FT972MRAS. I57- -1 T

Mon. Not. R. astr. Soc. (1972) 157, 1-30.

ON THE GENERATING MECHANISM
OF SPIRAL STRUCTURE

D. Lynden-Bell and A. J. Kalnajs
(Communicated by the Astronomer Royal)
(Received 1971 December 29)

SUMMARY

Flat galaxies want to transfer their angular momentum outwards. Only in
trailing spiral structures do the gravity torques carry angular momentum
outwards.

We show that the presence of waves lowers the angular momentum in the
inner parts and increases it in the outer parts. Further there is absorption
of angular momentum by stars that resonate with the wave at the outer
Lindblad resonance, and at corotation. Emission of angular momentum
occurs at the inner Lindblad resonance. The role of spiral structure is to
carry angular momentum from the inner parts to the outer parts so that the
waves may grow.

We consider bars in galaxies to be standing waves which have grown
enough to orient and trap the major axes of orbits with two lobes so that they
lie along the bar.

I. INTRODUCTION

If spiral arms were material structures they would wind up in a time scale of
a few times 108 yr. The large number of reasonably open spirals which must be of
greater age suggests that spiral structure is either a recurrent gravitational in-
stability (1), or a wave phenomenon. The latter possibility was investigated by
Lindblad (2) and by Kalnajs (3) but the systematic development of the wave idea
into a coherent picture is due to Lin, Shu and their collaborators (5)—(x0). There
is some direct evidence for propagating waves (1), and it seems likely that the
wave idea is correct.

However, the theory developed so far puts in a spiral at the very beginning.
In a sense it gives no answer to the question ‘why are galaxies spiral at all?’.
Furthermore in a shatteringly destructive article Toomre (12) has shown that if
one adopts all the approximations of the Lin—-Shu theory and lays down a spiral
wave form initially then its propagation will lead to a winding up of the spiral
in 109 yr or so and to its movement on to a Lindblad resonance. Here it may or
may not be absorbed. Thus the theory as originally formulated is seriously in-
complete and does not even account for the maintenance of the spiral wave for
long times.

To save Lin’s wave programme it is necessary to supply a generating mechanism
for the waves. In an attempt to do this Lin (8) has followed up ideas originally due
to Julian & Toomre (13) who looked at waves generated by masses in circular
orbit. Lin’s idea is that such waves are reflected from the inner Lindblad resonance
as long waves which return to reinforce the original mass clumps.
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Another mechanism has been suggested by Toomre (14) who is impressed by
the fact that many of the finest examples of spiral galaxies have quite close com-
panions. In a number of cases he considers that the gravity field of the companion
causes the tidal wave which generates the spiral structure. However this idea,
which may be traced to Jeans’ speculations, probably does not apply to all spiral
galaxies. Lindblad (2), and both of the authors (3) and (15) have all looked for a
generating mechanism for spiral waves connected with stars that resonate in the
spiral wave and we have criticized the work of Lin for neglect of those terms
which can lead to angular momentum transference between stars and the wave (16).
Contopoulos (7) has also made detailed studies of both stellar orbits close to reso-
nance and the sense of spirality of waves growing there.

Waves themselves have angular momentum density which we show to be
positive in the outer parts and negative in the inner parts. For growing waves there
must be a transfer of angular momentum and in the limiting case of slow growth,
absorption and emission of angular momentum are confined to stars whose orbits
resonate with the perturbing field.

Resonances occur where the forces on an orbiting star due to the spiral wave are
constant, or where their period is the same as the natural period with which a star
oscillates about a circular orbit. The principal forces felt are constant at the corota-
tion circle where the spiral wave rotates with the same angular velocity as the
galaxy. As one moves inwards or outwards from that circle the frequency of the
forces experienced by a star in circular orbit increases. When we have moved far
enough inwards that frequency may achieve the natural epicyclic frequency and
there we find the inner Lindblad resonance. The outer Lindblad resonance occurs
outside the circular resonance where there is a similar coincidence of frequencies.

Kato (17) recently calculated the crucial angular momentum transfer on reso-
nance by a method that parallels some of our calculations of Section 4, and we
agree in his important conclusion that the work done by stars at the resonances
may excite the wave which transfers the angular momentum. No appeal to gravita-
tional instability in the outer parts nor to orbiting companions is then needed.

In the current enthusiasm for theories of spiral structure it is often tacitly
assumed that the spiral gravitational potential perturbation coincides with the
spiral as seen in H 11 regions and young stars. We would like to record at the
outset that such coincidence is by no means an obvious consequence of the gravita-
tional theory. Visible spirals may be a symptom of a more open spiral gravity field.

In this paper we first remark on the sense in which differentially rotating
equilibria are minimum energy states for their angular momentum distributions.
We then show that this minimum energy can be further lowered if some non-
axially-symmetrical disturbance can be found which transfers angular momentum
outwards (Section 2). By a study of the gravitational stress tensor (18) of a wave we
show that only trailing spiral configurations transfer angular momentum in the
right direction (Section 3). In Section 4 we study the angular momentum transfer
between a star and a spiral wave. For a steady wave there is no average angular
momentum or energy transfer except at resonances. Expressions for the angular
momentum density of the wave and the angular momentum exchange between the
resonant stars and the wave are then found following Stix’s method for calculation
of the physical picture of Landau damping in a plasma (19). Section 5 considers the
energetics of the angular momentum transference, and produces a mechanistic
explanation for what is happening at each of the principal resonances. For those
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who dislike mathematical details but wish to grasp what happens to enhance the

spiral wave, this may be considered as a substitute for Section 4.

Section 6 considers angular momentum transport by the stars that form the
wave while Section 7 gives a detailed discussion of the preference for two-armed
spirals and a possible picture of the origin of barred spirals. Section 8 considers
secular evolution of the shapes of galaxies.

2. MINIMUM ENERGY EQUILIBRIA

Let & = Rv, be the specific angular momentum. We may ask of any galaxy,
¢ How much mass is there with specific angular momentum in the range %, & +dh? ’.
If we call this mass u(k) dh, then u(h) is the distribution of mass with angular
momentum. The importance of the function u(#) is that it is conserved for general
time-dependent axially-symmetrical oscillations of any inviscid system. The reason
is that each elemental ring of such a system conserves both its mass and its specific
angular momentum during such oscillations. We normally work in terms of the
cumulative distribution of mass with specific angular momentum M (%) where

M(h) = f Z u(h) dh.

(In systems whose specific angular momentum increases outwards MM (k) is the
mass within that place where the value % is achieved.)

As in thermodynamics there is a tendency for isolated dynamical systems to
evolve in the direction of increasing entropy. This is normally done by increasing
the energy of their random motions. In the dynamical evolution of a galaxy between
quasi-steady states which obey the virial theorem, the total energy, E, is fixed and
the total potential and kinetic energies are given by V' = 2E and T = —E respec-
tively. We divide the kinetic energy into the energy associated with the systematic
rotation about the galactic centre and the remaining ‘ random ’ kinetic energy. In
particular we may write

Trot = 3 f B2R-2u(h) dh

where the integration extends over all 4. Because T is fixed any increase in random
motions requires a decrease in Trot. This can be accomplished if mass with angular
momentum moves outwards so that its R increases. This in turn cannot be done
for all masses because V' must remain constant. However V' depends heavily on
masses at small radii from the centre whereas Tyot is more evenly weighted in
radius. A transfer of angular momentum outwards accompanied by an increase in
the radius of the outer parts and a decrease in the radius of the inner parts will
decrease Trot and the random kinetic energy will increase by the same amount.
Non-axially-symmetrical perturbations are capable of transferring angular momen-
tum from mass to mass. The system may then fall toward the lower energy con-
figuration and use the energy so gained to increase its coarse grained entropy (20)-
(22).

It is in this spirit that we ask the important question ‘ How would a galaxy
like to change its angular momentum distribution?’. To study this we ask the
subsidiary question ¢ What changes in M (%) lead to the lowering of the minimum
energy attainable? ’. To get an intuitive understanding of this problem we discuss
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the motion of two particles in a fixed galaxy-like potential. Let the masses be m;
and g, the initial specific angular momenta be 4, and Ag, and the specific energies
€1 and ez. We ask, what is the minimum value of E = m;e; +mges subject to the
constraint that myh; +mohs is fixed at H? We begin by studying the still more
elementary problem: what is the least value of € = §(vg2 +v,2 +h2/R2)—¥(R, 2)
for fixed #? Here W(R, ) is the fixed gravitational potential and for fixed R, ¥
will have its maximum at & = o. Evidently the minimum value of ¢ will occur in
the circular orbit of radius Ry which is the value of R at which $A2R-2—"¥(R, o)
attains its minimum value e(h).

