1971),
it is more difficult to discuss and we defer it to a later
paper in this series. Some few tens of velocities exist for
each of the clusters M5, M10, M22, and M92, and a few
in M15. These objects will also be discussed in later pa-
pers.

The data on M3 are presented and discussed in Sec.
IT along with a discussion of the errors of measurement
and an additional, apparently astrophysical, random
component that may be due to atmospheric motions in
the high-luminosity giants whose velocities we obtain.
We also present the evidence for a remarkable absence
of binarism among globular-cluster stars.

In Sec. III the astrophysical input parameters are
discussed, including the mass-luminosity relationship,
the mass function, and the cluster distance modulus and
age. The models, which include many stellar masses and
anisotropy, are discussed in Sec. IV. Section V is partly
pedagogical, and discusses a series of three-component
models that illustrate the effects of varying the various
mass and anisotropy parameters one has at one’s disposal
to fit the observational data.

Using the velocity data is not completely straight-
forward; an approximate maximum-likelihood technique
for fitting the models to the observed velocities is dis-
cussed in Sec. VI, as is the adopted technique for fitting

to the observed light distribution. A new test for assessing
the goodness of fit for the velocities, which is applicable
in general to testing for homogeneity of variance of
nearly normal populations, is described.

Relaxation phenomena are explored in Sec. VII; it is
there shown that our assumption of a mass-independent
anisotropy radius is at least reasonable and that the as-
sumption of thermal equilibrium is somewhat ques-
tionable. The existence of two very-high-velocity stars
in M3 is discussed, and their origin and fate consid-
ered.

Section VIII deals with the model fit to M3 and dis-
cusses some of the problems with which one must con-
tend and the tradeoffs which can be made. Difficulties
with the mass-to-light ratio, with the necessity for in-
troducing velocity anisotropy, and with the inferred
maximum extent of the cluster are discussed.

Section XI is a summary and general discussion.

II. OBSERVATIONS

Stars in M3 were observed in the course of observing
runs on the Hale 5-m telescope in the years 1972-1976.
Integration times rarely exceeded 15-20 min, and the
choice of stars for measurement was correspondingly
restricted to those brighter than about ¥ = 14.0 mag.
Most stars brighter than 14 mag in the vicinity of the
cluster were observed; the total number was 122, of
which 111 proved to have radial velocities sufficiently
close to the mean velocity of the cluster to carry a strong
implication of membership, the mean velocity being high
enough (—147 kms™!) to make contamination by field
stars very unlikely. It is presumed that red stars [(B —
V) > 0.6 mag] that gave no result when we observed
them have velocities lying outside the range of our scan
and are therefore nonmembers; stars of unknown color
could also fail to give a result through bemg of too early
spectral types.

Photoelectric velocities have to be measured differ-
entially against a standard. The standard needs to be a
star in the first instance; an emission source can also be
used as an intermediate standard in a number of differ-
ent ways, one of which is outlined in our earlier paper
(Griffin and Gunn 1974). For several reasons the stan-
dard star should have a radial velocny close to that of the
cluster, and should be near to it in the sky; it also ought
to be bright enough to give a very good radial-velocity
trace in a short integration time, and be of such a spectral
type as to give a deep “dip” on the trace to facilitate
accurate measurement. The choice of standard stars is
greatly restricted by the high velocities of many globular
clusters (including M3), and a degree of compromise
among the various criteria is almost inevitable. The star
selected as a standard for M3 is HD 126778; its angular
distance from the cluster is about 10°, and its magnitude
and spectral type are 8.18 mag and KO II1, respectively
(Roman 1955). The radial velocity of the standard star,
discovered to be large by Heard (1956), who obtained
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a value of —130.1 kms™!, has been kept under review
during the period covered by the M3 observations by
occasional photoelectric observations both with the
Palomar instrument itself and with the original Cam-
bridge spectrometer (Griffin 1967). In these observations
its velocity has been compared directly with that of the
primary photoelectric reference star 41 Com (Griffin
1967); the results are given in Table I. We do not con-
sider that there is any evidence for variation in the ve-
locity of HD 126778—a conclusion reinforced by the
mutual agreement of the zero points derived from the
star and from helium lines (Griffin and Gunn 1974) in
different observing seasons—and in this respect we have
been favored by fortune, as we had little prior evidence
that the velocity of our reference star was constant. There
is no significant difference between the velocities ob-
tained with the two telescopes either, and we adopt for
the velocity of HD 126778 a straight mean of the mea-
surements in Table I, viz. —137.3 kms™!, the standard
error of the mean being 0.25 kms~!. [The large velocity
difference to be spanned between 41 Com and HD
126778 involves the possibility of additional nonrandom
errors due to “mismatch” (Griffin 1967), but they are
not expected to be as large as 0.25 kms~! in the present
case.] On this basis the mean velocity of M3 stars is
—146.9 kms~! and, for convenience, we refer all veloc-
ities in M3 to this cluster-mean velocity rather than to
the velocity of the sun.

In Table II we present our observational results on
M3, together with other relevant data on the stars con-
cerned. The first column shows the number of the star
as designated by von Zeipel (1908). To assist in cross
identifying stars that later authors have rechristened, we
give in column 2 the numbers given by Barnard (1931)
in his astrometric study, made with a filar micrometer,
of 147 stars in the central region of the cluster and in
column 3 the quadrant, and also letter, designations of
Sandage (1953). In the fourth and fifth columns are the
mp, magnitudes and the color index. Photoelectric
magnitudes from Baum (1952), distinguished in the
table by asterisks, are quoted where available; failing
them, photographic magnitudes are given, and, in their
absence—which is almost inevitable over the whole of
the dense central region—Barnard’s (1931) eye esti-
mates are used. In most cases where a comparison is
possible, Barnard’s magnitudes are in good accord with
modern determinations. The source of every magnitude
is given; the key to the references is at the end of the
table. Columns 6-8 give the appropriate coordinates and
the radial separation of the star in seconds of arc from
the cluster center, which Barnard took to be 13 arcsec
south of von Zeipel 807. He gave this star’s position as
13h37m35%13, +28°53708.0 (1900). Von Zeipel (1908)
found the position of the same star to be 13h37m35527,
+28°53708.2. Barnard’s coordinates are quoted for the
stars in Barnard’s catalog; for the other stars we have
derived the coordinates from von Zeipel’s right ascen-
sions and declinations. Columns 9 and 10 show the dates

TABLE I. Photoelectric radial velocities of HD 126778.
Velocity
Date (kms™!) Telescope?
14.90 July 1972 —-137.7 36
18.97 May 1973 -1379 36
11.15 June —136.9 200
31.21 May 1974 —137.5 200
7.15 Mar 1975 —135.8 36
24.16 May —138.0 200
7.95 June 1976 —137.4: 36
28.90 July —-136.9 36
30.23 Jan 1977 —137.7 36
16.02 Apr —137.7 36

a36—Cambridge 0.92-m telescope (Griffin 1967); 200—Hale Tele-
scope (Griffin and Gunn 1974).

and results of our radial-velocity measurements; the
internal standard error in column 11 of each velocity has
been computed from the statistics of the photon counts
in individual “bins” of the trace in the manner described
in our first paper (Griffin and Gunn 1974).

In column 12 is the mean of the observed radial ve-
locity measurements for each star, and in columns 13 and
14 are the values of x2 and the number of degrees of
freedom associated with the stars that have more than
one determination, using the computed standard error
for each measurement.

The true errors of the observations may be assessed
by intercomparing the results for those stars observed
more than once. We reject immediately from this dis-
cussion two stars (vZ 318 and 803) that have long been
known to be variable in light (Bailey 1913, Barnard
1906) and are already known to exhibit large variations
in radial velocity (Joy 1940, 1949). They are a long-
period variable and a W Virginis star, respectively. These
are the only stars that show unambiguous evidence for
velocity variation, and that variation comes about almost
certainly as the result of pulsation.

With the exclusion of these two, the cumulative x 2 is
86.2 for 43 degrees of freedom. The expected value is 43,
of course, and the deviation is significant at the 0.01%
level. The implication is that we have underestimated our
errors or that there are larger systematic errors than we
have thought. Other circumstances, however, make both
these conclusions seem unlikely. In our study of the
Hyades and of M67 we have attempted to observe a
group of stars to high accuracy, of order 300 ms—!. We
have had no difficulty maintaining this sort of stability
from run to run, and no special precautions have been
taken that we do not routinely take for the globular
cluster observations as well; in addition, the predicted
errors seem to represent the velocity spread quite well.
It is also striking that the velocity spread in the M3 stars
seems not to depend very much on the calculated er-
rors—i.e., the values of x2 are largest in those cases in
which the individual measurements are quite good for-
mally. This situation suggests that an additive error is
the culprit, and we suggest for the above-mentioned
reasons that its origin is not instrumental but astro-
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TABLE Il.  Photoelectric radial-velocity observations of individual stars in M3.

