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STELLAR DYNAMICS
ExAcT SOLUTION OF THE SELF-(GRAVITATION EQUATION

D. Lynden-Bell

(Received 1961 November 1)*

Summary

A method is given for the discovery of models for unrelaxed, self gravita-
ting, axially-symmetrical, steady-state stellar systems. The main problem
solved is to find the distribution function corresponding to an observed
density variation. The method is applied in a simple case to give a
one-parameter family of such exact models. Finally the  relaxation
condition ”’, that there be no star streaming but only rotation, is imposed.
The density of the system then specifies it uniquely. We are thus able to
give an exact description of models for rotating flattened globular clusters.

Introduction and notation.—Jean’s theorem (1, 2), when applied to axially-
symmetrical stellar systems with no further symmetries (3), gives the form of a
steady-state distribution function as:

f=f(E,=.)
where we use the following notations:
r=(x,y,2)=(R, ¢, 2)=(r, 0, $) are the coordinates in Cartesian, cylindrical
and spherical coordinates. In all cases O, is oriented along the axis of symmetry.
c=(u, v, w)=(czc,w) is the velo?ity (being coordinates in phase space)
fdBc d% is the mass of those stars within the phase space box:
r, rt+dr
¢, c+dc.
4 is the gravitational potential.
'y is the gravitational constant.
p is the gravitational mass density.
w,=xv—yu= Re, we shall refer to as the angular momentum.
E=c%/2— we shall refer to as the energy.

Note that the mass is omitted from these last two quantities.
For self-gravitating systems the equation

V= — gy | . (G~ Rey) e (1)

tells us that the gravity field arises from the stars.

* Received in original form 1961 July 17.
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If we knew f, then (1) would give us a most unpreposessing equation for
P(R, z). However the data* of unrelaxed stellar dynamics tell us about p,
rather than f. We shall assume that it is possible to obtain the space density p,
and to form from it the potential ¢ to which it gives rise. We will thus have

V)= —4myp. (2)

If instead of expressing p as p(R, 2) we express it as a function of R?, i, then
(1) and (2) give
2
o) = [, f(5 —hRe ) G)
5 <v 2

From a more theoretical standpoint we may try to find possible models by
guessing a reasonable functional form for (R, 2) containing several parameters.
We may then differentiate it, as in (2), and assure ourselves that it does indeed
correspond to a reasonable non-negative distribution of mass. We would then
have p(R, 2), and, by expressing =z as 2(R?, ), we could obtain p as a function of
R?, . The eventual aim of this type of procedure is to find an exact model
containing several parameters which we may choose to fit observed systems.

We thus take p(R? /) as known, either from observation or from theory.
The crux of the problem now lies in the solution of (3) regarded as an equation
not for ¢, but for f.

Method of solution.—If there is one solution to (3) (for given p(R?, i)), then
there will be many, obtained from each other by reversing the sense of the motion
of any of the stars. Such a process is equivalent to the addition to the original
solution, f,, of an increment, Af, antisymmetrical in =, :

Af (Byw,)= —Af(E, —w=).
fi=fo+Af has the same density as f, since
f Afdic= o by symmetry.
f=¥fo(E,w,)+fo(E, —w,)} is a solution symmetrical in w, from which the

general solution may be obtained by adding any antisymmetrical bitt. Thus we
need only study the symmetrical solutions f(E,w,?) which will satisfy

pR= o J(5 - Res) @
We write =c¢,%+¢,?, %2- —¢=X and obtain
p(R2, ) = 4 f ’ ¢ f ;/m f (52—2 +X, R2c¢2> dc, dX.
Differentiating with respect to i,
585% = 4m f ;/27' f (%F_ ) R%f) de,. (5)

* Brightness distributions and velocity curves for galaxies are the most that one can normally

hope for. p can be obtained if mass/light ratios and axial symmetry about an axis of known orienta-
tion are assumed.