(k2R-3+ 8| 0R)R, = o

is the condition for a stationary value and so the least energy orbit is circular with
centrifugal force balancing gravity. We shall presently need the following results
on the minimum specific energy (k).

e(h) = }h2Ry~2—¥(Ry, o)
¢'(h) = de|dh = hRy~2—(8Rp| oh) 8] ORy(3h2R, 2 —P(Ry, 0)) = hRy~2 = Q(Ry).

Let us now return from the one star problem to the two star problem which
reduces to the minimization of

E = mle(hl) +m2€(h2)
subject to the constraint
m1h1 +m2h2 = H.

Evidently
dE = mydhi€'(h1) +madhae’ (ho)
where
mldhl +modhs = o.
Hence

dE = mldhl(e'(hl)-e'(hz)) = mldkl(Ql—Qz).

Thus energy can be reduced by exchanging angular momentum in such a way
that the orbit of least angular velocity gains angular momentum. Since for galaxies
Q decreases outwards this result means that the minimum energy is lowered if the
angular momentum flows outwards. Although we have only proved this for two
particles the result may be seen to be rather general because introducing viscous
friction into any such system clearly leads to transference of angular momentum
outwards and to the disappearance of energy in dissipation.

Let us note here that if this sense of angular momentum flow is achieved then
the outer parts of a galaxy will move into larger orbits while the inner parts will
contract,

3. ANGULAR MOMENTUM TRANSPORT BY GRAVITATIONAL STRESSES

To have access to the lower energy states a galaxy must find a mechanism of
transferring angular momentum outwards. This cannot be done by axially sym-
metrical motions of a stellar system; they produce no gravitational couples between
the inner parts and the outer parts. To see what form of gravitational disturbance is
necessary we must first introduce the gravitational stress tensor (18). This is the
similar object to Maxwell’s electromagnetic stress tensor. To find an expression
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for the stress tensor one expresses the force density as minus the divergence of a
tensor. Since the divergence does not define the tensor there are many possible
choices, but since all such stress systems give rise to the same forces, any one may
be used and one conventionally chooses the simplest. For gravity the force density
is

pVY = —(47G)"1V2¥VY
where p is the mass density and ¥ is the gravitational potential. Clearly
pVY = —(4mnG) L[div(V¥VY)— (V. V)(VT)]
= —(4nG) 1div[V¥VY - LI(VY.V¥)] = —div[(gg/(47G))—(£3/8=G)I]
where I is the unit tensor §;; and g = V¥ the acceleration due to gravity. Hence
pVY = —div T
where T, the stress tensor of gravitation field, is given by

T = gg/(47G)—(g2/8=G)L

Evidently T consists of an isotropic tension g2/(87G), that is the negative of an
isotropic pressure, together with a pressure g2/(47G) along the lines of gravitational
acceleration. Alternatively, we may say there are tensions g2/(87G) perpendicular
to the lines of gravitational acceleration together with pressures g2/(87G) along
them.

Consider the gravitational torque produced on the outer part of a galaxy by
the inner part. Divide all space by a right circular cylinder centred on the galactic
axis. Then the torque couple will be

C= fo T.dS

where the integration extends over the whole cylinder and dS is along the outward
normal to the cylinder. R is the distance from the galactic axis so R = (x, y, o).

Rx1.dS = RxdS = o, because R and dS both lie in the same direction.
Hence the isotropic part of T does not contribute to the angular momentum
transfer. Thus

C, = (47G)1 f Rg,gr dS.

Here ¢ is the azimuthal angle about the galactic axis.

Although the couple is a quadratic functional of the field, only the non-axially
symmetrical components contribute. We indicate the non-axially-symmetrical part
of g by the subscript 1 and write

C, = (4"0)*1fg1¢gm ds.

Hence only the non-isotropic parts of the perturbation stresses contribute to the
couple. Notice that to get a couple transferring angular momentum outwards, the
average over the cylinder of gi;21r must be positive. Here ¢ is in the sense in
which the galaxy is rotating. Thus, on average the gravitational acceleration field
must have the sense of a leading spiral, which implies that the perturbation equi-
potentials have the sense of a trailing spiral (see Fig. 1). Thus if gravitational
torques are to lead a galaxy to a state of differential rotation of lower energy, then it
must have a trailing spiral structure.
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F1G. 1. Illustrating that the lines of force lie almost orthogonal to the spiral structure.
The torque depends on gr8y which is independent of the sense of g but does depend on whether
its direction trails (like the spiral) or leads. In the diagram g clearly ‘ leads’ everywhere
because of its approximate orthogonality to the trailing spiral.

We record here an explicit example of a torque due to a spiral wave in the
potential. Suppose the wave has the form

¢ = S(R) cos m[p—D(R)] exp — |koz|
postulated in the theory of Lin and Shu.
Then

81y = R104[0p = —mSR1 sin m(¢—®D) exp — | ko3|

and
g1R = f[0R = {S’ cos m(¢—D) +mSP’ sin m(¢— @)} exp — | koz|
Hence
CAR) = —m2RV'S?((G| ko) = m(k/|ko|)RS?G

where & = —m®’ and k = ky, the wavenumber, for the tightly wrapped waves of
Lin and Shu. Note that if @ is negative then the couple on the outer parts, C,,
is positive in the direction of ¢ increasing. Since the form of spiral is given by

¢ = @(R), only trailing spirals have @' negative and only they transfer angular
momentum outwards by their gravitational torques.
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4. ANGULAR MOMENTUM EXCHANGE BETWEEN STARS AND A WAVE

The arguments of Sections 2 and 3 have indicated why spiral structure helps
a galaxy to lower its rotational energy. In this section we shall assume a weak
spiral wave is present in order to see how the stars transfer angular momentum and
energy to and from it.

The equations of motion of a single star moving in the galactic plane under the
influence of a mean axially symmetrical gravitational potential ¥ and a spiral
perturbation i are

R—R¢2 = 3/oR(¥ +)

. (1)
d|di(R?¢) = 0| o
We write
h = R (2)
and
E = YR +12{R?) Y. 3)

Unperturbed motion

Notice that E and % change as the motion proceeds but that they are both
constants of the unperturbed motion (for which ¢ = o). We find it convenient to
introduce new variables which incorporate the idiosyncrasies of the unperturbed
orbits. For unperturbed motion we integrate equation (3) in the form

R
t—tp = f [R]"1dR
where we write R in square brackets when it is to be thought of as a function of
R, E, I obtained by inverting equation (3); to wit
[R] = [2(E +¥(R))—h2R2]/2. (4)

[R] has zeros (of square root type) at the apses of the orbit. On reaching these
the other sign of the square root must be taken and the motion retraces its path.
Thus the radial motion is periodic with angular frequency Q; given by

2m|Q = 3§[R]—1 dR. (5)

It is natural to use the phase of this radial oscillation as a coordinate in place of R
itself. We therefore define the phase w; by

w1 = Ql fR [R]"l dR. (6)

The conjugate momentum to this angle variable is the radial action which is 1/27
of the area of the radial oscillation in phase-space.
Thus

J1 = Ji(E, k) = (2m)L ff [R] dR. (7)
Notice that J; is a constant of the unperturbed motion which vanishes when the
orbit reduces to a circle about the galactic centre. J; is closely related to the square

of the amplitude of the radial oscillations about circular motion.
By combining equations (2) and (3) we find ¢ to be given by
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R
d—do = f hR-2[R]-1dR.