FT979AT. - - [ 2847 T 752G

Star identification Magnitude From cluster center Radial-velocity observations Mean X- v
Von Z B S m‘pv C.L X y r Date T.v. s.e. r.v.
km/s  km/s km/s
98 -1025 +18 1025 1974 June 3.27 No result —_
115 -903 +227 931 1974 June 1.21 +0, 56 0.83 +1.35 1.63 1
1976 July 7.23 +1.98 0.74
129* 12.66* 0.47* -803 +310 861 1974 June 1.20 No result —
164 -549 -19 549 1974 June 1.20 +5, 69 0.85 +5.69
177 v-25 13.62* 1.06* -469 =71 473 1974 June 1.19 -0.57 0.84 -0.57
192 v-27 14.03 0.88 -371 -16 371 1974 June 1.18 -1.01 1.17 -1.01
194 AE 13.87* 0.98* -361 +209 417 1974 June 1.22 -0.17 1.02 -0.17
205 II1-28 12.74 1.25 -342 +144 371 1972 May 23.20 -2,23 0.77 -3.98 12.87 1
1976 July 7.19 -6.59 0.94
206 9.86* 1.09* -338 +282 440 1974 June 1.21 No result -—
238 1 AA 12.63* 1.52% -266 +46 270 1972 May 23.19 -2.79 0.79 -2.40 0.46 1
1974 June 3.27 -2.05 0.75
250 S 14.10 0.90 -245 -195 313 1973 June 9.26 -6.70 1.15 -6.70
263 3 U 13.57* 1.05* =227 -97 247 1973 June 9.25 -2.13 0.79 -2.13
265 Iv-101 13,31* 1.35* -221 -202 300 1973 June 9.27 +1.70 1.07 +1.70
281 AH 13.79 1.01 -202 +200° 284 1972 May 23.21 -2.13 0.84 -2.13
287 -191 -846 867 1974 June 3.20 +2.51 1.06 +2.90 0.21 1
1976 July 8.26 +3,12 0.80
291* 7 13.2 -186 -1 186 1974 June 1.17 -4.04 1.45 -4.04
297 12, 85* 1.40* -181 ~-405 444 1973 June 9.27 -3.93 0.82 -3.09 2.19 1
1976 July 7.22 -2.17 0.86
309 9 III-64 13.16 1.21 -164 +20 165 1972 May 23.19 +4.66 0.87 +4.66
318* 11 var -158 +20 159 1972 May 23.18 -5.52 0.68 var
1973 Jan 15.52 +1.71 0.94
1974 May 29.17 -5.89 0.71
June 1.16 -6.94 0.84
3.17 -3.03 0.65
1975 May 24.17 -6.68 0.85
1976 July 7.20 -7.97 0.88
333 -147 -714 729 1974 June 3.21 No result —_
334 15 v-77 13.27 1.13 -148 -60 160 1972 May 23.17 +1.10 0.86 +1,10
345* 18 v-82 13.51 1.26 -137 -118 181 1972 May 23.17 No result —_—
387 30 13.8 -109 +67 128 1974 June 1.24 -4.36 1.32 -4,36
398 31 1-77 13.36 1.15 -103 +152 184 1972 May 23.22 +8.74 0.92 +7.52 2.82 1
1976 July 8.24 +6.79 0.71
417 32 13.6 ~-92 -32 97 1973 June 10.18 +7.26 1.23 +7.26
420%* 33 13.8 -90 -1 90 1974 June 3.26 +8.07 1.19 +6. 48 3.26 1
1975 May 24.31 +5.17 1.08
463 36 I11-80 13.28 1.06 -74 +121 142 1972 May 23.22 -4.85 0.86 -4.85
490 39 12.8 -66 -101 120 1972 May 23.16 -4.20 0.53 -4.63 1.95 1
1973 Jan 14.57 -5.46 0.73
508 41 13.0 -61 +15 63 1973 Jan 14.54 -1.69 0.91 -1.44 0.10 1
1974 June 3.25 -1.34 0.59
509 42 13.3 ~60 +21 64 1973 Jan 14.54 -6.77 1.25 -6.77
528 44 13.4 -55 -72 91 1973 Jan 14.57 -10.41 1.27 -9.70 0.53 1
1975 May 24.27 -9.21 1.05
545 45 12.8 -51 +82 97 1972 May 22.17 +3. 32 0.82 +3.79 0.80 1
1976 July 8.24 +4, 47 0.99
549 46 12.8 -50 +47 69 1972 May 24.24 ~-4.01 0.95 -4.01
555 47 13.1 -47 -24 53 1973 Jan 14.55 -5.10 0.88 -5.02 0.01 1
1975 May 24.27 -4.97 0.74
574 49 13.0 -43 +27 51 1973 Jan 14.53 -0.41 1.03 -0.41
576 50 13.3 -43 -40 59 1973 Jan 14.56 ~4.46 0.72 -6.01 9.60 2
June 9.18 ~7.35 0.70
1974 June 1.24 -6.33 1.16
585 51 3.7 -41 +66 78 1974 June 3.28 -1.43 0.95 -1.43
589 53 13.4 -39 -85 94 1972 May 22.28 +1.71 0.81 +1.71
591 52 3.5 -40 -50 64 1973 Jan 14.56 -3.50 1.00 -3.50
592 -39 -2 39 1973 Jan 14.55 -0.79 1.23 -3.12 4.06 2
1975 May 24.29 -3.91 0.85
1976 July 8.22 -3.43 0.83
610 -36 -10 37 1973 Jan 15.54 +2.77 0.90 +2.77
612 54 13.0 -36 +70 79 1973 Jan 15.58 +3.72 0.71 +3.72
618 55 13.3 -33 +58 67 1973 June 10.19 +1.84 1.01 +1.84
622 56 13.7 -33 -78 85 1972 May 22.27 -9.22 0.92 -9.22
640 57 A 13.31 1.20 -30 -164 167 1972 May 24.18 -2.96 1.04 -2.96
647 58 13.9 -29 -33 44 1973 June 9.19 +11.30 0.78 +10. 89 0.59 1
1974 June 1.25 +10. 41 0.85
670 60 13.3 -25 -6 26 1973 Jan 15.53 +0.16 0.77 +0.55 0.54 1
1976 July 8.23 +0.99 0.82
672 62 13.2 -24 +217 36 1973 Jan 13.57 -3.89 0.74 -3.89
673 61 13.6 -25 -31 40 1973 June 9.20 -12.41 0.71 -11.82 1.64 1
1976 July 8.18 -11.00 0.84
682 64 -23 -17 29 1973 Jan 15.54 +5.29 0.96 +5.29
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TABLE 1. (Continued).

FT979AT. - - [ 2847 T 752G

Star identification Magnitude From cluster center Radial -velocity observations Mean X2 v
Von Z B S my, C.IL X y r Date r.v. s.e. r.v,
km/s km/s km/s
684 65 13.7 -23 =51 56 1973 June 9.21 -4.89 0.80 -4,89
688 67 13.4 -22 +15 27 1973 Jan 15.53 -5.11 0.77 -5.11
706 69 13.3 -18 +87 89 1972 May 24.23 +3.49 1.00 +3.49
716 71 13.7 -17 +65 67 1974 June 1.26 +0.15 0.84 +0.15
726 73 12.6 -14 -20 24 1973 Jan 13.56 ~-3.29 0.63 -3.29
729 74 12.4 -14 +17 22 1973 Jan 13.56 -2.72 0.74 -2.72
733 75 12.5 -13 +20 24 1973 Jan 13.56 -6.17 0.64 -6.17
740* 76 B 13.60 0.50 -13 -213 213 1973 June 10.21 No result —_—
746 78 12.9 -11 +20 23 1973 Jan 15.52 +1.59 0.92 +1.59
748 77 13.6 -11 -3 11 1974 June 3.24 +0.04 0.84 +0.04
752 79 12.8 -11 +69 70 1972 May 23.23 +3.43 0.77 +4.18 2.41 1
24.23 +5.34 0.96
763 81 13.0 -9 -35 36 1973 Jan 13.55 -4.94 0.74 -4.38 1.63 1
1974 June 1.31 -3.34 1.01
764 82 13.7 -9 -18 20 1973 Jan 15.54 +16.81 0.77 +16.97 2.46 4

June 9.21 +17.17  0.69
1974 June 3.24 +17.17 1,11
1975 May 24.25 +18,17 1,13
1976 July 8.19  +15.95  0.90

779 86 13.2 -6 +38 38 1974 June 1.29 -4.31 0.79 -4.31
790 88 13.5 -3 +3 4 1973 Jan 15.55 +3.01 0.85 +3.01
796 90 13.9 -2 +1 2 1973 Jan 15.55 +2.28 1.04 +2.28
803* 91 var -1 -24 24 1973 Jan 13.54  +14.82 1.32 var

June 13.18°  +3.22 1.10
1974 May 29.18  -4.09  0.90
June 3.21  +10.65  1.46

1975 May 24.18 No result
1976 July 8.18 No result

807 92 12.4 0 +13 13 1972 May 22.25 +7.87 0.71 +7.65 0.22 1
1976 July 7.18 +7.35 0.84

835 96 13.2 +5 -78 78 1972 May 22.25 -2.09 0.74 -2.09

837 97 11-46 12,72 1.46 +6 +229 229 1972 May 22.18 -3.75 0.75 -3.75

849 98 13.9 +7 -12 14 1973 June 9.22 +7.71 1.06 +7.71

853 99 V-41 13.80*  0.89* +7 -240 240 1973 June 10.22 +1.59 1.48 +2.00 0.12 1

' 1974 June 3.29 +2.22 1.09

855" 102 13.1 +8 +25 26 1973 Jan 13.57 +4.97 0.73 +4,97

858 103 12.8 +8 ~-44 45 1972 May 23.26 +9.74 0.75 +9.99 0.35 1
1975 May 24.19  +10.53 1.11

859 104 12.7 +8 -41 42 1972 May 23.26 +4,32 0.54 +4.32

860 105 13.0 +8 +32 33 1973 Jan 13.58 -0.82 0.71 ~0.82

871 106 13.8 +9 -62 63 1973 Jan 14.58 +6.63 1.03 +6.63

874 107 13.9 +10 +5 11 1973 Jan 15.56 +3.85 1.05 +3.85

885 110 V-80 13.50 0.99 +12 -116 117 1973 Jan 14.58 -0.33 1.02 -0.33

887 109 13.3 +12 +8 14 1973 Jan 15.56 +1.53 0.78 +1.53

893 112 12.8 +14 +12 18 1972 May 22.26 -0.66 0.80 -1.28 1.01 1
1973 Jan 15.58 -1.71 0.67

898 113 13.2 +15 +7 17 1973 Jan 15.57 -3.20 0.96 -3.20

911 115 13.5 418 +6 19 1973 Jan 15.57 -22.24 1.16 -22.89 0.99 3

1974 June 1,27 -23.03 1.30
1975 May 24.24 -24.14 1.51
1976 July 8.20 -22.71 1.11

917 117 13.2 +18 -12 22 1973 June 9.23 +3.03 0.99 +3.03

925 120 13.3 +20 ~167 168 1972 May 23.25 +2.53 0.69 +2.53

928 121 13.5 +21 +2 21 1973 June 9.24 +8.41 1.11 +8,41

964 124 13.9 +28 +2 28 1973 June 9.24 +0, 46 0.79 +0.46

972 123 13.7 +28 +58 64 1974 June 3.23 -5.56 1.06 -5.56

976 125 14.0 +29 +6 30 1974 June 1.28 -1.31 0.84 -1.31

1000 126 12.9 +35 +174 177 1972 May 22.18 -4.44 0.77 -4.44

1008 127 13.1 +36 +26 44 1973 June 10.20 -6.61 1.07 -6.61

1053 130 12,7 +45 +48 66 1972 May 24.19 +5.93 0.72 +6.79 3.05 1
1974 June 3.22 +7.77 0.77

1059 131 13.9 +47 +37 60 1974 June 1.31 +3.95 0.77 +3.95

1082 132 14.0 +54 -41 68 1973 Jan 15.51 +1.45 1.51 +1.54 0.01 1
1975 May 24.22 +1.61 1.34

1100 134 . +59 -39 71 1973 Jan 15.50 -8.81 0.92 -10.81 6.64 2

June 13.19  -11.80 0.89
1975 May 24.20 -11.57 0.82

1121 135 13. +67 -32 74 1972 May 24.16 +3.04 0.93 +3.04

1127 136 12.7 +67 +70 97 1972 May 22.19 +2.09 0.95 +2.09

1135 137 13.3 +71 -24 75 1972 May 22.22 -10.61 0.81 -10.85 0.18 1
1973 June 10.18 -11.12 0.87

1142 138 13.7 +74 +23 78 1974 June 1.30 +2.88 1.01 +2.88

1203 139 1-76 13.29 1.18 +94 +126 157 1973 Jan 13.52 +1.24 0.66 +1.24
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TABLE I1.