1 This must not be so large that the total f;=f+ A f becomes negative somewhere.
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2
Write % =Y, and define a new function
_ E, 477f (E W, )
g( 2 ) '\/"w'z

Note that the finding of g solves the problem since
I
f= :I;'T |zl

Using the above definitions, and multiplying by I%WC have
Lo _ f 2(f— Y, YR?)dY.
R 3

Linear integral equations with difference kernals can often be solved by Laplace
Transformation. 'The occurrence of iy — Y suggests that method here.

fo _w;gzd‘b f "“"J g~ Y, YR?) dYdy.

‘We may extend the range of the ¥ integration from o to oo, and defineg( — E, w ;%)
to be zero for E> 0. We shall then reverse the order of integration and write the
result in the form:

© I 0p f“ f"" —s(—
e _ L df = e—sY —Y,YR2)e—s¢-DD g dY.
[Temgtar=[ e[ su ) 4

Since g is zero for s < Y we may write this in the form

fw e RP g - f“’e—z%tf“’ e—*Bg(B, 1)dB dt,
0 o 0 0
where B has been written for s — Y and ¢ for YR2. If we now write R?= 5 we

obtain (remembering p =p(R?,))

f me—w(;)llz ap(s¢) & = f et f ¢~$2 g(B, 1) dB dr.

0

The r.h.s. is the Laplace transform of g with respect to each of its variables so we
write it g(s, #) Thus:

) |
% (0 u) = fco _w(:)llzap< ¢‘>d¢

o

[ ()

We have to reverse our Laplace transformations to obtain g and hence f. In
practice, rather than rely on one’s own contour integration, it is simpler to use
the accumulated brilliance of others compiled in a table of inverse Laplace trans-
formations. With a little familiarity such tables can give immense power even
in situations of great complexity*.

(6)

Y

* I have found tables of integral transforms Vol. I Bateman project, A. Erdelyi, McGraw-Hill,
1954 very useful.
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We now give a particularly simple example to illustrate the: method.
H. C. Plummer (4), investigating density laws for the globular clusters, found
the law . poc(r2+4a?)52 gave good agreement with the observations except
possibly at the centre. Eddington came to the same conclusions, and attempted
to find a satisfactory theoretical basis for this law. It is not our aim here to
justify this law, nor yet to consider the detailed dynamics of clusters in which there
is considerable interaction. However, we mention the globular clusters to show
that the non-spherical modification of Plummer’s law is not merely an
academic problem. The potential corresponding to Plummer’s law is

h=A(r*+a?)7, (7)
We generalise this to a flattened system by trying
p=AN"U* where A=(r?+a?)*—2b%?sin?0 | (8)

(A is always positive provided 5% < 2a?).

Direct calculation of p= — 4——— V2 glves
Ty

p= % A-94[(30% — 2b%)(r2 + @2)2 + (4a° — B2)b%® sin? ], (9)
v

which is everywhere positive provided 52<$ae® Contour maps of two such
distributions for different values of b/a are given at the end of this paper. Note
that on the axis Plummer’s law remains exact. Expressing p as p(R?, ) we obtain

p=Dys+ CRS,

where D = (3a2—-262/A47-ry) and C = (56%(2a®> —b%)/A%my) are both constants.
Forming the expression requlred in equation (6),

s

s [ - e

o u

If we define (n+3)!=T(n+3)=n+3)n—-3)(n—-3)...3.1.4/7. Then we
may write the inverse Laplace transform of #—"~12 as #»—12((n—})!)~1. Thus
performing the inverse transformation on # we have

&(s,t)=n"12(5 | s~44¢-12D 4 gl 2 s~TH112C),

Performing the inverse transformation on s we obtain

g(B,t)=n"12 ( ( 5%)|B+3*t—1/2D + (% )2, B+6%z1'2c>

whence f(E,‘CO’z2) = i’ I‘GJ' Ig (—' ’m_;z_z) (IO)
g ° 2

=Fy(f—?[2)% + Fow 2 — *[2)%,
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where F; and F, are the constants F; = \/2 st D~o-65D
472 311

«/‘9 ~ 12-
F, = 4773’26%'0_1230'

Thus (10) gives the distribution function symmetrical in =, which corresponds

‘to the potential (8) and the density (9).