"The ¢ motion is non-uniform because R oscillates. We therefore define a new angle

variable, which changes uniformly, by subtracting off this oscillation.
Thus

R
wy = $— f (hR-2— ChR-2Y)[R]-1 dR (8)
where the pointed brackets indicate an average over one radial oscillation; that is
HRE> = (2m)1 Q1 § AR-2R]-1dR = Q. (©)

Since wp increases with time at the rate (AR—2)> we have written Qg = (AR-2) for
conformity of notation. wi, ws, J1 and A are the angle and action variables that
could have been derived by following the Hamilton-Jacobi formalism. The
advantage of that formalism is the explicit demonstration that w; and J1, ws and 4,
are independent canonically conjugate coordinates and momenta. To acknowledge
this fact we shall write J3 = 4. In terms of our new variables w;, J; the unperturbed
Hamiltonian may be found implicitly by solving equation (%) for E as a function
of J1 and A(= J3). Calling this function Ho(J1, J2) we have the equations of un-
perturbed motion )

Ji = —3Ho/3wi =0 (IO)

7:0—; = aHo/an = Qi(Jl, Jz). (II)

The last equality may be formally demonstrated by differentiating equation ()
with respect to E and % and recognizing the results with the help of equations (4),

(5) and (9).
(3:]1/3E)h == .Ql"l

(12)
(8J1/oh)E = — Qa/Qy,

where we have used the identity (0E/dJ2)s, = —(8J1/0h)E/(0J1/OE )s. A simpler
verification is obtained by realizing that the solutions to equations (11) must be
w; = Qi +2;(0).

The meaning of our variables wy, J; is well illustrated in the special case of
nearly circular motion. [R]? may then be approximated to be quadratic in
R; = R— Ry, the deviation from a circle. With e(%) and Rj, defined as in Section 2
we write

12 = (3h?|Rp?)— (0%¥'| OR®)R,, (13)

@ = o[~ ()]l (14)
and approximate [R]2 by

[R]? = «¥[a?— Ry?] +O(Ry?). (15)

This may be integrated into the form Ry = a sin (kt+«) and we may evaluate all
our other integrals over [R] to find explicit expressions. In particular

qS — </>0 = Qpt+ Z(Qh/K)(a/Rh) cos (Kt + 04) (16)
where Q; = hRy2.

The expressions for the frequencies and action variables in this approximation
are
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Q1 =x, Q=8
(17)
J1 = ika® = [E—e(h)]/x, J2=h
whereas the angles w1 and w; are approximately given by
Ri = R—-Rp=asinw
1 h 1 } (19)
¢ = wa+2(Qp/k)(alRo) cos w;.

Quite generally w; is the phase of the radial oscillation; Jy is a function of its
amplitude; wg is the galactocentric angle to a uniformly moving epicentre and Qo
is its angular velocity about the galactic centre.

Perturbed motion of one star

Equations (10) and (11) show that in the axially symmetrical field ¥ the J;
remain constant while the w; increase linearly with time. In the presence of the
perturbing potential i the orbits will be changed: J; — J;+ AJ;, w; — wy+ Aw;.
Since we are mainly interested in the changes produced we will reserve the symbols
Ji, w; for the unperturbed orbit and express the changes AJ;, Aw; as functions of
the unperturbed position and time. The true position and momentum of any star
will be wi’ = wi+ Aw; and J; = Ji+ AJ;.

The perturbed motion is generated by the new Hamiltonian Hy— 3, and now
Hamilton’s equations read

Iy = = 80wy (Ho—) = oo/ $(J, wi' 1 } (10}
tof = +0[2T{(Ho—y) = Q)= 2L YT, i, ). :

We suppose that the time dependence of ¢ is harmonic and that it was turned on
slowly in the distant past. Thus we write

(T, wi, 1) = R{Y(J3, wi) exp twt}, (20)

with w having a small negative imaginary part. The angle variables are periodic
in phase space with period 2, so we may expand ¢ in a Fourier series

(T, wi, 1) = .%’{(471'2)_1 3 im(T3) exp [i(les + mevg + wt)]}. (21)

The Fourier coefficients iy, are defined in the usual way

27 (27
il Ti) = f 0 f " Ty i) exp [ i(lo-+ )] ooy v (22)
For epicyclic orbits the iy, are evaluated for a particular potential in Appendix I.

First order orbits

If  is small the orbit deflections will be small so we may evaluate them to first
order by computing the forces along the unperturbed orbit. Thus

AJj = AyJy = 8] dwi[(J s, ws, 1)].
The deflection A;J; is found by integrating AyJ 5 over the past of the orbit

¢
Ay = f o dwapp(J s, wi— Qi(t—t"), ') dt'.

-
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With the expansion (21) the integral can be expressed as
Ale = 3x/3wj, (23)
where
= gl exp i (lw1 + mws + wt) .
X(Ji? Wi, t) (4'77 ) Z,Zn:'b l,blm(Ji) l(lgl'i‘mQZ‘l' w) (24‘)

Similarly the first order angle deflections are given by integrating

Aw; = ; 0/ 0J g A1d g — O Ow; = ; 08);] 0 1 Ox | Owy — 0] 0 4

which yield
Aywy = — ox/od;. (25)

Equations (23)—(25) constitute the solution to the first order orbit when one
remembers that the J; are the initial values and that the w; are the unperturbed
angles that vary as ;. We note that the A;J; are periodic in the initial phases
of w; and wg. Thus the average gain of angular momentum of a set of stars that
were initially distributed uniformly in the phases is zero to this order. This indi-
cates that the angular momentum exchange between such a group of stars and
the wave is of second order in the perturbation potential. There are two different
ways of working out these second order terms, exemplified in the different treat-
ments of the similar problem in the physical explanation of Landau damping.
Stix (19) works out the changes in energy and momentum directly to second order,
demanding that the initial positions and velocities be uniformly distributed. He
calculates the rate of working on the perturbing potential directly to second order
by following the particles. Dawson has argued correctly that going to second order
must be unnecessary in a linear problem and he finds a different  purely linear’
but by no means shorter route to the same answer. He implies that all methods
that use non-linear terms must be open to doubt, but this is not the case. The
truth is that the Lagrangian method must be taken directly to second order while,
due to the rotational invariance of the unperturbed state, the Eulerian approach
can obtain a correct second order answer by taking inner products of first order
solutions. Since we find Stix’s method pleasingly direct we shall follow that
method. Eulerian theory gives exactly the same result, see Kalnajs (3).

Second order orbits

To calculate the changes to second order we evaluate the forces along the first
order orbit. Thus we need 0y/ow; evaluated at J;+ A;J; and w;+ Ajw;. The
extra terms over and above the forces on the unperturbed orbit are clearly those
on the right-hand side below

Asdy = ; (A1 58] 0 i+ Ay, 8] dwy) 8] dwwph( T, wi, 2). (26)

We have written AJ; = A1J1+ AgJy, correct to second order. Again the J; and
the w; are the unperturbed values. Equation (26) may be evaluated using equations
(20) and (23)—(25). The result simplifies considerably if we again ask for the change
of the actions of a group of stars which were uniformly distributed with the w;
in the unperturbed state. This we obtain by averaging equation (26) over all
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A 27 (M2n .
hy = (2m)72 fo fo AgJ 2 dwy dws = — }m(w) exp [—2Im(w)](27)~4

| him|?

X Z m(10] 0J 1 +md| o 2) [ mQat ] (27)
The details of this elementary reduction are somewhat lengthy. A parallel calcula-
tion gives (J1’> as the same expression but with the m after the ) replaced by L
In the limit when the potential perturbation is turned on very slowly Im(w) - o
from below and the angular momentum exchange vanishes except at ‘ resonances ’
where |IQ;+mQ2+ w| — o. Thus a steady potential wave produces no secular
change in angular momentum except at these resonances. The changes there are
best considered in terms of the whole distribution of stars.

Angular momentum gain of a distribution of stars

For any flat unperturbed system the distribution function is a function of
energy and angular momentum. We may therefore write it in the form
F = F(Ji, J2). The total rate of change of the angular momentum of those stars
which initially had J3 in any particular range is

ha ©
H = 4 f f COF(Jy, Jo) dJ1 dJs
hy J O

where the integration is over all J; and the range of J3 considered. The 472 comes
from integration over w; and we. Substituting expression (27) for <4) and inte-
grating by parts yields

H = é Im(w) exp [— 2Im(w)?]

6P\ |vum|? Ty
"U f01m (3J1 9J2)|IQ1+ng+w|2dJ2

@ Fl‘l’lmlszl
— 2
z fo [1Q1 +mQa+ w[?

hy

}. (28)
hy
The first integral corresponds to the change in the angular momentum of those
stars that remain in our chosen range %; to Az while the second (boundary) term
corresponds to the angular momentum in that range which is convected through
the boundaries. It is interesting to integrate H from ¢ = — 00 up to ¢ and to take
only the first term so that we get the excess angular momentum for stars in a

specified range of Ja over and above that which they had in the absence of the
wave. Denoting this by 8 we have

SH = —— ' exp [—2Im(w)?]