(Continued).

Star identification Magnitude From cluster center
Von Z B S mpv C.I. X y r
1208 140 13.3 +99 +71 122
1214 141 I1-108 13.30 1.20 +103 +29 107
1217 142 1-106 14.03 0.97 +106 +6 106
1219 143 1-109 12.70 1.35 +106 +36 112
1224 1-81 13.86 0.96 +109 +133 172
1241 145 13 +120 +39 126
1257 +122 -925 933
1270 11-18 14,18 0.70 +138 +363 388
1273 147 1-87 13.54 1.04 +138 +88 164
1274 1-92 14.69 0.64 +139 +65 154
1345 BC 13.97 0.95 +227 98 247
1360 1-46 13.89 1.00 +260 +15 260
1362 AV 14.12 0.88 +269 +264 377
1375 +310 -666 735
1376 BF 13.67* 1.07* +314 -161 353
1383 BI 14.11 0.90 +340 -362 497
1392 I-21 13.05* 1.28* +365 +318 484
1397 12.67* 1.57* +393 -211 446
1402* 12.67* 0.48%* +421 -402 582
1446 +666 -342 749
1449 +685 +21 685
1469 +857 +296 907

physical: motions in the atmospheres of these very lu-
minous, low-mass stars, either of convective or pulsa-
tional origin, of very low amplitude are sufficient to ac-
count for the errors. In any case, a randomly additive
“jitter” of 0.8 kms~! rms brings x2 down to 43, and we
henceforth will include this component in the error of a
single measurement relative to the true radial velocity
of a star. For the consideration of the dynamics, of
course, its origin is of no consequence, so long as it is
included properly in the computation of the true velocity
dispersions.

One is immediately struck by the absence of large
velocity variations; in our work on field giants, we find
that about 30% of the stars are variable on the relevant
amplitudes (few kilometers per second) and time (few
years) scales. The large body of data on other globular
clusters supports the tentative conclusion that binarism
involving stars of not-too-disparate masses and separa-
tions between the radius of the giants (0.3 AU, say) and
about 10 AU is either very rare or absent in globular
clusters, in stark contrast to the situation in the solar
neighborhood. Binaries in this mass range are “hard”
enough that they are unlikely to interact significantly
dynamically with the other stars in the cluster, though
more widely separated ones can be disrupted (Hills
1975). It is true that binaries are, on average, more
massive than single stars and would migrate to the core
of the cluster, but we have been able to work all the way
to the center of M3, so no such selection will suffice to
remove them from our sample.

Radial-velocity observations Mean x? v
Date r.v. s.e. T.V.
km/s km/s km/s
1973 Jan 13.03 -1.12 0.90 -1.12
1972 May 22.21 +5,66 1.13 +5,66
1973 Jan 15.51 +3.70 1.39 +3.70
1972 May 22.20 -0.07 0.97 +0.27 0.24 1
1976 July 8.27 +0.59 0.93
1974 June 3.18 +9.26 1.24 +9.26
1974 June 1.32 -1.81 0.87 -1.81
1974 June 3.19 No result —_
1974 May 29.23 -1.91 1.55 -1.91
1973 Jan 13.52 +3.19 0.69 +3.19
1973 Jan 13.50 +11.85 1.70 +11,85
1973 June 9.29 -5.95 0.89 -5.95
1972 May 23.27 +0,64 0.86 +0.64
1974 May 29.21 -4.99 1.06 -4.99
1973 June 9.28 No result —
1974 May 29.20 -2.78 0.96 -2.78
1972 May 23.24 -2.42 1.62 -2.42

1973 Jan 13.54 +1.51 0.62
1976 July 7.22 +1.44 0.89

1972 May 23.24 +1.07 0.55 -0.23 13.34 1
1976 July 7.21 -2.04 0.65

1972 May 23.24 No result —_

1973 June 9.28 No result —

1973 June 9.28 -3.38 0.83 -2.217 10.24 3
1974 May 29.19 +0.19 0.89

1975 May 24.32 -3.00 0.77

1976 July 7.20 -2.49 0.92

1973 June 9.28 No result —_

One is led to the conclusion that their current absence
reflects an initial absence and that the process of star
formation in these systems was probably very different
from that currently seen in the solar neighborhood. One
should therefore, for example, not approach the problem
of the mass function, which we shall presently meet, with
any preconceived ideas one might have gleaned from
population studies in the Galaxy.

Two other stars, von Zeipel 764 and 911, deserve
special attention. They are removed 3.5 and 4.5 standard
deviations, respectively, from the cluster mean velocity.
There can be little doubt that they are cluster members;
both are projected very near the center of the cluster and,
on the basis of all reasonable model fits to the cluster,
their velocities are less than the escape velocity away
from the cluster mean. Neither is of variable velocity;
both have been extensively observed. There should be no
such stars in a sample of 100, and the probability of two
such is less than a part in 105. We shall see that these
stars must have a special origin, and they will be omitted
from the remainder of the analysis. They will be taken
up again in Secs. VII and VIII.

III. ASTROPHYSICAL DATA

One cannot, of course, construct a model for the
cluster on the basis of velocity data alone. One needs as
well data on the distance to the system, the radial dis-
tribution of mass (or light), and the mass spectrum of the
stars, and, if one relies on the light distribution, some
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FIG. 1. Theoretical isochrones from Demarque for Y = 0.2
(———)and Y = 0.3 (~) for t = 16 X 10%, z = 0.0004. The observed

locus is also shown for the adopted modulus of 15.08. The fit toa the-
oretical isochrone interpolated for ¥ = 0.25 and ¢ = 14 X 10° yr is quite
good.

information about the mass-luminosity relation. We
discuss in this section the parameters we have used in
fitting the models to the “real” cluster.

a) The Distance Modulus

The distance moduli of the brightest northern clusters
have been discussed in detail by Sandage (1970), who
obtained a value of 14.83 for M3, as a weighted mean of
a number of determinations. The modulus, however, is
not really independent of the models chosen for the stars
near turnoff, and we have chosen to make a determina-
tion which is completely consistent with our mass-
luminosity relation, at the risk of some error in the
modulus.

Pierre Demarque kindly supplied us prior to publi-
cation with detailed isochrones for new population II
models near the turnoff for a grid of values of Y, Z, and
age (Ciardullo and Demarque 1977). We have compared
these models with the photometry of Sandage (1970),
transformed to the theoretical mpg,log T, plane by the
application of the theoretical colors and bolometric
corrections of Bohm-Vitense (1973). In the range of
interest, the bolometric corrections are not large. A value

of Z = 0.0004 is adopted, since that is a value in the
Demarque tables, and is near the value (0.0005) sug-
gested as most probable by Sandage (1970). An ex-
haustive study of M92 and M15 by Bohm-Vitense and
Szkody (1973) yielded a helium abundance Y of 0.25
and ages near 14 X 10° yr. The Demarque models have
turnoffs that move almost vertically at a given age with
Y.

OM o110

=25+0.3;
>V 2.5+0.3;

to

blogTeff
oY

and, of course, become bluer and brighter with de-
creasing age at a given Y,

=0.0+0.01, (1)

to

Mboiuol =51 403

ologt, |v
Olog Tefs
QOB Leffl — _0.10 + 0.020. (2
o, 0.10 £ 0.020, (2)

for 0.2 S Y 50.3, 19~ 15X 10% yr. The observed cluster
HR diagram in the vicinity of the turnoff, transformed
into the theoretical plane, is shown with the isochrones
from Demarque’s model for Z = 0.0004, t = 16 X 10°
yr,and Y = 0.2 and 0.3 in Fig. 1. The observed locus is
a bit bluer and, if Y = 0.25 is chosen, yields a modulus
of 15.08 and an age of 15 X 10° yr; the ranges are from
14.96 to 15.20 for Y between 0.3 and 0.2, and 15.02 to
15.14 for ages between 16 X and 14 X 10° yr, respec-
tively. We adopt 15.08 for the modulus.

The corresponding turnoff mass is 0.79M . The fit to
the usually troublesome subgiant branch is superb; that
below the turnoff is less good, but the bolometric cor-
rections there are almost certainly bad (we used the
Bohm-Vitense giant bolometric corrections and colors
for want of something better), and the models depend
critically on the convection theory, as usual, for deter-
mination of the effective temperature. All in all, the fit
is quite satisfactory, and the agreement with the work
of B6hm-Vitense and Szkody reassuring.

b) The Mass-Luminosity Relation

For the upper main sequence and giants we use the
Demarque models and assume for the sake of simplicity
that all the evolved stars have the turnoff mass. This
ignores possible mass loss in advanced stages, but that
is almost certainly too rapid to affect a star’s dynamics,
and the change in the overall mass-to-light ratio is en-
tirely negligible.

For the lower main sequence, which at this stage is
really only of academic interest (since it contributes mass
but little light), we used the photometric data of Veeder
(1974). First the relationship between My and M,
which is very well defined by Veeder’s work, was
adopted:

Mo = 1.118Mg + 1.78. (3)
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TABLE IIl.  The adopted mass-luminosity-color relationship for highly implausible. Since only a few hundredths of a
stars below the turnoff. A g . . .
magnitude error in the location of the counting bin
logm Mol Mg V—K(popll) My(popll)  boundaries can change the curvature of order itself, we
prefer to consider that Sandage’s data determine the
-0.15 5.10 5.25 . .
—020 615 o o 6.40 slope of the mass function, but say nothing about cur-
—0.25 6.90 4.58 2.75 7.33 vature. There is no particular reason to use a power-law
:ggg g?g 2%‘5) g%g 3‘?? mass function, of course, but it is a simple form and the
—0.40 8.50 6.01 381 9.82 range of masses of interest sufficiently small that the
—0.45 8.90 6.37 3.98 10%3 exact form does not matter very much. The situation is
:8'22 g'gg g';g 3:;8 }?:29 illustrated in Fig. 2. The slope determined from the
—0.60 9.85 7.22 4.40 11.62 Sandage counts, corrected for mass segregation via the
—0.65  10.10 7.44 4.52 11.96 models we discuss later, is about x = 2, considerably
-0.70 10.35 7.66 4.66 12.32 .
—0.75  10.60 7.89 4.80 12.69 steeper than the Salpeter function.
—-0.80 10.85 8.11 495 13.06 The mass function must be cut off at low masses,
—-085 1110 8.33 3.12 13.45 whether by evaporation or, more likely, by tidal shocks
-0.90 11.35 8.56 5.57 14.13 . . .
—0.95 11.60 3.78 570 14.48 (Ostriker, Spitzer, and Chevalier 1972). The form of the
—1.00 11.85 9.05 6.11 15.16 mass function near the cutoff is not well determined, nor

There appears to be very little scatter in the above
relation, and no significant trends with kinematics or
color. We then used Veeder’s (My,), ¥V — K) diagram to
define a blue envelope to the observed scatter diagram,
which Veeder suggests (as seems reasonable) represents
extreme population II on the basis of kinematic evidence.
The bolometric correction is then defined as

BC = (My — Mg) + Mg — My
= (V_ K)poplI(Mbol) — 0.108 Myq — 1.59. (4)

The mass— M, relationship was taken from Copeland,
Jensen, and Jgrgensen (1970). Their ¥ = 0.25, Z =
0.001 models (with hydrogen molecule formation) fit the
lower end of the Demarque models nicely, and extend
to —0.6 in log(M/My). Below that the relationship was
extended to 0.1M, with a straight line with slope
dMy/dlogM = 5.5, though at these masses the stars
are so faint that for our purposes they do not matter at
all. The resulting - (logm, M) relationship is given with
intermediate quantities of interest in Table III for stars
below the turnoff.