The general solution of (3) for f is of course

fa=f+4f, (11)

where f is given by (10) and Af(E,w,)= —Af(E, —w,) is otherwise arbitrary
provided

f+Af>o0 everywhere. (12)

We now list the properties common to all clusters with distribution functions
f5 of the form (11). These quantities are plotted graphically at the end of the
paper.

Potential: =AX"1 where A= (r?+a?)?—2b%?%sin?0 mass Afy; radius a;
‘‘flattening ’’ b/a. Note b/a increases as the system becomes flatter.

Density : p= 4 A% {(3a2 — 2b2)(r2 + a%)% + (442 — b*)b?r? sin? 0}
my
= D>+ CR%)?,
where 342 —2b* 5b2(2a2— b%)

o and C = Ty

Distribution function: fo=f+Af

D= are constants.

where f=Fi(p—c2[2)2+ F,R%c (s — c?[2)1312
F,~065D, F,~12:3C

and Af is arbitrary but antisymmetric in @, and subject to f+Af>o.

Velocity dispersion: opl=o0 2—gb/()l: - -2-—C—Ri (x3)
2, [,9
1f6p6¢f2d3c=%=0‘¢2+(C_¢,)2=a7&/6l:1+ &C—Ri:l . (14)
p 5 p
Mean velocity : Cp=C,=0
I Be =t [ Afgs
c¢—; s c—/; c Af d3c. (15)

This rotational velocity depends on Af and thus can not be determined without
some further knowledge or assumption.
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The virial theorem.—The cluster whose density distribution obeys Plummer’s
law is the only spherical system which obeys the virial theorem locally in the
form: ‘‘Mean kinetic energy in any small volume is 1/4 of the energy required
to remove that material from the cluster (5)*.”” Our models also have this

property.

—_— I
bplog* ol +oi+ (@)) = L pb-

Integration over the whole cluster gives "=}V, the virial theorem. Eddington
found no underlying physical significance to the ‘‘local virial theorem’’. He
was probably misled in believing that Plummer’s law fitted globular clusters
better than modifications of the isothermal gas sphere (9).

The relaxation condition.—The cluster with distribution function (10) has
¢,= o by symmetry and hence o,2=4/6 [1+ (4/5)(CR*}®/p)] whereas we still have
opl=02=/6[1—(2/5)(CR%}°/p)]. Itis clear that this cluster is not flattened by
rotation (since it has none) but by circumferential star streaming (2). This
seems unnatural, and it is not clear how such a system could be set up cosmogoni-
cally. We wish our clusters to be flattened by their rotation, not by their star
streaming. We must formulate what we mean by this. The whole concept of
a flattening that a rotating system ought to have is meaningless unless some form
of relaxation is assumed. We shall take as our minimal requirement the existence
of an isotropic pressure. That is, we shall take o3?=0,2=0,% From (13) and
(14) this implies
6 CR%®  C R0
P 5 pP

The circular velocity.—Thus assumption of the relaxation condition leads to
the velocity law

¢y =RfPp=1%(C/[5)12. (16)
This virtually completes all that we wish to know about the cluster except for

one thing: whether or not this velocity law is possible. We require (16), but we
also require (15). Thus we must find a solution Af of

i f Afe,d%c = Ri5p—1(C/5 )12 (17)

which satisfies the conditions (12).
Multiplying (177) by Rp, we obtain

f L(E,w 2)d% = K(R?, ) (18)
et <2

where @ Af(E,w,)=L(E,w,?) (note that the antisymmetry of Af implies the
symmetry of L), and
K(R2,3)=(C[5)"2R¥"V p(R2, ) = (C[5 )V2R5[ D5 + CR¥°]'2.