1672
— oF I Sl‘lml 2dJ,
Jo.
Xf fO I, m (l 3J1+ 8J2) |IQI+mQZ+wl2d 2 (29)

Notice that this gives a definite value when Im(w) — o, even away from resonances.
This represents the angular momentum stored in the stars taking part in the wave
motion. For end points near the resonances where |/Q;+mQs+ w| vanishes, the
splitting into a boundary term and a density term becomes badly defined as both
become infinite. (We shall use expression (29) later for non-resonant ranges of J3.)
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Returning to the expression (28) for H we note that in the limit as Im(w) - o
from below we have

— Im(w)|1Q1 +mQs + |2 > 78(IQ1 +mQs + w)

where 8 is Dirac’s delta function. Thus all the contribution to the integral comes
from the resonances. The boundary term vanishes. We split H into terms arising
from the different resonances by writing

H = lz Hlm
where ’

1 [[®.(,%F __ aF\,, s
Him = 8_;”0 m(zm+ma_h)|¢,m| S(IQ+mQs+w) dJy ds.  (30)

Kalnajs already derived this expression from the Eulerian approach.

Locations of resonances and the senses of the angular momentum exchanges

To see where the resonances are and what they mean it is best to consider a
single m-component of the potential

b =Y um exp i(lwy + muws + wt)
[

and to appeal to the epicyclic approximation in which Q; = «, and Qg = Q, the
angular velocity of circular orbit. Since ¢ oc exp #(m¢p+ wt) (note that ws involves
$) our general expression is a |m|-armed perturbation whose pattern speed
Qp = — w/m. We see that there are resonances whenever Q—Q, = —I«k/m where [
is the positive, negative or zero integer defined by the Fourier decomposition of .
The I = o resonance occurs where the circular velocity € coincides with the
pattern speed Q. Proceeding inwards from this circle one may eventually meet a
circle on which Q exceeds the pattern speed by «/|m|. This will be one of the
|/] = 1 resonances and the other will be found outside the corotation circle
where Q falls below Q, by «/|m|. Indeed the angular frequency with which a
star in circular orbit encounters the potential wave is just w+mQs and when
the star encounters it at zero frequency or at its natural frequency of vibration
about circular orbit we expect resonances. These epicyclic resonances are called
after B. Lindblad who discovered them. At the higher resonances |/| >2 (which
are of lesser dynamical importance) only stars with non-circular motions are
involved. Stars in exact circular motion would encounter the wave at two or more
times their epicyclic frequency but stars already in epicyclic motion still feel a
component at exact epicyclic frequency as they move. Such higher resonances
occur on circles even further from the corotation radius than the Lindblad reso-
nances. It is likely that the outer one of any such pair will lie outside the galaxy
altogether while the inner one would lie close to the nucleus, if it existed at all.
For |m| = 1 the inner Lindblad resonance occurs only for retrograde waves. For
[m| = 2 the resonances are spaced apart by something like galactic dimensions
while for |m| >3 they approach the corotation circle with increasing |m|. The
preference for two-armed spirals is considered in Section 7. We now consider at
which resonance stars gain angular momentum and at which they lose it. We first
note that any reasonable distribution function will decrease as the epicyclic ampli-
tude increases so 9F/dJ1 will be negative. 0F/0Jz will also be negative due to the
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general outward fall-off of surface density in galaxies. Typical values of J3 (=4)
are the radius of the galaxy times the circular velocity, whereas typical J; values
are the size of an epicycle times the non-circular velocity, so J2>J; for typical
stars away from the centre. This implies that | 0F/aJ1| is typically greater than
| F/oJ2|. From equation (30) we therefore deduce that for / # o the sign of the
angular momentum exchange between stars and the wave is the sign of Im. For
l = o the resonant stars gain angular momentum. Now /i is negative at the inner
Lindblad resonance and therefore quite generally the stars at this resonance give
out angular momentum. Similarly stars at the corotation resonance and the outer
Lindblad resonance absorb angular momentum. We deduce that the arrangement
of angular momentum emitters and absorbers is the right way round to enable a
galaxy to lower its rotational energy by transferring angular momentum outwards.

Turning now to the minor terms at the Lindblad resonances we see that
moF|0J3 opposes [0F[0J1 when [ and m are of opposite sign. Thus the secondary
term opposes the primary angular momentum emission at the inner Lindblad
resonance but reinforces the absorption of it at the outer Lindblad resonance.

The emission and absorption of angular momentum by resonant stars is not
dependent on the sense (leading or trailing) of the spiral structure. The gravita-
tional torques can only communicate angular momentum outwards if the spiral
trails, so only trailing spirals can communicate the angular momentum between
emitter and absorbers. This is not quite the full story of angular momentum trans-
port which is more fully discussed in Sections 6 and 7, but it does give a qualita-
tively correct picture.

5. ENERGY TRANSFER AND THE MECHANISM AT THE RESONANCES
OF A STEADY WAVE

Since the components of s with different m separate we may consider just one
component at a time. The spiral wave we have considered is steady as viewed from
axes that rotate with angular velocity Q, = — w/m. Thus in those axes the total
potential W'+ ¢ is time independent. Each star will therefore conserve its energy
with respect to these rotating axes. In celestial mechanics this energy with respect
to rotating axes is known as the Jacobi constant. For a star with velocities vg, vy
with respect to non-rotating axes the Jacobi constant is

j = Mont+ (26— QuR) - [¥ -+ 4+ 1Q, 2R

per unit mass; here the 3Q,2R? is the potential of the centrifugal force which is
seen in the rotating axes. Evidently

j = 3or+o) = (¥ +§)— QpRoy = er—Qph

where e is the total specific energy of the star in non-rotating axes and % is its
specific angular momentum. Since each star has dj/dt = o we deduce that

derp/dt = Qp dh|dt
or summing over any set of masses
dE|dt = Qp dH|dt

where E is the energy of that set of masses and H is their angular momentum.
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'Thus to obtain the rate of working of the stars on the wave at any resonance
one multiples the rate of angular momentum loss from the stars by Q,.

The process of steady angular momentum transfer by a spiral wave is well
illustrated in the diagram in which we plot specific energy against specific angular
momentum (Fig. 2).

The straight line drawn is € = Qph+ const., where Q, is the pattern speed.
The solid curve is the minimum energy possible in the unperturbed gravity field
of the galaxy as a function of angular momentum. These minimum energies are
attained for circular orbits. Further one may show that on this curve de/dh = Q(R)
the angular velocity of circular motion with angular momentum 4. A star that gains
angular momentum &k at the corotation resonance gains energy Q,8k. However
since de/dh = Qp at that resonance the star’s energy of vibration about circular
motion remain unchanged. However a star that loses angular momentum 8% at the

No outer
4' Lindblad
; resonance
Energy —
liberated L
’ Corotation
Inner resonance
Lindblad (a)
resonance

Outer (exterior)
Lindblad
resonance

|

Corotation
resonance

Energy ——‘—"'{:

liberated L
' (b)

Inner

Lindblad

resonance

F1c. 2. Illustrating the transfer of angular momentum Sh and energy Qpdh between stars

in circular motion at the resonances. € = e(h) is the energy of circular unperturbed motion

of angular momentum h.
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inner Lindblad resonance loses energy Q;0k but sinks to an angular momentum for
which still less energy is required for circular motion. As a result the specific
energy L in Fig. 2 is liberated into non-circular motion. Considerable enlightment
will be found by those readers who construct the diagram like Fig. 2(b) for the
case in which both the corotation and the exterior Lindblad resonance absorb
angular momentum given out from the inner Lindblad resonance.

Mechanism at the resonances

To carry real conviction the angular momentum transfers at the resonances
must not only be calculated but also understood.

Notice that the major terms at the Lindblad resonances do not involve angular
momentum gradients at the resonance circle, and persist even for circular orbits.

The mechanism giving rise to these major terms may therefore be studied by
considering the behaviour of an initially circular orbit exactly at the resonance.
Let us study this simple case without the clutter of complicated mathematical
apparatus. On a uniform circle there is no gravitational torque so the angular
momentum exchange arises from the couple that the perturbation gravity field
exerts on the distortion of the orbit. We get the couple correct to second order if
we work out the displacement from the unperturbed orbit to first order; and so the
displacements due to different causes add linearly. A resonant star in circular
orbit feels the forces due to the perturbation potential ¢ = S sin (kR + m¢ + wt)
at the epicyclic frequency. If we take S to be constant, the radial and transverse
forces are in phase so we may write them Fgcos (xt+y) and Fj cos («t-+y).
Writing suffices 1 on perturbations of the stellar coordinates and o on unperturbed
quantities the equations of motion read

Rl-l- K2Ry = (2Q0/R0)h1+FR cos (Kt+y)
h = RoF cos (kt+y)
(;51 = h1/R02—2QR1/R0.