¢) The Mass Function

The mass function in M3 is a more difficult question.
Sandage (1957) has published counts as a function of V
down to My = 6.7 with our modulus. The resulting mass
function is strongly curved in the range over which it is
defined, logm = —0.12 to —0.22. Da Costa and Freeman
(1976) used the fact that this function levels out at the
lower end of the range to argue that it fits smoothly on
to a Salpeter mass function dN = Cm~U+Xdm with x
= 1.35; the actual slope is closer to x = 0.7 at the end.
We feel strongly that the extreme curvature so near the
turnoff mass is almost certainly incorrect. That the
power-law slope should change from ~1 to ~6, which is
what the data taken at face value imply, in a range of
0.10 in logm, which furthermore is just the range cur-
rently at the top of the unevolved main sequence, seems

is the exact value of the cutoff mass. Some choices we
have tried for the cutoff are illustrated in Fig. 2; the re-
sults are not strongly dependent on either the cutoff mass
or the form of the cutoff, since most of these low-mass
stars are at large radii, where they do not affect the ob-
servable properties of the cluster very much.

In the models we have constructed, the masses are
binned in intervals of 0.15 in logm, with a heavy white
dwarf/neutron star bin at 1.2M . The total light in the
bin, including the turnoff stars and giants, is calculated
from the Sandage luminosity function, and the light-
to-mass ratio using our mass function. If M is the total
mass in a bin in logm, and the upper and lower limits of
the bin masses are m; and m;4 respectively, then for the
mass function dN = Cy (m/mg)~* dinm, the masses in
the bins are

_ Comg  (m\i=x[ _ [mu)i-x
M"‘(l—x)lnlt)(%ﬁ) [1 (717) ] ©)

In Table IV, the bin masses M; and the total visual
light-to-mass ratios A; (solar units) are tabulated for
various power-law mass functions with no cutoffs. The
normalization (i.e., the value of Cy) is arbitrary. It may
be clearly seen that the contribution to the light from
mass classes 3-7 never amounts to much more than 10%
of the total.
The number of stars that have died is given by

Ndead = Lo 1 (%)x - (%)x], (6)

In10 x
where m, and m; are the upper and lower mass limits
of interest, presumably infinity and my, = 0.79M,
respectively, in the present case. The number of white
dwarfs is given by this expression with m, = mwp, the
mass above which stars do something more exotic than
shed their envelopes and become prosaic white
dwarfs—probably between 4 and 6 or so solar masses.
Neutron stars, if any, come from a somewhat higher
range, but one must keep in mind that pulsar data
suggest that at least some neutron stars are formed with
large velocities, much larger than the cluster escape ve-
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T 1
FIG. 2. The segregation-corrected
) Sandage counts (dots) and various
|Og mass function power laws with the
various cutoffs used in the models.
(m_cﬁ_) The mass class bins are indicated
d |Og m along the bottom axis. There is in
addition a “heavy remnant” bin at
(] 1.2M o, mass class 1.
0
/
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locity, so there may well be none left in the cluster. We
will not speculate about higher mass stars yet, but we will
be able to place interesting limits on the total mass in
heavy remnants. We have assumed that white dwarfs are
formed from stars with mass M = 5M o downwards (the
number is very insensitive to this upper limit) and have
generally assumed that they are distributed equally in
total mass among mass classes 1 (1.2M ) and 2-4, from
which one readily calculates their contribution to M;.
We assume, of course, that they contribute no appre-
ciable light. Neutron stars, if they are included, go into
mass class 1.

d) The Surface Brightness Distribution

The run of surface brightness with radius, extended
by the use of star counts, is taken from the composite
data compiled by Da Costa and Freeman (1976). The
treatment of star counts on the same basis as surface
brightness is justified, since the counts refer to stars at
and above turnoff, and essentially all the light comes
from these stars also. We are now ready to discuss the
models.

IV. THE MODELS

In lieu of a complete evolutionary treatment of the
cluster structure, we have chosen to build models with
plausible forms for the distribution function, satisfying
the constraints imposed by relaxation processes near the
cluster center. King (1965) showed that a “lowered
Maxwellian” energy dependence was a good approxi-
mation to the solution of the Fokker-Planck equation
describing the phase-space diffusion and evaporation of
stars from such a system as this one. Possible anisotropies
are most easily incorporated in the Mitchie (1963)
fashion by a term of the form exp(—£J2) in the distri-
bution function. We therefore take, for mass class j,

F(EJ) = e=Bl2(e=4E — 1), (7
where the zero of energy has been taken to be the energy
of a particle at rest at the cluster edge, assumed as usual
to be determined by a tidal cutoff, so that stars of positive
energy are lost to the system. The short relaxation times
in the cluster center demand thermal equilibrium there,
so that A; « m;, the mean mass of the jth mass class. If
Y is the potential, we can write (7) as

Si(EJ) = exp(—Bmp’r2/2r})
X {exp[—=B(/mp? + mpP)] — 1}, (8)

TABLE IV. Bin masses and light-to-mass ratios for various power-low mass functions (no cutoffs).

Mass Light-to-mass

Bin range Average ratio M;
J (logm) mass (M) (Lov/Mo) x=1 x=13 x=1.6 x =2.0 x =25 x=3
2 —0.05, —0.2* 0.72% 6.33 0.937 0.905 0.875 0.838 0.795 0.723
3 -0.2, —-0.35 0.53 0.376 1.44 1.52 1.60 1.72 1.89 2.07
4 —0.35,-0.5 0.38 0.038 1.44 1.69 1.97 2.43 3.17 4.16
S —0.5, —0.65 0.27 0.011 1.44 1.87 2.42 3.43 5.32 8.23
6 —0.65,-0.8 0.19 0.007 1.44 2.07 2.98 4.85 8.93 16.40
7 -0.8, —0.95 0.13 0.003 1.44 2.29 3.67 6.86 15.0 32.8
*

The average mass reflects the fact that the maximum mass is 0.79 Mo, the giant mass, rather than the bin boundary.
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where r; is the anisotropy radius (assumed the same for
all mass classes; see the discussion in Sec. VII).
If we adopt a characteristic velocity variance v} and
a characteristic radius 7. and let W = —y//v3, £ = r/r.,
the Poisson equation becomes
1 d d
gd-g(.y% = —47wGpri 2. 9)

If we now define r. by the requirement that

p = poll1="3%hr/ri + O(r%)], (10)

so that the projected mass density has half-power radius
r., then we obtain (King 1966)

drGpori vyt =9 (11)

and

515%5(522—2/)= —9a, (12)

where o = p/po. All this so far is identical to King’s
(1966) treatment for single-component models. The run
of density for each mass class is given near the center by
(we assume at the center that e/ is large compared to
unity for this discussion)

P; = Pjo e~ Bmi(¥—Yo) ~ Pjo [1 - ﬁmj(‘l/ - l100)]9
(13)

and so

p = po=BW —vo) T pjom;
J
= poll — Bm(Y —¥o)], (14)

with the mean mass 7 defined as required, i.c., as a
central density-weighted mean

m=pg' L poym. (15)
J

Comparison with (10) and (11) requires that 8mw3 = 1,
which is natural enough, and letting r.; be the core radius
of mass class j, we have

rli=rk (m/m;). (16)

The characteristic velocity vy is just the one-dimen-
sional velocity dispersion of a particle of mass 7 in
thermal equilibrium in the cluster center. We let o =
Poj/po be the fractional density contribution of mass
class j at the center of the cluster, 0 =p;/po,and u; =
mj/m. .

If we now introduce the dimensionless velocity u =
v/vo, we can pose the problem in a completely dimen-
sionless form. The distribution function is

Fi(Eu) = o;Ciexp(— Yy pju’ £2672)
X [exp(— Yo wu? + wiWw) — 1), (17)
where

j;ul<(2W)1/zj}(€’“)d3” = 0;(8)

requires that

G [ <o P+ 1 90)

-1
- l]d3u} . (18)
It is clear that the densities o; can be written
0; (&) = ;T\ (W;W.E/€)/T1(m;W0,0),  (19)

where

= — 1, y2y2
Tixy) -ﬁul<(2x)‘/2e)(p( hyiul)
X [exp(='h u? + x)—1]d3u. (20)

The integral (20) can be done numerically once and for
all, and tabulated as a function of x and y.

The radial and tangential velocity dispersions can
similarly be obtained:

(ud); = uj'T2(W.EE)/9 (W, E/E,),
(ui); = #,-—17§(ﬂij/§t)/71(#jW5/$t),

where J, and J3 are the appropriate velocity moments,
in analogy to Eq. (20). These functions can likewise be
tabulated.

The problem then reduces to the solution of the simple
ordinary differential equation (12). With Wy, &, and «;
specified, one integrates (12) until W reaches 0, at which
time one has reached the cluster edge. It is most conve-
nient to solve (12) as a first-order system,

e 7 gdk
the quantity U is related to the mass contained within
radius £ by (King 1965)

M(&) = (r03/G)U. (22)

Note that U is not the dimensionless mass, but is 9/4w
times it, i.e.,

(21a)

(21b)

U=9 j; A (23)

There is, of course, mass segregation in these models,
so a given mass function for the cluster does not translate
in any simple way to the specification of the c;. This
problem is simply solved by iteration. The «; are first
evaluated supposing there is no mass segregation, so & 5
o M; for the proposed mass function. They are then
multiplied at each step by the ratio of the desired mass
function in mass class j to that obtained in the last iter-
ation. In practice, each U; is kept as the structure
equations (21b) are integrated; so one does not have to
do any additional work to evaluate the mass func-
tions.