* Perhaps more suggestively the R.M.S. velocity at any point is one half of the velocity of escape
from that point (assuming stars of equal mass).
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Thus K is known and L is unknown. (18) is an integral equation for L of exactly
the same form as equation (4). We can thus use our general method to solve
for L, and hence to determine Af uniquely. We have only to verify that f+Af>o
everywhere to justify our relaxation condition and our velocity law (16). The
rather complicated form of the known function K leads to rather messy mathe-
matics for the determination of Af. As this is out of keeping with the body of
this paper we give it in the appendix.

The shapes of the clusters.— Ay and a may be used as units of mass and length
respectively thus the densities (9) have only one true ‘‘shape’’ parameter b/a.
For o< b%/a%*<(9—1/33/8)~0-4065 the system becomes progressively flatter as
b?/a? increases and the maximum density is attained at the centre. However for
b?/a® > 0-4065 the maximum density occurs on a ring in the plane of symmetry
and this ring increases in diameter as b%/a? increases. (This is the continued
flattening). At b%/a® = 3/2 the density on the axis vanishes and no further values
can give real systems as the density becomes negative in places. It seems
unlikely that these toroidal systems with 3> b%/a%> 0-4065 can be stable.
Certainly the similar equilibria of the rotating liquid are not (7, 8). We shall
therefore restrict our considerations to the range o < b%/a?<0-4065. In particular
we draw graphs for the cases b?/a®>=1 and b%/a*=0-4.

Discussion of the general method.—We have shown that, given a density distri-
bution p, we can find a distribution function f (E,w,?) for any axially symmetrical
system. However we have no guarantee that the f so obtained will be positive.
If it turns out not to be, then the given density distribution is not that of a steady
stellar system. Thereis however an exception. Densities arising from potentials
of Eddington’s type (6, 3)

lp:M
—p

(¢ and v arbitrary, A and u spheroidal coordinates) have a third isolating (2)
integral I,. 'That is a third independent of E and w,. For these systems Jean’s
theorem is not so restrictive and we may have f=f(E,w,,[;). It seems very
likely that the equation

(55 v%) =p(Re) = [£m, L e
4y

where p is given will have an infinity of symmetrical solutions for f. This is
because we have shown there is a solution even when we restrict f to be inde-
pendent of I;. This equation has no solutions* when the ellipsoidal hypothesis
is assumed (6). Without this assumption we find on the contrary that there are
an infinity of self-gravitating systems of Eddington’s type for any one Eddingtonian
density distribution—a somewhat ironical result.

We note that in the absence of these Eddingtonian systems we can find out
more about the distribution function of a flattened system than we can for a
spherical one. It is necessary to get an almost ‘‘edge on’’ system with known
light distribution and known tilt (< 10° from the line of sight say). For the
problem to be of interest the velocity dispersions must not be small; thus, unlike
most spirals, the system must not be predominantly flat. If, further, we find a

* Except for solutions independent of I; and for spherical systems.
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dense system, in which star—star interactions are not negligible then it is reasonable
to assume the relaxation condition. Knowledge of the density distribution then
determines the distribution function uniquely except that one further observation
is needed to determine the sense of the rotation. ‘
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APPENDIX

We have to solve (18) for L, to find Af, and finally to show that f+Af>o.
K can be written (D/[4/5) «¥2R%™ (1 + aR%*)V2 where a=C/D. We would like
to expand K as an infinite series since we are unable to perform the operations as
it stands. We therefore investigate the range of aR%}* in the hope that it will
always remain <TI.