Here Fr and F, are the amplitudes of the resonant forces and both phases are y
at the star at # = o. Integrating, with zero initial conditions, one finds

h1 = RoFyc~Y[sin («t+7y)+sin y]

— QoF yx2t cos (kt+9)+ $Fre1t sin («t+y)

R = { +terms of constant amplitude

We deduce that the secular effect of the resonant forces is to produce a forced
eccentricity on the stellar orbit which, in the approximation of persistent exact
resonance, will grow linearly with time. This oscillation consists of two parts due
to the radial and transverse resonant forces. The larger radial forces produce
secularly growing displacements in R; that lag the forces by one-quarter of the
Lindblad period 27/«, while the tangential forces produce secularly growing dis-
placements in R; that lag their forces by half a Lindblad period. We now draw
what is happening in the axes that rotate with the spiral structure and, to make
everything concrete, we take the important case of a two-armed structure. We
draw the situation in which we only consider the radial forces due to spiral structure
and consider the inner Lindblad resonance.

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1972MNRAS.157....1L

FT972MRAS. I57- -1 T

16 D. Lynden-Bell and A. §. Kalnajs Vol. 157

(a)

(b)

—

e /
F1G. 3. (a) Unperturbed resonant orbits at the three principal resonances, the inner Lindblad
resonance, the corotation resonance and the exterior Lindblad resonance. Also shown are
nearly resonant orbits close to the corotation circle. The figure is drawn in axes that rotate
with the spiral structure. (b) An enlarged version of the region of the inner Lindblad
resonance showing the rotation of the lines of apses for the nearly resonant orbits. The
figure is drawn in axes that rotate with the spiral structure.
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In these axes unperturbed orbits close exactly at the resonances. At the inner
Lindblad resonance Q—Q, = /2 the orbits go in and out just twice for each
time around the spiral structure, and the stars describe these orbits in the same
sense as that in which the galaxy rotates. At the exterior resonance unperturbed
orbits are of a similar shape, but the movement as seen from our rotating axes
appears to be retrograde. At the corotation resonance an epicyclic unperturbed
orbit reduces in our axes to Lindblad’s little ellipse, there being no mean motion
of its epicentre (Fig. 3).

Radial forcing at the Lindblad resonances (Fig. 4)

The effect of the radial forcing is to produce a forced eccentricity whose line
of apsides coincides with the azimuth at which the spiral structure reaches the
resonant circle. Consider the couple produced on such a slightly eccentric orbit
due to the spiral structure. The couple is due to the radial displacements of the
orbit from a circle. Consider the inner Lindblad resonance. The major axis is
displaced from its position on the circle where there is no tangential force to a
position just outside that circle where it slightly leads the arm. The resulting
tangential force is pulling the arm forwards and the orbit backwards. Similarly, the
displacement at the minor axis places it just behind a region where the arm struc-
ture has a negative density. This region repels the orbit and again angular momen-
tum is taken from the orbit and fed into the spiral structure. It is simple to calculate
the couple on the orbit due to this effect and to show that it varies as sin? m¢ where
sin m¢ is a maximum on the spiral structure. This couple is independent of the
sense of the spiral structure but only a trailing spiral structure can steadily transport
the torque to the other resonances outside (cf. Section 3).

Consider now the same effects at the outer Lindblad resonance. Here the stars
move backwards through the spiral structure so that a trailing spiral pattern
generates inward displacements at the azimuths of the arms. Thus the minor axis
lags the arms while the major axis leads the negative arms. By the mechanism above
angular momentum is therefore transferred from the spiral wave to the stellar
orbits.

Tangential forcing at the Lindblad resonances

Added to the radial forcing is the secular effect of the tangential forces. These
produce amplitudes out of phase with the forces, so the major axis due to this
term alone would lead the spiral structure in the diagram by =/4. In practice the
combined effect of radial and tangential forcing produces a major axis a little ahead
of the spiral structure. However the major effect of the tangential forces is not due
to the eccentricity that they force on to the orbits, but rather to the slowing down
and speeding up produced at different azimuths. Such effects are also present in
the reaction to the radial forces but we have neglected them above because for
those forces they give no net couple. To save argument, we will consider the
effects of the tangential forces in isolation as though the radial forces were not
present. In our axes the azimuth is swept out at a rate

|95A| = |¢;"Qp| = |AR-2=Qyp|.

Since there are no secular effects in / the secular effects in [$4| are a slowing
down when R is large and a speeding up when R is small. This only holds at the
inner resonance where the stars are going forwards in our axes. At the outer

2
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(a)

{b)

Fi1c. 4. (2) The perturbation of the circular orbit forced by the radial Sforces due to the
spiral at the inner Lindblad resonance. The forces felt on the circular orbit are illustrated.
(b) The excess transverse forces felt on the distorted orbit over and above those felt on the
circular orbit. It is clear that the star loses angular momentum and energy as it travels
because the tangential forces are against its direct motion. The figures are drawn in the
axes that rotate with the spiral structure.

resonance ]95,4] is smallest near pericentre as seen from our axes, for there
Qp>h[R?. At the inner Lindblad resonance the tangentially forced major axis
lies 7/4 in front of the spiral structure, the excess density at those azimuths is
attracted backwards towards the arm. Similarly the lack of density associated with
the minor axis is attracted backwards to the lack of density in the spiral structure
that follows it. Thus the couple due to tangential forcing reinforces the couple
due to the radially forced eccentricity. The last statement is true at both Lindblad
resonances and whatever the sense of spiral structure.
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Although exactly on resonance the above physical arguments give a couple
which increases linearly with time, this is not the full answer. Stars on orbits
close to, but not quite on resonance, contribute for a long time, but eventually
reverse their contributions. When one integrates over all near resonant contribu-
tions the net effect is time independent. An exactly similar state of affairs prevails
in Dirac’s treatment of emission and absorption by an atom (25).

In expression (30) for the rate of loss of stellar angular momentum on resonance,
there are also minor terms which depend on gradients at the resonances. At the
Lindblad resonances they vanish in the absence of eccentricity in the unperturbed
orbit. We shall reserve their physical discussion until we have discussed the
mechanism at the corotation circle, because the mechanisms are related.

Mechanism of angular momentum transfer at the corotation resonance and its relation-
ship with Landau damping

Let us start with the physical explanation so often given for Landau damping
so that we may see the relationship with the corotation resonance.

In Landau damping we consider the interaction of an electrostatic wave with
particles travelling at velocities very close to the wave velocity. We take axes
moving with the velocity of the wave. We consider a uniform distribution of
particles which at the initial time have some velocity just a little faster than the
wave. Those initially at and near the bottom of a potential trough slow down in
trying to climb out, while those on the down grade accelerate into the trough.
Thus: (i) there is an excess of particles to be found on the uphill climb and a deficit
on the downhill slope.

Now on the uphill climb the particles push the wave in the direction that it is
going while on the downhill slope they ride along at its expense. The small excess
of particles found on the uphill climb produces a net pushing of the wave forwards.
Thus (ii) particles going just faster than the wave feed momentum and energy into
the wave. The similar argument applied to particles going just slower than the
wave which move backwards in our axes is (ii1) particles going just slower than the
wave take momentum and energy from the wave. (iv) In normal situations there are
more particles moving at the lower velocities so that effect (iii) dominates over
effect (ii) and the energy and momentum of the wave are sapped at a rate that
depends on the gradient of the distribution function at the velocity of the wave.

Now consider what is happening at the corotation resonance of spiral structure.
Take axes rotating at the angular velocity of the wave. In these axes stars with
epicentres just within the corotation circle move, on average, with angular velocity
just greater than the wave, while stars with epicentres just outside the corotation
circle have lesser average angular velocities. Let us unthinkingly take over the
analogues of statements (ii) and (iii) above.