A projection of the cluster model on the sky is then
performed, and the line-of-sight velocity dispersion at
each point is evaluated.
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FIG. 3. (a) Projected densities for mass classes 1 (m = 1.5), 2 (m = 1.0), and 3 (m = 0.5) for the three-component isotropic model A, which
best fits the light distribution of M3. (b) Projected surface brightness for model A with three values of the central potential Wo. Wo = 12 is
the best-fit model. (c) The dependence of the projected core brightness on the heavy mass fraction M. The numbers in parentheses following
the model name are (M, M>, M3). The arrows indicate the scale core radii for the extreme models. (d) The dependence of the projected envelope
brightness on the light mass fraction M. (¢) The dependence of the projected envelope brightness on the mass of the light particles m3 (see
text for discussion). (f) Radial velocity dispersion as functions of radius for the two extreme models in (e).
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- $, o, £, these cluster models, the slope of the dominant compo-
(uios) = f a(m) ; (ug) + 5;7‘ u’ ) |ds, nent need no longer be near 2, but the ratio of the slopes

n=(2+ )V (24)

The projected densities o; are multiplied by the light-
to-mass ratio A; (as amended by the addition of dark
remnants) and added to produce the run of surface
brightness. Fitting this to the data clearly yields r.
(provided a modulus is known) and the total luminosity
of the cluster. The radial velocity data can in principle
be fitted to the run of (u) to yield vg, and the model is
completely specified; one obtains masses, densities, radii,
etc, by appeal to the relevant scaling equations, all of
which depend only on v, r., and dimensionless model
parameters.

V. PHENOMENOLOGY: THE THREE-COMPONENT
APPROXIMATION

With the scanty data available on the mass function
and the complete lack of knowledge about the upper part
of the mass function and hence on the remnants to be
expected, there is quite a large number of parameters
available. To acquire some feeling for what the really
relevant ones are and how they interact, we constructed
a series of three-component models, and it is perhaps
worthwhile to discuss these results in some detail.

Although we shall, in the end, fit the cluster with a
seven-component model, it seemed that most of the
physics should be contained in models with three, which
are (1) Heavy dark remnants, mass m, total mass M ;
(2) Giants and turnoff stars, mass m, = 1, total mass M,
= 1; and (3) Low mass dwarfs, taken to be nonluminous,
mass ms, total mass M3. Six dimensionless parameters
describe these models: m, M, m3, M3, &, and Wj. A
reasonable fit to the light distribution of M3 except in
the very outer parts is given by a model with mass pa-
rameters roughly appropriate to an x=2 mass function
cutoff at about 0.3M . This model, which we will call
model A, has parameters

A:m =15 my=0.5 M;=0.1,
M3=5’ W0=12a €I=°°~

We consider variations about this model.

The radial projected density profiles of the three
components are shown in Fig. 3(a). As expected, the
heavies, owing to their lower equilibrium velocity dis-
persion, are much more centrally concentrated than the
lighter stars. It is easy to show that in the region away
from the core in a roughly isothermal structure, a minor
component (one whose density is small compared to the
total) with mass m and velocity dispersion (v2) has a
power-law density distribution p « r~<, where

a =2(v2)/(v?) = 2m/m, (25)

(v2) is the velocity dispersion of the dominant compo-
nent, and 2 its mass. For truncated isothermals such as

is still roughly the ratio of the masses. The slope itself and
the outer radius is sensitive to the depth of the central
potential, as is shown in Fig. 3(b), where the projected
light distribution (projected density distribution for
component 2) is shown as a function of Wy, for fixed core
radius.

Since the heavy component is so centrally condensed,
one would expect that changes in its properties would
mostly affect the core shape. The result of varying M
with the rest of the parameters fixed except for Wy,
which is chosen to give identical envelope profiles, is
shown in Fig. 3(c). Notice that it is not simply the core
radius which is changed, but the form of the distribution
at small radii; for large M, the core grows a region of
quite shallow slope before it goes over into the envelope.
This feature is a sensitive indicator for the presence of
heavy remnants and can easily be understood by appeal
to Eq. (25). If the heavies dominate the density, the
lighter giants are forced to a smaller logarithmic gradi-
ent; the more dominant are the heavies, the larger is the
radius of this region.

If one varies the mass fraction of the light stars, M3,
one expects the slope of the envelope to change, since the
mean mass changes with the proportion of light stars.
This is illustrated in Fig. 3(d), where model A and two
models with M3 = 2 and 10 are shown, with W, adjusted
to give the same cluster radius. The variation is as ex-
pected; larger M3 makes a steeper falloff in the light
distribution.

There are, however, some surprises. If one varies not
M 3 but m3, the mass of the light component, one would
expect the same sort of variation as with M3; lighter
dwarfs should result in a steeper giant distribution, since
the mean mass must decrease. Figure 3(e) shows model
A with two models for which M3 = 5 but m3 = 0.2 and
1.0, again with W adjusted so that the radii are the
same. The two models are different from model A but
almost identical to each other! The reason is that, for
such light particles, the light component’s central con-
centration is so small that it does not dominate the den-
sity until the effects of the energy cutoff are already very
strong, and at intermediate radii the middle component
dominates. Thus one must be rather careful. The lesson
for real cluster models is that the lower mass cutoff, if
it is low enough, has no significant effect on the cluster
structure as traced by the giants. The only effect of ex-
tending it to quite low masses is to dump a large amount
of mass at very large radii.

So far we have not looked at dynamical information
at all. If we consider the run of projected velocity dis-
persion in component 2 with radius, these two models are
quite different, as shown in Fig. 3(f): The giant velocity
dispersion holds up much longer in the model with very
light stars, so they can be distinguished if one has radial
velocities. For comparison, Fig. 4(a) shows the projected
velocity dispersion curves for models with the population
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parameters of model A, but with different Wy’s; here the
curves do not change shape but simply move to larger
radii as one increases Wy, thus flattening the density
distribution.

All the above models are isotropic; & = «. The effect
of anisotropy in these models is quite different from that
in single-component ones. There there ensues a steep
increase in logarithmic slope of the density with radius
at &, which flattens out again after an increase of a
factor of 5 or so in radius, provided the system radius is
large enough. This decrease is brought about by the
decrease in the velocity integral over the distribution
function corresponding to the smaller width in the tan-
gential velocity distribution for £ 2 £,. Eventually the
potential feels the strong decrease in density, and the
system then settles to the isothermal with purely radial
orbits, for which p ~ r=2(Inr)~!. In the multicomponent
systems, the dominant component (for models of interest,
component 3) behaves this way, but the giants respond
primarily to the decreased rate of growth of the potential,
and actually fall off more slowly than they do in the

] T T T T T T

— AL, 1,5)
-——- A20
masses 1.5,1,.5

I(r)
3

-4+

FIG. 4. (a) The dependence of the radial velocity dispersion profile on
the central potential W. The dots are for an anisotropic model with
a transition radius of 20 core radii. (b) Surface brightness profiles for
the “standard” isotropic model and an anisotropic one with a transition
radius of 20 core radii. The anisotropic model is an essentially perfect
fit to the M3 observations. (¢) Velocity dispersion profiles for the
best-fitting anisotropic model and a light-particle dominated (M3 =
10) model that give indistinguishable luminosity profiles.

isotropic models. Figure 4(b) shows model A and one
with an identical population (W is adjusted to give the
same profile interior to &) with & = 20, called here
A20.

This model has been chosen to be an excellent repre-
sentation to M3 over the whole observed range of radius.
There is, however, an isotropic model with an almost
identical light distribution, one with a population con-
sidered above: m; = (1.5, 1.0, 0.5), M; = (0.1, 1, 10)
—1.e., a very light-star-dominated model. The light
distribution is so nearly identical with that shown for
A20 that the difference cannot be seen on the scale of the
figures. Again dynamics can come to the rescue, as seen
in Fig. 4(c), where the velocity dispersions are shown for
these models. The anisotropic one has a projected ve-
locity dispersion which falls off much more rapidly with
radius. The total mass-to-light ratios are also very dif-
ferent, of course, though the values for core mass-to-light
are almost identical, since neither the light star popu-
lation nor the anisotropy makes itself felt there. We shall
see that there are difficulties fitting the observed cluster
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with isotropic models that satisfy the dynamical con-
straints imposed by our velocities.

We have found the three-component models of great
help in developing intuition about what the various pa-
rameters at our disposal do, and they have lent credence
(at least in our minds) to the hope that our model fits to
M3 are not too far from reality.

VI. THE FITTING PROCEDURE

From the observed light distribution and our sample
of radial velocities, we must find a “best” fit to a model.
We have chosen to give the fit to the light precedence,
since the data are of much higher precision. (The velocity
dispersion, which one fits, is of necessity highly sto-
chastic in nature, and from the measurements of about
110 velocities, even with infinite precision, has of ne-
cessity ~ 7% overall error, much higher as soon as one
attempts to extract any detail from it.) Fitting the dis-
persion is not easy, nor is assessing the goodness of fit.

The first parameter we determine is the core radius
re. To do this, we want to fit the core of the projected
model to the core of the cluster, but do not want to be too
sensitive to small deviations in the core shape between
the model and the cluster. The question is clearly how
to weight the least-squares fit, and we arrived, after some
experimentation, at a scheme which minimizes

€= ¥ o 1 (/v - B (26)

rings Dj
where B is the observed surface brightness, in ring j v,
is the angular core radius, /(£) the projected model
surface brightness, 7v; the angular radius corresponding
to B;, and L an overall scale factor connecting model and
real surface brightnesses. L and <y, are varied to mini-
mize e. In fact the analysis is not carried further unless
the fit to the surface brightness distribution is quite good.
The parameters which one has at one’s disposal to im-
prove the fit are the mass function slope, which is anal-
ogous to the quantity M3 in the three-component models,
the anisotropy, and the mass in heavy remnants, analo-
gous to M, to get the core shape right. The heavy rem-
nant mass also has a very large effect on the core M/L
ratio, since stars of large mass have small core radii and
steep density falloffs.

Given a fit to the surface brightness, we now want to
determine the velocity scale v, taking into account the
“jitter” discussed in Sec. I and the measuring errors. To
do this, we assume that the projected velocity distribution
at each radius is Gaussian, which is a good approxima-
tion, and that the distribution of errors is also Gaussian,
which seems also to be a good approximation. Thus the
observed velocity of star j is

Dobs,j = Wj +0+ €, (27)

where w; is the real projected random velocity of star j,
0 is the systemic velocity of the cluster, and ¢; is the error,
compounded of the jitter and the measuring error, for

which (¢;) = 0and (€7)!/2 = A;. Dropping the subscript
“obs” for brevity, the probability density function for v;
is, if a given model describes the real velocity distribu-
tion,

P;=P(vj) = 2w (vfn] + AD)]~1/2

X exp[—(v; = 0)%/2(von; + AP, (28)
where vg is the desired velocity scale, and 7; is the pro-
jected dimensionless velocity dispersion in the model at

the radius &; corresponding to the star’s angular radius
;. The likelihood function .£ is then given by

InL =3 InP;
J

- - =0)? 2.2 2

The maximum-likelihood estimator for vg is then given
by the solution to 9.L /dvg = 0, and for o by 9.L /00 =
0; the resulting equations are

—(v; = 0)°n; 1}
=[6

§ni + AN vin} + A?