R2J* achieves its maximum on 2=0 and where R=a as may be found from
. A
is =)
bZ
2(372_7)2_) <1
provided b*/a® < 2/3. In particular for ?/a®=o0-4, the greatest value of interest to
I
22

the formula J*=A44((R®+22+4a%)?—2b%R?*)~L. Its maximum

Thus using the definitions of C and D we find aR2¢4<

us, we have aR%JA < It is thus safe to expand K which gives (18) as

f L(c[2—, ch¢2)d3c=gR2a,lx7* (I + § 3.-3.-% -' . (3—n) (OLR2¢4)n)
c/2 <y, 1 n!
where.q=D+/(«/5).

The series on the right is absolutely and uniformly convergent over the range
of interest. Defining a new function

2 L(E,w,2)
G —E,&> _ 47L\L, )
( Vw2

2

our general method tells us that, as in (6),
2 SB[ g
Glo) = T [ K (s ) e e

That is

Gl u)=qv7 [ sou-n(3.3. ...73) +

+ i::% -3 gn ...(%—n)%,g. ...(4(n+2)_%).ans—3(n+2)

u'n+3[2

!
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If we invert the Laplace transformations term by term in both # and s we obtain

1B
2

G(B t)= qtlJZ(%_%_S__'I_.
v -4 —-%. .. G-n)5-§. ...4(m+2)—3)) .npents
T2 nl(3.%. . (ﬂ+%‘))(3n+5)l E +)

B>

2
From the definitions of I and G we find Af (B,w,) =122l G(-E,‘?).

4m,
= Gl
S ——

Convergence etc—The maximum of R2Cp2/z (f—c?/2)® occurs where
¢?=¢,2=4/2 and is therefore 27/256 R*/*. But we showed that for b*/a*<o0-4,
OLR2¢4 achieved a maximum of <1/2-2. Instead of the variable {oaw 2B3 it is
sensible to use a variable p whose maximum is 1 or less. We therefore define

—_ /\/256 22 T Bs/z
27 2
3 15 1/2
Af(~ B,w,)=DB" 2_%___1(_2_7___) »

(i sl Shbotenod) (cm Y
$.%....29 n'( —1)(3n+5)!  \256 22

By taking the ratio of the nth term to the (z+ 1)th term it is now possible to verify

that the series is still absolutely and uniformly convergent in the range p?2< 1 and

behaves like a geometrical progression with typical term A(—p?/2-2)*. For
comparison purposes we write f in the same notation

B2 =DB V25! 9.8.7.6 27 p?
fBm)=DBm At (e e 1

Calculating the coefficients by slide rule, we find

Thus

NIR

We may then write Af

fo=f+Af=DB"2(0-650+ 1-03p + 1-17p*+ 0-316p> — 0-58p% + 0-013p" +...).

All remaining terms are odd in p. They decrease in magnitude and alternate in
sign so that their sum is bounded between the p® term and the p? term for all
|p|<1. Putting f,=DB"2M(p) we find that in the range |p| < 1 M(p) has a mini-
mum near p= — 055 where it takes the value +0-37. (It takes its maximum
value of 3-11 at p=1.) Thus it remains positive throughout the range.

31X
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(a)

o ha a

(b)

JScale

S
o (;/2 a

-

1 bYa?= 0.25

¥1c. 1.—Density (mass per unit volume) in two models for flattened clusters. (Density contours
with contour intervals of one-tenth the central density.)
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4] T id 31
a QR

F1G. 2.—Velocities in the clusters with  flattenings > as indicated, plotted in units of (A/6a)*/2.

¢é» local mean circumferential velocity on the equatorial plane z=o.

0= OR=0p= 0y, dispersion of velocities in one of these directions (on z=o0).

A/ ($/6) the value of (o*+(cg))'/? on z=0 (a velocity corresponding to the local mean kinetic
energy per unit mass).

31*
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0 o E{

T
17

Fic. 3.—Densities on x=o0 and R=o0 respectively, plotied in units of (3—2b*la®)A|nya®.
pp'V, density on the plane z=o, b*/a*=o04.

pp'?, density on the plane z=o, b*la*=o025.

p 4, density on the axis (all values of bla) also the density on the plane for bja=o.
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