Because there is a general tendency for more density in the inner parts of the
galaxy we deduce that there will be more particles with angular velocity just
greater than the wave than those with less. Thus on our naive hypothesis the
particles close to the corotation circle will feed angular momentum and energy
into the wave. This simple argument, which I published earlier (15), is WRONG
and contradicts our mathematical result of Section 4. To find the true physical
argument we must consider more deeply. Statements (ii) and (iii) are true in the
Landau damping case because of statement (i). Is statement (i) true in the context
of the corotation resonance?
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The unperturbed orbits close to corotation have very small mean motions in
our axes, those on the inside drift slowly forwards those on the outside drift slowly
backwards. On feeling the forward tug of a spiral arm a forward moving star will
get on to an epicycle with a slightly greater angular momentum and its mean
motion in the diagram far from speeding up will slow down. Thus in azimuth
our stars act like donkeys slowing down when pulled forwards and speeding up
when held back. Thus in place of statement (i) above we have (i') there is an excess
of stars to be found on the downhill side and a deficit on the uphill climb. (ii") Stars
with angular velocities just faster than the wave will on average be found on the
downhill side and so will take angular momentum and energy from the wave.
(iii") Stars with angular velocities just slower than the wave give angular momentum
and energy to the wave. (iv’) In normal situations there are more particles with the
faster angular velocities and so the corotation resonance absorbs angular momentum
and energy from the wave and gives them to the stars.

Mechanism of the gradient terms at the Lindblad resonances

The physical mechanism described earlier only accounts for the dominant
terms at the Lindblad resonances, but our calculation shows that there are also
terms involving angular momentum gradients. These terms vanish for circular
orbits. We therefore consider non-circular unperturbed orbits and leave out the
forced eccentricity whose effects we have already considered. Only exactly at the
Lindblad resonances do the orbits close exactly in the rotating frame of the spiral
structure. Associated with each orbit near the inner Lindblad resonance is a slight
density excess associated with the line of its major axis. Orbits with angular
momenta just less than the resonant one will not quite close but may be con-
sidered to be closed orbits rotating slowly forwards. The movement of the orbits
is slow, while the particles move much more rapidly around the orbit. Orbits with
angular momenta just greater than the resonant one will not close but may be
considered as closed orbits rotating slowly backwards. If a forward rotating major
axis is subject to a torque pulling forward, the particles in the orbit gain angular
momentum and the precession of the orbit slows down. Thus the major axes of
the orbits act like donkeys. We may now apply all of the arguments that we applied
to donkey stars at the circular resonance to the density excesses associated with the
major axes of the orbits at the inner Lindblad resonance. As before there is a
slight excess of major axes in any region in which the torque is seeking to accelerate
the motion of the major axis. Thus just outside resonance there is a slight excess
density of the major axes at azimuths just lagging the spiral structure, while just
inside resonance the major axes have a slight excess just leading the structure.
Allowing for a basic outward fall-off of density we may expect a gradient term which
is normally small but absorbs angular momentum. This effect cancels out a small
part of the angular momentum given to the wave at the inner resonance by the
dominant terms.

The similar explanation for the behaviour of minor axes at the outer Lindblad
resonance is an exercise for clear thinking readers who should check their logic
against the sign of the gradient term of equation (30).

6. LORRY TRANSPORT OF ANGULAR MOMENTUM

The angular momentum flow through the imaginary cylinder of Section 3 is
not solely due to direct gravitational stresses. Some angular momentum is con-
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vected by the stars that cross the cylinder. Indeed if S$* is the stress tensor of the
stellar motions defined in terms of the distribution function f by

S* = f fov ddv
then the rate of convection of angular momentum is

C* = (foS*.dS) - R2fS¢R*d¢.
z

Here the integration dS is in principle over the cylinder but for a flat system reduces
to an integration over the circle of radius R at 2 = o. The stress tensor S$* is usually
split into two terms, one due to mean motions 7, and the other due to the pressure
tensor. Thus

S* = pTo+ P*
where

P* = ff(v—?;)(v—-i;’) d3v,
7 = prl f fodd, and p= f Fds.

Notice that the couple C* will contain a term R2[P¥;rd¢d which is directly
dependent on the deviation of the vertex of the velocity ellipsoid. While C*
vanishes in the unperturbed state, Dr Toomre insisted to us that the presence of
the perturbation gravity field might inveigle stars into carrying more angular
momentum on their outward journeys than on their return. Although we had
already shown that in the presence of a steady wave the stars away from resonances
neither gain nor lose angular momentum on average, he explained that they might
nevertheless transport angular momentum just as a system of lorries can transport
coal without accumulating a growing store on the lorries themselves. To prove
that a star is allowing itself to be used as a lorry, we need to show that the time
average of Rh is non-zero, so that loading and unloading is correlated with the
radius at which a star finds itself.

Evaluation of {(Rh) for a steady wave (Im(w) = o)

We can hereafter replace time averages by averages over unperturbed phases.
To second order we have

(REy = {(Rp+Ri+A1R+ AsR)J 2+ Arda+ Ans))
= (R1ALT 2>+ (RiAsT 5>+ {A1RALT ).

The remaining terms vanish to this order because J2 = o and (kY = o away from
resonances. Now R; is independent of w; and so

(RifrT2y = (Rudx|ows) = {2 owa(Rix)> = o.
The remaining terms may be written

(REY = (R1A1] . 924] 0 J dwa+ Ayzw 0% dw 3w2>+<(33—];1 Ao+ %%‘ A“’) %9

= (g ) = (R
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where the square brackets are Poisson Brackets. In performing averages of Poisson
Brackets the following lemma is useful

f [a, b] d%w = f (%%’;—%3—1) d?w = f{%.%+b %(%)} d2w

where the boundary term generated by the partial integration vanishes due to the
periodicity of the w in phase space. Thus

f [a, b] d2w = f 9]0 (b dadw) d?w.

Writing x for a and Ry 9y ows for b we have

_ /0 (o p O

(Rky = —<?] (370 R Twz)> (31)
We evaluate this for specific examples of spiral waves in the Appendix. For
very small eccentricities and trailing waves (RA) is positive between the Lindblad
resonances. Such stars gain angular momentum at large R and lose it at small R.
Thus lorry transport of angular momentum by such stars opposes the transport by
gravity torques. However the situation is more complicated for stars whose radial
amplitudes, a, are comparable with the wavelength of the spiral structure 2=/k’.
In particular when £’a ~ 1 the lorry transport becomes small and may have either
sign. When summed over many stars the total helps the gravity torque when the

typical amplitude ap is such that k'ap> 1.

7. PREFERENCE FOR TWO ARMS AND THE ORIGIN OF BARRED
SPIRALS

We owe to B. Lindblad the discovery that probably accounts for the observed
preference for bisymmetry. To explain his idea we must first discuss the form of
the unperturbed rosette orbits seen in rotating axes. An observer in a frame that
rotates with angular velocity Q4 still finds that the radial oscillation frequency is
Q1 but he reckons the mean angular velocity of the star about the galactic centre
to be not Qs but rather Qs— Q4. When Q; and Qg— Q4 are commensurable, i.e.
when

pQ1 = ¢(Q2— Q) (32)

(where |p| and g are relatively prime integers) then his plot of the orbit closes
exactly. This occurs on the completion of g radial oscillations of the star at which
time it also completes p turns about the galactic centre in his rotating frame. To our
observer the orbit has ¢ lobes and p turns. However another observer whose axes
rotate with a different angular velocity will in general deny that the orbit ever
closes because the radial and circulatory angular velocities seen by him will be
incommensurable. Equation (32) may be solved for Q4 for any given values of
p and g # o, and hence any non-circular orbit can be seen from suitable rotating
axes as a closed g-lobe p-turn orbit. The angular velocity of the axes
that give it this form is Q4 = Qa—(p/q) Q1 = Q—(p/q)« where at the last equality
we have used the epicyclic approximation. A stationary observer would see the
lobes of the complete orbit rotating at this rate. We notice that in the epicyclic
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approximation the angular velocity of the axes that make each orbit a p-turn

g-lobe orbit is just a function of radius, 2 4(Rp), just as Q = Q(Rp) and k = «(Rp).

More generally Qg4 is, like Q; and Qg, a function of J; and Ja. Notice that our
earlier condition for a resonance takes the form Q4(Rp) = Qp the pattern speed.
To get this we consider orbits with ¢, the number of lobes, equal to || the number

of arms, and p equal to +/. Our primary resonances have / = 11 or o and the

corresponding lobe angular velocities of the I-turn |m|-lobe orbits are Q F«/|m|

and Q, all of which are functions of Rp. Each in turn equals the pattern speed when
Ry is set equal to the radii of the corresponding resonant circles. Lindblad noticed
that Q+«/|m|, Q—«/|m| and Q all changed quite rapidly with radius except in
the special case |m| = 2 where Q—«/2 is nearly constant over quite wide regions
of many spirals. He pointed out that the angular velocity of the 2-lobe 1-turn

orbits is nearly constant over wide regions and so any density distribution made

up from uniformly populated orbits of this type will be only weakly sheared by the

unperturbed kinematics of the galaxy. The self-gravity of the perturbation does
not have to be very great to overcome the weak shearing to make a uniformly
rotating pattern.