]= 0, (30

b3 (vgn} + AT =2 vi(vgn + AP (31)
J j

If, as is the case with our data, the errors A; are small
compared to the cluster dispersion vqn;, the equations
can be solved easily by iteration.

Suitable tests for goodness of fit have been somewhat
clusive; powerful tests for estimators of variance seem
to be lacking in the statistical repertoire. The task seems
easy enough. The quantities

xj = (v; —0)/(vg nj + AH/2 (32)

should be approximately normally distributed with zero
mean and unit standard deviation. The difficulty comes
because standard tests for the homogeneity of variance
[the classical F test, Bartlett’s test, etc.—see Burr (1974)
for a discussion] all depend on binning the data, and the
outcome depends on binning in a way which makes it
difficult to say a priori how they should be binned. What
we need, and so far lack, is a test which looks for signif-
icant trends (with radius, say) in the unbinned data. The
nearest we have been able to come is a test which the
authors believe is original, which makes use of the fact
that the sum of the squares of two independent, univar-
iate, normal stochastic variables has a chi-squared dis-
tribution with one degree of freedom, which in turn is a
simple exponential. Since the interval between events in
a Poisson process (like shot noise, say) is also exponential,
the following cumulative test is suggested.
Order the stars by projected radius, and let

Y;= x%j—] + x%j; (33)

the distribution function is, if (x;) = 0, (xf) =1, and
Xj is normal;

P(y)dy = e~ vdy. (34)
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Let Yx = 3%, y; be the coordinate of the kth event.
This set of points on the line is evidently the realization
of a Poisson stochastic process, since the y; are inde-
pendent and their interval has the exponential distribu-
tion (34). Thus the number of “events” in any interval
is distributed in a Poisson fashion with mean and vari-
ance both given by the length of the interval.

If the n; do not accurately describe the model, the
Poisson nature of the distribution is not disturbed, but
the Poisson frequency now changes along the Y axis. The
necessity of binning is still present, but the data are now
by their nature more or less uniformly distributed, and
the dependence on the bin boundaries almost disappears.
It becomes now easy by means of any of a wide variety
of standard, powerful tests on the mean to test for the
homogeneity of the distribution.

Before we discuss the fits to M3, let us digress for a bit
and consider some effects of two-body relaxation pro-
cesses that are relevant to the discussion of the cluster
structure.

VII. RELAXATION PHENOMENA

Spitzer (1969) gives an expression for the thermal
relaxation of two intermixed populations of charged
particles, a “field” population whose dens1ty is py, mass
my, and mean square velocity (v?) = 3/2/% and a “test”
population with p, m, and /. For our case (gravitation
instead of electrostatic forces), the expression be-
comes

1/teq =35 (2m)'/2 mp,G?

X InA[23/2 (1/12 + 1/13)3/2].  (35)

The logarithm term is roughly In(v3R/Gm1), where
R is some characteristic radius for the system and has
a value near 13 for the parameters relevant to our mod-
els. Using Eq. (11) and the definition of the dimension-
less density o, and the fact that the rates for a given
mass class j must be the sum of the rates considering all
mass classes as the “field” population (including the test
population), we obtain

_ L (62 [Glmyu
o= =10 (€] [ete)

eq.j
X InA luj % ok () ((uz) + <uf>)‘3/2]- (36)

The average rate for mass class j is clearly the density-

weighted average of %; over the cluster:

_ 1/2

%=L 1 18( )/ [G(m//.t)lnA]
leg,i

x [ ooty + whrgdy [ ogde ()

Clearly the ratio m/u is independent of mass class and
is just the scale of the dimensionless particle masses; this
dimensionless parameter has not entered before because
it is irrelevant to the cluster structure. The relaxation rate

in the cluster center can be written

Rj(0) = (3/7"/2)[G(m/u) InA/r vo]

32 1, 1)
X 12 Mj Z A | — +—
k Kj Mk

1 1\=3/2
= Ry 23/2[.l.j Zak —+ — . (38)
k Hj MKk

Note that the thermal relaxation time defined here is

about 10% shorter than the usually defined energy ex-
change time.

In considering the decay of anisotropy, another closely

related time is of relevance. The deflection time t, is

l/td’j o~ 2/33/2(87ermfpflnA)

X 13 (1 = e=12h),  (39)

where we have taken the mean velocity of a particle in
class j, (3/213)'/2, as representative of the thermal av-
erage, and used a crude (~10%) approximation to the
function [®(x) — G(x)] that is relevant to this process
(Spitzer 1962). In terms of the model parameters,

Vta;= Raluj) =2
XY uror(1 —e—1.2<u}>/<u%)) (40)
k

at a given radius £, where Ry = 97!1/2Ry ~ 16.0R,.

It is clear, upon reflection, that the decay of anisotropy
near the anisotropy radius &, is determined essentially
by the local value of t4 j even though a typical particle
in the cluster models has an orbit which carries it over
the better part of a decade in radius. This is basically
because for £ < &, the distribution is isotropic and scat-
tering can only remove and replace particles from a given
orbit with equal rates, and far outside &, the scattering
is negligibly small compared to its value at £, on account
of the steep falloff in o. It is also worth noting that for
the anisotropy radii of interest, & 2 10, the expected
differences in o ; from one mass group to another are not
as large as might be suspected. At the cluster center,
(u})~3/2 « mj”, but the velocity dispersion of the low-
mass mass classes drops off much more rapidly with
radius than that of the high-mass ones. In the best-fitting
M3 models, the total range in velocity dispersion is only
a factor of about 1.3 at the inferred anisotropy radius (&,
~ 15), which results in a somewhat smaller factor in
radius for a given t4. Thus, if the anisotropy radius is
determined by relaxation, the assumption of a fixed &,
for all mass classes must be approximately correct.

The run of t; with radius for the “best”” M3 model
(model 8; see Sec. VIIla) for several mass classes is
shown in Fig. 5. The unit of time is the central deflection
time 27", 9.5 X 10° yr for this model.

If the anisotropy radius is determined by the initial
conditions through the initial violent relaxation, or later
through tidal shocks or any other large-scale gravita-
tional perturbations, one would expect no dependence
on mass. One exception, which tends to make the light

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1979AJ.....84..752G

FT979AT. - - [ 2847 T 752G

767

6 T T T

3

log (t4 Ry)
2

log &

FIG. 5. The deflection relaxation times in units of £7' (9.5 X 106
yr for the model) for model 8 (see table V) for mass classes 2
(0.720M o, solid line), 4 (0.380M o, dashed line), and 6 (0.190M o,
dotted line).

particles more nearly isotropic than the heavy ones, is
that, since the light particles are much less centrally
condensed, they are, as is well known, easier to remove
by tidal forces. The population of light particles at large
radii, however, is largely supplied by orbits that are quite
elongated, and the preferential evaporation of these stars
makes the distribution at smaller radii more nearly iso-
tropic. Since the heavies are hardly affected by evapo-
ration, the effect is much less pronounced for them. In
any case, it would seem that one should not expect large
variations in &, with j.

The consideration of the last relaxation phenomenon
we wish to discuss is motivated by the existence of the
two “interlopers,” the very-high-energy stars that we
remarked in Sec. 1 should not be there on statistical
grounds. “Should not” statistically is one thing; “should
not” physically is another. Stars so far out in the wings
of the velocity distribution are acted upon by dynamical
friction, and one may well ask whether orbits such as
these can possibly have lasted the suggested age of the
cluster. If so, they could be artifacts of the initial con-
ditions. If not, they must have been produced by dy-
namical processes in the cluster since its formation. We
comment on this point later.

For stars moving at several times the rms velocity, the
frictional slowing-down rate is given by (Spitzer
1962)

1_ (l @) _ (+m/my)4mG2msp,InA 1)

t, \vdt v3
or
1r_9 [G(m/;u)]
2o

Is,j w3

InA 3 (uj+pe) ok
r 3

= R (%:(l"’j + ur)or/ud,

where R = 3w!/2R ~ 5.32R,.

(42)
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Now if & is the dimensionless energy per unit mass
(we take 6 = 0 at £ = 0 with the particle at rest, so that
& =lhu? — W+ W), then

‘Z—G = =R 2 (u+ p)ogu!,
! k

where j = 2, u = p; is the case of interest. This expres-
sion breaks down for u S 1, since Eq. (41) holds only for
v lf’; in fact, there are net energy gains foru <1. We
shall in this approximate treatment neglect those pro-
cesses, since they occur at the apocenter, where the
densities are low and the timescales long, and simply cut
off the integrals at u = 1. Then the loss averaged over an
orbit is

9 . S5 ) oway ) umrag,
(44)

where we have assumed that the orbit is strictly radial,
£, is the radius at which # = 1, and &, is the apocenter
radius. The assumption of radial orbits cannot be far
wrong, since both stars are seen projected on the core,
and their radial velocities will carry them to very large
radii.

The average rate of decay (d6/dt) = —Rg(6) is
now given as a function of & alone, and the equation

1d6 _ 2 dun _ _ Ry
Edt  uy dt s &)
can be integrated to yield the evolution of & with time.
The dependence of u,,, the maximum central velocity
(6 = hu,,?) on time in units of ;"' for the “best” M3
model, which we will discuss in detail in Sec. VIII, is
plotted against time in units of ;" in Fig. 6. The value
of R7'is of order 2 X 107 yr, and it is clear that, in order
that the interlopers survived until now, they had to begin
with quite large energies; we will discuss details in Sec.
VII.
Since the net result of weak-encounter, diffusive
processes is to slow such stars down, one must look to
rarer events if they are to be produced and not simply be

(43)

(45)
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FI1G. 6. The frictional decay of high-energy radial orbits in model
8 (see Table V). The quantity m is the maximum orbital velocity; the
unit of time R in the model is 2 X 107 yr.
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leftovers from the beginning. Two processes one can
think of are binary disruption and very favorable strong
two-body encounters. Binary disruption is almost cer-
tainly not responsible, since to disrupt a binary system
requires the sudden loss of half or more of the system
mass, which almost certainly must involve a supernova
event in which more than half of the primary mass is lost.
On current motions of stellar evolution such a star must
be of at least about 4 or 5 solar masses, and the evolution
time is so short that one may as well be discussing initial
conditions. Strong binary encounters are not much
better. An optimal collision between two stars of com-
parable mass can increase the velocity of the faster one
by a factor of v/2 at most, and that in the limit in which
both stars are traveling at the same velocity and collide
at right angles. Thus the rate of production of stars that
we now see as giants traveling at, say, « or more times
the one-component rms velocity of that population
(vop™"/2), must be roughly

r= f”g”f A‘Srm Urel O A‘?ﬂ?m [P(2~120))2d3x,
(46)

where n, is the present number density of giants (note
that we do not require the star to have been a giant when
it was accelerated), ny the number of relevant scatterers,
AQ;, the acceptable solid angle of approach, v, the
relative velocity, o the cross section for scattering
through roughly a right angle, A, the acceptable
range of solid angle of egress for the accelerated star, and
P(x) the probability of a given star traveling at a speed
in excess of x times the rms velocity. We take o to be half
the total strong collision cross section,

o~ 2wGm2/vd,. (47)