Trapping of major axes

In Section 5 we discussed the analogy between what happens at the corotation
resonance and the theory of Landau damping. We also pointed out a fascinating
analogy between what happens to particles at the corotation resonance and what
happens to the orientations of whole orbits due to the effects of the gradient terms
at the Lindblad resonances. Contopoulos discovered these effects on the orbits
and explored them with the help of detailed computer calculations. In the non-
linear calculations of Landau damping and two stream instability we find the

trapping of particles in the wave troughs. Similarly we may expect the trapping of
the orientations of the major axes of near resonant orbits to occur and this is what

Contopoulos finds near the Lindblad resonances. It is reasonable that in a non-

linear treatment even non-resonant major axes will be caught provided that the

major axes cannot cross the hills and valleys provided by the perturbing potential.
This may be true over a wide area of the disc when the natural angular velocity
of the lines of apsides 2 —k/2 does not vary rapidly with radius.

On the origin of bars

Bars are not an isolated problem different from the density wave theory, rather
they form the interesting case of an almost steady standing wave. In the inner
parts of galaxies the eccentricities of the stellar orbits have to be larger to ensure
stability of axially symmetrical modes. The strengths of the resonances become
small when the stellar orbits are eccentric and the modes of systems without
resonances obey an anti-spiral theorem so that the basic two armed disturbance is
a bar. The resulting tendency to bar making which is found in the linear theory
can be further elucidated by considering the trapping of major axes of 2-lobe 1-turn
orbits. Following Lindblad we consider a galaxy in which Q—«/2 does not vary
rapidly. Then a non-linear potential perturbation can trap major axes to oscillate
about the azimuth of the potential trough like those found near Lindblad resonance

by Contopoulos. The density of such trapped orbits will augment the potential

and further enhance the trapping. Eccentricities are enhanced for such trapped
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orbits as at the inner Lindblad resonance so that near-circular orbits are rare. Thus
like Lindblad we think that bars are made up of stars in rather eccentric orbits
with aligned lines of apsides. However the rotation period of the bar so formed will
be increased by the action of its gravitation on the orbits. Yet it must remain
appreciably slower than the angular velocity of the stars that compose it.

8. CONDITIONS FOR SPIRAL WAVE GROWTH—SECULAR EFFECTS

It is natural to guess that provided the resonant stars do net work on the wave
then the wave will grow. This would lead us to the condition for growth
QpEZHpy <o. But this presupposes that the wave has positive energy. Since the
energy of the wave is Q, times its angular momentum (3), we must examine the
sign of 8H. Taking the spiral wave of the Appendix, equation (29) may be written

_ 1 (M & 42meQy(Qe—Qp)(— 8F[0T1) |, |,
o= I6w2fhl{z=1 (1202 —m(Qa— [z Pl
3 oF l‘/’lmlz }
= |\ —=7 dJy dJ>.
I ( 8J2) [0+ m(@a— )2 Y1 4

The second term is small and can be neglected in the epicyclic approximation
because — 0F/0J1> — 0F/0J2. We have written 8H in this form to demonstrate
that within the corotation radius where Qg = Qp, the dominant term in 8H is
negative whereas outside corotation both terms are positive. Thus the spiral
structure within the corotation radius is a disturbance with negative angular
momentum and negative energy. Feeding such a disturbance with energy or angular
momentum will damp it—taking angular momentum or energy away from the
disturbance will excite it. The corotation resonance which absorbs angular momen-
tum and energy can enhance such a wave while the inner Lindblad resonance which
emits angular momentum and energy will damp it. These ideas appear to conflict
with the fact that the phase velocity of trailing spiral waves is outwards, but
Toomre has already shown us that this difficulty is illusory because the group
velocity of short waves is inwards in this region. Thus a possible picture is that
waves of negative angular momentum and energy whose wave velocity is outwards
are emitted from near corotation from where the group velocity carries them
inwards until their negative angular momentum and energy are absorbed at the
inner Lindblad resonance. (On going twice through the looking glass we find our-
selves in a world that Lewis Carroll would enjoy.) Before we leave our expression
for 8H it is interesting to note that the mere presence of the wave, quite independent
of resonances, lowers the angular momentum of the inner parts and increases that
of the outer parts, independently of the sense of the spiral structure. Even without
an inner Lindblad resonance a galaxy could evolve transferring negative angular
momentum into a central standing wave which would be in the form of a bar.
On semi-observational grounds Lin has proposed that the pattern speeds of
spiral waves may be found by putting corotation close to the edge of the galaxy.
It is interesting that our inspection of the physical mechanism of angular momen-
tum exchange showed that stars on the inner side of the corotation resonance
emitted negative angular momentum strongly but that most of this was cancelled
by stars on the outer side of corotation. Wave excitation might occur for waves

with corotation at the edge for they get only the strong emission without the cancel-
lation.
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However if we base our arguments solely on the major terms then we are led to
the picture of an inner region within corotation containing sources of angular
momentum and a region outside corotation containing sinks of it. These sources
and sinks are due both to the growth of wave angular momentum and to the reso-
nant interactions. The communication of angular momentum between these
regions, which is crucial for growth, is impeded because there is a region around
corotation where short waves obeying the dispersion relation (Toomre (12) equation
(10)) cannot propagate. (This statement assumes a sensible galactic model with
Toomre’s Q> 1 (=15 say). Even were corotation at the edge there would still be
a considerable barrier against communication from that resonance by short-
waves.) Through this barrier the waves have to tunnel and there will be much less
attenuation if they are long or open. Such an open wave with pattern angular
velocity somewhat less than half the angular velocity of the central region is the
basic mode of a nearly uniformly rotating system and it will become unstable when
coupled across the barrier to the outer region. Long waves are strongly favoured
when we consider the non-linear effects that limit the maximum amplitudes
attainable. A wave ceases to promote a supporting response from the stars once the
velocities it generates outstrip its phase velocity. The radial displacement of a
star due to a force per unit mass kS is kS[«2—(w+m€2)%]~1 and so the condition
for no outstripping is kkS [k2 — (w + mQ)2]1 < (w + mQ)/k. Writing v = (w +mQ)/k,
the time taken by a wave of amplitude S in trans-shipping a large fraction of the
total angular momentum of a galaxy, MR2Q = H, is

2Q3(kR)4
k(1 — 2)

Thus there will be significant change in the angular momentum distribution after
(kR)%/(27) rotations. For this to happen in 100 revolutions we must have kR < 5;
that is waves of inclination 7 = tan—1 (m/kR)> 23°. The angular momentum struc-
ture of a galaxy can be significantly changed by such open waves, and therefore
galaxies can change shape. The outer parts would expand, the inner parts contract
and the orbits would become eccentric especially near the Lindblad resonances.
If that resonance does not sop up all the negative angular momentum propagated
inwards then standing waves of large amplitude—bars might be built, the evolution
being through de Vaucouleurs types S4 - SAB — SB. Normal galactic evolution
might simultaneously change the classification from ¢ to b.

H|Cs = MR2Q/(}mRS2|G) = 2Q3R4/S2 = ~ (KR4

9. POSTSCRIPT

When the wave idea was first proposed by B. Lindblad he laid great emphasis
on the (Lindblad) resonances. Kalnajs also has laid stress on angular momentum
and resonant interactions, and it is most interesting that the passing on of angular
momentum and the forced eccentricity described here have close analogues in
Godreich’s beautiful work on the commensurable satellite systems of Jupiter and
Saturn. Lin’s programme for developing Lindblad’s idea into a full theory has up
to now led to a theory of waves with neither a convincing dynamical purpose nor
a certain cause. It is hoped that this paper together with Kato’s provide both a
reason why trailing spiral waves help a galaxy to evolve dynamically, and a con-
ceivable mechanism for generating waves. We emphasize that we have not proved
that this mechanism will work—we have not shown that the excitation can over-
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come the damping. There is still plenty of work to do here. It was Lin’s realization
that tightly wrapped waves could be simply described which has founded an
analytical theory, and he has led the way in looking to observation to demonstrate
that waves are the important process of spiral structure.