The quantity A€, /47 is perhaps Y4, corresponding to
a broad equatorial band. The accelerated star must leave
close to the desired “forward” direction, so Aoy /47 is
probably somewhat smaller, say 0.15. Near the core, the
energy cutoff is not important, and it is only near the core
that the process is likely to occur, if at all; so the function
P(x)is

12 o 1/2
P(x) = (2) / f y2e 2 dy ~ (z) x e~x*/2

T T
(48)

for x 2 2. If we take the distribution of density of the
giants and scatterers as o ~ (1 + £2)73/2, which is not
far wrong (the total density is more like (1 + £2)~!, but
the giants are heavier than the mean particle mass and
hence their distribution steeper), one can do the spatial
integral and obtain

9N, (Aszobs)(mm)(mom)

r =~

16wIn(2¢, — )\ 47 |\ 47 )\ 4x
5/2

x (Sl )tc] B2 =2 (49)
r; o

where N, is the total number of giants observed, &, is the
radius of the cluster, and AQqps/47 is the cone of solid
angle pointing nearly enough in the direction of the ob-
server that the star has approximately its total velocity
in the line of sight; we take this quantity to be /4 as well,
though this is a bit generous. For N, ~ 100, §, ~ 100,
the leading coefficient is about 4. The product of the solid
angle factors is about 1072, The dimensional factor in
square brackets is about 1072 of the central relaxation
rate [cf. Eq. (38)]; the u®/2a~! factor is typically
somewhat less than unity, and e~%*/2 is 10~2 for « as
small as 3. (Recall that the interlopers had values of «
of 3.5 and 4.5.) Thus r < 2.5 X 107%R,; the corre-
sponding time is in all cases more than 10!3 yr, and so no
such stars should have been produced by strong en-
counters. We shall see that it is not completely implau-
sible that they should have survived from early times.

VIII. THE FIT TO M3

a) Constraints and Models

The fit to the cluster is by no means unique. The sta-
tistics of the velocities are not sufficiently good with 107
velocities to distinguish between even fairly extreme
possibilities with much significance, but it is possible to
delineate “allowed” areas in the parameter space. Other
arguments can in some cases be marshaled to support or
reject models.

The parameters at our disposal are x, the mass func-
tion slope, the low-mass cutoff (here characterized by
mp, the mass at which the mass function peaks (see Fig.
2), and the mass in high-mass remnants. We have chosen
to keep the total number of white dwarfs for a given x
fixed and consistent with all stars heavier than the cur-
rent turnoff (0.79M o) but less massive than 6 M ¢ having
become white dwarfs; we consider neutron stars and
black holes of yet greater mass later.

Our standard assumption for want of something better
is that the white dwarfs contribute equal total masses to
each of mass classes 1 (1.2Mg), 2 (0.72Mg), 3
(0.53M ), and 4 (0.38M ). This yields a mean white
dwarf mass of 0.6 M . We shall vary the fraction in mass
class 1, keeping the numbers constant and the contri-
bution to the other mass classes equal. This has the ef-
fect, as we have seen, of varying the core shape.

It is important to point out that there is a serious un-
certainty concerning the core shape, arising not from
observational error but from statistics. The mean lumi-
nosity per star in the second mass class, from which all
the light in the core (and, indeed, nearly all the cluster)
comes, is about 4.2L g per star; the mean square lumi-
nosity is 440(Le)? per star; thus the variance in lumi-
nosity per star is about 420(Le)2. Thus, if one takes a
region with total luminosity .£, the variance in .L is of
order 100.L, if L is in Lo, and the fractional uncertainty
(standard deviation) is 10.£L~'/2. The core of M3 has a
projected luminosity of about 3 X 104L, so the associ-
ated uncertainty compared to a smooth light distribution,
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TABLE V. Properties of the models.
Mass in Mass at
1.2 Mo peak B(r) fit
Model x & WD (Mo) and comments (M/L)mod (M/L)4yn o(r)fit r.(pc) riim(pc) Vo(km/s) M (10°Mg)

1 13 = all 0.30 none, too convex

2 13 o 1h 0.30 poor, too convex

3 1.3 = none 0.30 fair, too convex 1.45 1.92 fair 1.65 103 5.25 5.21

4 2 @ all 0.33  none, too convex

5 2 L A 0.33  none, too convex o o o o

6 2 ® none 0.33 none, too convex L. L. .. . L. L. L.

7 2 15 all 0.33 fair, core,? extended 2.09 2.00 good 0.93 195 5.67 5.39

8 2 15 5 0.33  good, sl. extended 2.07 2.20 good 1.26 189 4.78 5.96

9 2 15 none 0.33  good 2.06 2.51 good  1.83 191 5.31 6.78
10 2 © all 0.23  none, too convex
11 2 @ 1 0.23  fair, too convex 2.88 2.70 poor 1.20 113 4.45 7.30
12 2 © none 0.23  good 2.86 3.26 poor " 1.70 145 5.07 8.82
13 2 30 all 0.23 fair, too convex 2.89 2.36 fair 1.16 106 4.38 6.39
14 2 30 0.23  good 2.88 2.66 fair 1.40 124 4.60 7.19
15 2 30  none 0.23  fair, too extended 2.86 3.40 poor  1.70 179 5.10 9.18
16 2 15 all 0.23  fair, too extended 2.89 2.55 good  1.08 226 4.54 6.90
17 2 15 A 0.23  poor, too extended 2.88 o . o - o .
18 2 15 none 0.23  none, too extended 2.86 ce. ... e .. - ..
19 3 ® all 0.30 fair, too convex 3.30 2.89 poor 1.40 121 4.48 7.82
20 3 © P 0.30 good 3.23 3.21 poor 1.57 139 4.70 8.68
21 3 © none 0.30 fair, too extended 3.22 3.60 poor 1.92 162 5.13 9.72

aThe fit to the core indicates rather too much dominance by mass class 1.

brought about simply because the core contains a finite
number of discrete stars, is about 6%. The uncertainty
in the shape of the core is substantial. Thus, though we
will insist on very good fits to the luminosity distribution
through most of the body of the cluster, the core must not
be required to fit perfectly.

The fractional uncertainty in the mass-to-light ratio
stemming from the finite number of velocity measure-
ments (and this is the largest statistical error) is about
(2/N)'/2, or about 14% (standard deviation). The cutoff
in the distribution function should reduce this by a small

| "\

1 | 1

1
00.5 1.0 1.5 20 2.5 3.0 3.5
log r (seconds of arc)

FIG. 7. The observed M3 radial velocity dispersion binned in radius,
together with model profiles. Model 8 is the suggested fit. The large
black square with the dotted error bars is the average of the first three
bins. The horizontal error bars merely indicate the size of the radial
bin.

amount, and the observed dispersion in the squares of the
velocities about the mean square is significantly smaller
than predicted by a normal distribution. We shall adopt
0.9(2/N)'/2 as the fractional standard deviation of the
square of the velocity dispersion for a group of N stars;
the standard deviation of the dispersion itself is, of
course, half that.

The situation for the suite of models we have tried is
summarized in Table V and in Figures 7 and 8. Table V
lists the values of x (1.3, 2, or 3), the anisotropy radius,
the mass in 1.2M remnants, the mass at which the mass
function peaks, a qualitative description of the fit to the
luminosity profile, the model M/L (the value calculated
from the input stellar population), the dynamical M/L

X))

log &
FI1G. 8. The fit (model 8) to the observed surface brightness. Por-
tions of three other models are also shown with “fair” fits illustrating
the remarks “core” (--), “too convex” (---), and “too extended” (-

).
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(the fitted total mass over the total measured luminos-
ity), a qualitative description of the fit to the run of ve-
locity dispersion with projected radius, the core radius
r. and the cutoff radius of the model in parsecs, the ve-
locity scale vg in kilometers per second, and the total
mass in solar masses. [The meaning of the entries in
column 4 is as follows: equal masses in each mass class
(“all”), half as much mass in the 1.2M o bin as in the
other three (“'4”), and no 1.2Mg remnants at all
(““none”). The fit to the core shape is already marginal
in all cases with “all,”” so we did not try increasing the
fraction.] In each case the central potential W has been
adjusted to produce the best fit-to B(r), if there is a
reasonable fit at all. Figure 7 compares the velocity
dispersions of the sample in four radial bins of 21 stars
each and an outermost one of 23, with several models
that span the range of behavior exhibited. The vertical
error bars are 1o in the dispersion (total length 2¢). The
horizontal ones merely indicate the span in radius over
which stars contribute; the point is at the mean of the log
of the radius for the bin, as is appropriate for this plot.
Figure 8 shows the surface brightness profile with model
fits illustrating “good,” “fair,” and “poor” fits.

There is a suggestion (albeit not significant) that the
velocity dispersion falls in the core, as might be expected
if the core giants were more massive—as they might be
as the result of close binary evolution, for example. There
is more than a suggestion that the outermost point is low,
and furthermore, lower than the prediction of any of the
isotropic models. As expected from the three-component
models, those models which achieve fits by an extended
or dwarf-heavy mass function have velocity dispersions
that do not fall off significantly with radius until nearly
the limiting radius; models 11, 12 (x = 2, peak at 0.23)
and 16 (x = 3) exhibit this behavior strongly and do not
fit the run of velocities at all well, though their mass-
to-light ratios are acceptable. Model 3 is essentially the
model of Da Costa and Freeman (1976), which fits the
velocities acceptably, though not well, and is more than
20 deviant in M/L (1.45 for the model population versus
1.89 derived from the dynamics). All the x = 1.3 models
with massive white dwarfs have such distorted cores that
no reasonable fits to B(r) are obtained, as is true for all
the x = 2 isotropic models with the full complement of
1.2M o white dwarfs.

The x = 2 models with anisotropy are more promising;
models 7-9, all with & = 15 and the mass peak at
0.33M g, all fit reasonably well both to a(r) and B(r).
The core fits are somewhat disturbed by the heavy white
dwarfs, but not too much so. The “best” one is probably
model 8, though that statement reflects aesthetics rather
than statistical significance. When the mass peak is
moved out to 0.23M, & = 15 is too small, and the
models become too extended. Isotropic models will fit
B(r) if there is not too much mass in heavy remnants, but
the velocity fits are very poor. Anisotropic models with
£, = 30 have better velocity fits, though only one (half
1.2 white dwarfs) gives an acceptable B(r) fit.
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The x = 3 models only yield fits with isotropic velocity
distributions; the number of white dwarfs is sufficiently
small that the models are not affected very much by their
distribution among mass classes. Such a steep mass
function would seem to contradict the star counts, and
in any case yields very poor velocity fits.