Finally it would be wrong to reject Toomre’s idea that quite a large number
of spirals have been promoted by tides between galaxies. These can certainly
excite strong short lived waves and a satellite in orbit could perfectly well act as a
recipient of angular momentum.
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APPENDIX I
EVALUATION FOR SPECIFIC FORMS OF SPIRAL WAVE

We shall consider the spiral potentials of Section 3, but for simplicity we take
the complex form

4 = S(R) exp {im[$—D(R)]}. (Ar)

We shall assume that S(R) and d®/dR vary slowly and we shall evaluate our expres-
sions for the nearly circular epicyclic orbits of Lindblad. For each orbit we replace
S(R) by S(Rp) and @ by ®(Rp)— kR1/m where

k(Rp) = —m 0O[OR evaluated at R = Rj.

The Fourier coefficients i, are obtained by substituting the epicyclic expressions
(18) into their definition (22) and using the above form of 4. Thus

Sl’lm(Rh, a) = S(Rh) €xp [—-im(I)(Rh)]

2n 2n
X f f exp [tka sin w1+ im(2Q/k)(a/Rp) cos w1 —tlwy] dw; dws.
0o Jo

We write
k sin w1 + (2Qm/(kRp)) cos wy = k' sin (w1 + o)
so that
k2 = k24 [2Qm[(xRp)]? (A2)
and
« = tan™1 [2Qm/(xkRp)] (A3z)

and we find y,, reduces to

Jim = 2mS(Rp) exp i [la—mD(Ry)] f ” exp i[k'a sin (w1 + o) — I(w1 + )] dws.
The integral is ’
f " exp i[Ka sin x— Ix] dx = 2 (k' a)

-7

where J(k’a) is the Bessel function. It can be distinguished from the action variables
by its argument. Notice that under our assumptions |iin| is the same as ||
because |J;| is independent of the sign of /. Our result for iy, is

Yim = 4m2S(Ryp) exp i[lu— mD(Ry)]J (k' a). (Ag)

We also evaluate our expression (31) for the lorry transport of angular momen-
tum. This is made easier if we realize in advance that for our orbits and potential

m 0fi/ Ok = ima sin w1 = Ry o ows.

With the complex form of 4 we remember that {%(a)%(b)) = 1% ab*}.
Thus
; 0 (ox  of*
= —1g( % (X
(Rh) = 2'%<3J'(aw’” ok )>

and using the definition of y
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27 (2n
(REY = (2m)-8 32 f 0 f Y (9jas+majaly)

Yymm 0f 3kl/ll’m*) T
X ( 10, mOy ¥ exp [{(I—1")w1] dw; dwg

= (2m)4 3 dm(18] 21+ m 8] T )10+ mQo-+ )1 3] k| hm | 2. (As)

In terms of epicyclic variables this may be rewritten

(Rbky = }; am(lcYa=1 8] da+m 0] Oh){(Ic + mQ + w)~1.S2 8] ok[J (¥ a)]2}. (A6)

'To understand this expression it is interesting to look at the limit 2’a <1 when the
wavelengths of the spiral structure are considerably greater than the epicycle size.
In this limit only the / = + 1 terms contribute and the expression reduces to

(REy = emS2[r2 — (w+mQ)2]-1 + Ok a)2. (A7)

Using the properties of Bessel functions, one may check that the major terms keep
this same sign up to k’'a = 1 but their magnitude decreases as £'a increases.

We notice that between the Lindblad resonances stars pick up angular momen-
tum from a trailing wave near their apocentres and on average transport it inwards.
Since the resulting transport opposes the gravity torque we must work out which
is biggest and so we must calculate the lorry transport due to a distribution of
stars. To find this flux of angular momentum we must work out the sum of contri-
butions AR from all stars currently crossing a reference cylinder such as that of
Section 3. We shall approximate assuming the galaxy varies sufficiently slowly
with R so that the average of AR on the cylinder is no different from the average
kR for all stars whose initial angular momenta put their epicentres on the cylinder.
In the same approximation the unperturbed surface density o at R is given by
thinking of every particle as localized at its epicentre since the random motions
merely cause a smoothing of that distribution which is unimportant if the distribu-
tion is already smooth. Thus

27 Ryo(Ry) dRy, = u(h) dh (A8)
where

(k) = fffFodwl dws dJ

which is the angular momentum distribution of Section 2. With these approxima-
tions the net couple due to lorry transport is

C* = 2mRo[ChRY] = u(dh|dRy)[CHR)]

where

[<hR>] = fff Fo(hR> dw1 dws dJl/I"(h).
Now since we have already excluded resonances our stars do not gain or lose angular
momentum secularly, <4 = o. Similarly (R) = oand <hR)>+<Rh> = o for each

star. We therefore rewrite our expression for C* to use our earlier value for (Rk>

C* = — 4n*(dh/dRy) f FolREY dJ (Ag)
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For very long waves we may use expressions (A7) and (A8) to obtain
C* = —3Ykm2noRS2[[x2—(w+m2)2].

Unlike our expression for the gravity couple this vanishes as £ — o. If long waves
are imposed the gravitational torques dominate. However this result must be
qualified because we find presently that for the longest self-sustaining waves
propagating according to the approximate dispersion relation the result is not
clear cut and there can be circumstances in which lorry transport by long waves
beats the gravity torque.

To perform the integral in (Ag) for more general waves we need a specific
distribution function so we choose the usual form

Fo(J1, J) = 1n 2T 1y exp (—J1KID) u(J2)
= {77%(xao?)~1 exp (— a?/ao?) u(h)

here a is the radial amplitude of epicyclic motion and ay is its average. Evaluating
expression (Ag) with this Fy and writing (A6) we find after integrating by parts on
J1

C* = w(dh/dRy) Y. dm[l(kao?)1+m 0] o]
x {Sz(Rh)[lx +mQ+ w] L f : (kao2)L exp (— 3a2/ao?)[J (K a)]? d(}xa?)\.

Since we have already omitted small gradients across an epicycle we must for
consistency omit the m d/oh term as kap?<h. The remaining integral is well
known (24). Indeed

f : exp (— 3x2)[Ji(=2x)]2x dx = I)(22) = exp (—22)I)(2?)

where Ij(2) is the Bessel function of imaginary argument. Hence using equation
(A7) with R written for R, we have

C* = — 1nRoS2(xao)~2 9| ok [l:i lxIl((k'ao)Z)/(lx+mQ+w)].

We must compare this couple with the gravity torque of Section 3 which for this
wave gives C, = im(k/|ko|)RS2/G where ko? ~ k24 m?2[R2. The total couple is

C = C*+C, = }mRS2G-10]6k{| ko|[1 — D(k, w)]} (Aro)

where

[ee]

D(k, w) = 2nGo(k2a0)~1|koao| 1 ). 21y(k'2a02)[1 — v2/12] (Ar1)
1
and

v = kK (mQ+ w).

Comparison with Toomre’s equations (10) and (11) for tightly wrapped waves
shows that D(k, w) = 1 is the dispersion relation. Our replacement of & by ko and
k' gives a dispersion relation which is reasonably correct for much more open waves.
Comparison of (A11) with equation (29) evaluated in the present approximation
shows us that L = }mRS2G-1|ky| D[0w is the angular momentum density so
that

hy
L(2Ry| ) dh = SH.
hy
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For waves obeying the dispersion relation we have 0D/ok = —(0D/0w)(0w/dk)

and so
C = L ow/ok.

The total couple is the angular momentum density times the group velocity. For
tightly wrapped waves both L and dw/0k reverse sign at the corotation circle so
C is positive. Furthermore since no angular momentum is gained by non-resonant
stars we find that steady waves will have C constant between resonances. This
equation determines how S(R) varies with R.

Notice from (A10) that the sign of C for any waves obeying the dispersion relation
is the sign of —m 0D/ 0k evaluated when D = 1. Although this is definitely positive
when R'ao>1 it is possible that it may become negative for long waves with
k'a<1. This certainly happens if following Lin we write k for both %’ and |ko|
in our dispersion relation, but those are bad approximations for the open waves
involved. In practice we think it likely that, in so far as open waves can be described
by a dispersion relation at all, dD/0ok is everywhere positive at D = 1. This leads
to the outward propagation of angular momentum even by long waves since C is
then positive,
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