Thus the dynamics seem to favor a value of x of about
2 and a mildly anisotropic distribution function, with a
transition radius of 15-30 core radii. The best velocity
dispersion fits come from the smaller value with a mass
function peaking at masses somewhat higher than
03Mo.

b) The Core and Heavy Remnants

It is clear from the behavior of the core that no more
than about 2% of the cluster mass can be in nonluminous
stars as heavy as 1.2Mo, and that much is already
stretching the uncertainties in the core shape. For rem-
nants more massive yet, the restriction is even more se-
vere. If x = 2 or larger, there is no problem, because
massive stars were sufficiently rare that neutron stars
from stars more massive than 6 M o, say, could still be in
the cluster, though even for x = 2 black holes from stars
more massive than 10M g, with little or no mass loss,
would not be allowed. If x is as small as 1.3, the situation
is very severe, and we are allowed only a very small
fraction of the heavy remnants (1.2M o white dwarfs and
neutron stars) that should have been formed. For x as
large as 3, there are no strong constraints.

c) The Outer Envelope and the Form of the
Distribution Function near the Cutoff

The tidal cutoff radius of the cluster poses a problem
for some of the models. The Roche radius at the present
position of the cluster is about 200 pc for a cluster of
mass about 6 X 10°M o, and this is embarrassingly close
to the predicted limiting radii of the & = 15 anisotropic
model. We do not know, of course, where M3’s periga-
lacticon is or how the Roche radius at perigalacticon is
related to the model cutoff, but it would be somewhat
surprising if M3 were just at pericenter now.

The form of the light distribution at very large radii,
however, is very sensitive to the exact form of the energy
cutoff in the distribution function, as was shown by King
(1966). Relaxation processes in the outer parts have been
far too slow to do anything to the stars left over from the
initial violent relaxation, so we should not be surprised
if the models predict embarrassing behavior at very large
radii. In a sense, the rather large amount of effort that
has been expended to find the form of the distribution
function at high energies resulting from two-body pro-
cesses has been in vain, because most of the high-energy
stars have not had time to participate in such processes.
It is not at all clear that other processes inherent in in-
homogeneous systems (e.g., evaporation from the core)
do not dominate the evolution of the distribution function
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at large radii—cf. the papers by Spitzer and collabora-
tors (Spitzer and Shull 1975 and references therein).
The existence of the two high-velocity stars, in fact,
indicates that the distribution function is very much more
populous near zero energy than the form we have chosen
would indicate; the probability of their being unique is
very small, and such objects could comprise a large
fraction of the population at large radii. Any such
modification of the distribution function would increase
the need for anisotropy at large radii, since slower cutoffs
result in more convex mass distributions (King 1966).
The subject is one which we feel is worth pursuing; our
numerical scheme is one in which modification of the
form of the distribution function is difficult, so we have
chosen not to explore the question in detail here.

d) Rotation

It would perhaps be well at this point to make a few
comments about rotation. M3 in projection is quite
round, which suggests that rotation is not of dynamical
importance, but one should check. The question is what
rotation law one should look for; solid body rotation over
the whole body of the cluster is easy to test for, but the
likelihood that the cluster rotates as a solid body is rather
small. A linear regression yields a solid-body rotation of
8.3 X 104 kms~!arcsec™! in a position angle of 80°, or
a maximum rotation velocity of 0.8 kms~! at a radius
of 1000 arcsec, the maximum radius to which we have
velocity data. The 1o uncertainty in Qis 1.6 X 1073, so
the solid body rotation is neither important dynamically
nor statistically significantly present. We will show in
a subsequent paper that a simple class of dynamical
models with rotation predicts a rotation angular velocity
that is proportional to the square of the tangential ve-
locity dispersion in the cluster, so that the central regions
rotate as a solid body but the rotation falls to zero as one
approaches the boundary. The fits to such a rotation law
depend a bit on the cluster model but typically yield a
central value of Q of about 2.8 X 103 kms—!arcsec™!,
with the axis in a position angle of about 110°. The
maximum rotation velocity is about 1 kms~! at about
30 core radii, and again the rotation is not dynamically
important, though it is probably real.

e) Anisotropy

We have seen that the best fitting models are aniso-
tropic with transition radii at about 15 core radii; needed
modifications to the high-energy end of the distribution
function should make the transition radius even some-
what smaller. The deflection relaxation time for model
8 is equal to the Hubble time at about 6 core radii. The
relaxation time at 15 core radii is about an order of
magnitude longer. We have argued that the decay of
anisotropy at a given radius is influenced mostly by the
value of ¢4 near that radius, but without detailed calcu-
lations it is not clear whether relaxation processes at 5r,
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can determine anisotropy at 157.. It is clear in any case
that the anisotropy radius could not be very much
smaller than it is without conflicting with the cluster
age.

f) Relaxation

The central relaxation time [cf. Eq. (38)] is about 1.0
X 108 yr for model 8. (It is somewhat shorter for models
with a full complement of 1.2M white dwarfs and
flatter mass functions, but those models do not fit well.)
The half-mass reference relaxation time #,, defined by
Spitzer and his collaborators (see, e.g., Spitzer and Shull
1975, Lightman and Shapiro 1978),is 1 X 1019 yr. (The
half-mass radius is about 17 pc.) Since core collapse and
evaporation occur on a time scale of several ¢y, one ex-
pects no significant consequence of these processes on
M3 as it is at present. It is not clear whether the mass
function we have adopted is subject to the Spitzer seg-
regation instability (Spitzer 1969), but if it is even that
relatively rapid process probably has not had time to
proceed far. The relaxation time is short enough that the
assumption of thermal equilibrium (if there is no insta-
bility) is probably a good one, at least for the inner half
of the mass. The density-averaged relaxation times de-
fined in Eq. (37) are shorter than the Hubble time for
the first three mass classes; the times for mass classes 4-7
are 2.5 X 1019, 6.3 X 1010, 1.3 X 10!!, and 2.4 X 10!!
years, respectively.

These increasing times mostly reflect the relative
avoidance of the core by these light stars. The distribu-
tion in the outer parts is not very different, as is shown
in Fig. 9, where the projected density profiles are shown
for model 8 for several mass classes. It is interesting that
in the outer parts the velocity dispersions of all the mass
classes is very nearly the same; at 30 core radii, for ex-
ample, that for class 7 (0.13M ) is only 15% larger than
that for the giants. Thus the cluster dynamics in the outer
part is very much the same, whether one assumes com-
plete thermal equilibrium or only the velocity relaxation
expected from the initial violent processes.

IX. CONCLUSIONS AND SUMMARY

We have measured the velocities of 111 stars in the
globular cluster M3, with characteristic accuracy ~1
kms~!. These data, as we have seen, are consistent with
the absence of spectroscopic binaries in the cluster, but
probably require stochastic atmospheric motions of a
fraction of a kilometer per second for their successful
interpretation. Two stars of variable velocity are known
pulsating variable stars; two other stars of constant ve-
locity stand 3.5 and 4.5 times the cluster velocity dis-
persion from the mean and are considered separately in
the analysis.

We have adopted an age of 15 X 10° yr, a helium
abundance Y of 0.25, and a modulus of 15.08, based
mostly on evolutionary models by Ciardullo and De-
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FiG. 9. The projected densities for each of the mass classes in model
8.

marque (1977) and atmospheres and synthetic colors by
Bohm-Vitense (1973). The Sandage (1957) counts, in-
terpreted in the context of these same models, yield a
main-sequence luminosity function slope x of about 2.0,
a value which is supported by the dynamical models.

“Thermal equilibrium’ models of the King-Mitchie
type have been constructed, which successfully represent
the observed light distribution, fit the input mass-to-light
ratio, and fit the run of velocity dispersion with radius.
The models which fit best have a few remnants (probably
white dwarfs) heavier than the current giant mass
(~0.79M ), but a limit of about 2% of the cluster mass
can be in such objects, and that limit goes down as the
mass of the remnants goes up. (We assumed 1.2M ¢ for
their mass.) The extremely low radial-velocity dispersion
in the outermost parts of the cluster requires that the
velocity distribution function become anisotropic there;
the transition radius is probably about 15 core radii.

The existence of two high-energy stars indicates that
we have imposed too rapid an energy cutoff in our as-
sumed form for the distribution function. The existence
of these stars and the concomitant slow energy cutoff
pose something of a puzzle, since the frictional slow-
ing-down times are embarrassingly short for such stars,
and there is no reasonable mechanism for producing such
high-energy objects by diffusion or by binary encoun-
ters.

It is perhaps important that models can be constructed
that have simple dynamics and fit all the observed pa-
rameters quite well without appeal to any “missing

mass” or any ad hoc species other than white dwarfs.
These one expects as a result of evolution from a mass
function that is consistent with the one indicated for the
present main sequence.

The mass function we derive is similar to the one found
by Schmidt (1975) for the high-velocity stars in the
Galaxy, and it is tempting to say that the population I1
mass function is probably steeper than the one in the
disk. On the other hand, Da Costa (as reported by Free-
man 1977) has shown that in four nearby southern
clusters, the mass functions are quite different, with x
ranging from ~0 to ~3. Both he and Illingworth and
King (1977), in considering dynamical core models
based on central velocity dispersions, found that more
white dwarfs or other dark objects of similar mass were
required to fit the derived core mass-to-light ratios than
could be produced by even the flat mass functions as-
sumed. A steeper mass function would help that situa-
tion, since the missing white dwarfs of 0.4M-0.6M o
are partly replaced by faint main-sequence stars in the
same mass range, though there are, of course, even fewer
white dwarfs predicted. It is doubtful whether the dis-
crepancy can be removed, but in some cases the small
value of x seems quite certain from direct observation.
There seems little doubt that the mass functions do vary;
whether or not some clusters have “missing mass” re-
mains for more detailed dynamical study to ascertain,
but M3 apparently does not.

A number of problems remain, which can reasonably
be answered by other observations and more astute
theoretical work. A great deal of recent work on the ev-
olution of clusters via two-body relaxation casts doubt
on the applicability of the thermal equilibrium models
used here. [See the excellent recent review by Lightman
and Shapiro (1978).] One great failing of the work done
so far is that stellar evolution, with the evolution
downward of the mean mass per star, has not been con-
sidered and may well dominate, or at any rate drastically
modify, the course of such evolution. Our mass function
is, of course, amenable to direct confirmation; counts to
V = 26 can probably be made from the ground with large
telescopes and CCDs; this corresponds to My = 11, or
a mass of 0.3M . The space telescope should do about
a magnitude or perhaps even two better yet.

Our results on anisotropy and its probable presence
seem at variance with those of Cudworth (1976) for
another cluster from proper motions; our inferences are
quite indirect, of course, and his (in principle) quite di-
rect, though the problem is very difficult. It is possible
that M92 is isotropic and M3 not, but that seems un-
likely, especially since M3 is, according to our results,
almost maximally anisotropic consistent with the de-
flection relaxation rates.
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