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Summary

Self-gravitating systems have negative specific heats, thus if heat is allowed
to flow between two of them, the hotter one loses heat and gets yet hotter
while the colder gains heat and gets yet colder. Evolution is thus away from
equilibrium. When a single isothermal sphere within a non-conducting box
is sufficiently centrally condensed a similar instability arises between the
central parts and the outer parts; as a result no equilibrium states exist for
an isothermal sphere of energy E( <o) and mass M within a spherical box of
radius greater than o-335 GM?/(—E). This is Antonov’s discovery that no
state of locally maximal entropy exists for stellar systems of given energy and
mass contained within a rigid sphere of radius larger than this. The instability
is distinct from that found by Ebert which is similar to the Schonberg-
Chandrasekhar limit in stars and relates to isothermal spheres at fixed tem-
perature. In fact there are four distinct critical points for instability of iso-
thermal spheres which are related to the turning points of the four total
thermodynamic free energies by Poincaré’s theory of linear series of equi-
libria.

This study of the thermodynamics of self-gravitating spheres gives insight
on the evolution and the final fate of stellar systems. It also helps in the
understanding of some well known phenomena in stellar evolution. It is
emphasized that these results prove that the escape of stars from a cluster is
not necessary for its evolution but rather that extended systems naturally
grow a core—halo structure reminiscent of the internal constitution of a red-
glant star.

1. Introduction. This paper includes a thorough discussion of the thermo-
dynamics of bounded self-gravitating isothermal spheres. Interest in this ancient
subject arose as follows: work by Henon (1), (2) and numerical experiments by
Aarseth (3) indicate that a stellar system sometimes forms a small dense nucleus
which is to some extent independent of the outer parts of the system. Antonov’s
discussion of the entropy of isothermal systems (4) shows that their thermo-
dynamics is strange and that evolution of very concentrated systems is not towards
the isothermal sphere. This work aims to connect these facts by showing that the
thermodynamics of concentrated systems makes them evolve into core~halo
structures.

The work of Woolley (5)(7), Michie (8), (9) and King (x0), who have assumed
approach to the isothermal structure, will need modification only at the very
high central concentrations. King already noticed an anomaly in his models for
this range.

To understand the strange thermodynamics brought to light by Antonov’s
discussion of the entropy, we have imagined our self-gravitating sphere to be
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in the laboratory and have calculated theoretically the results of imaginary experi-
ments conducted on it.

By such discussions we gain some insight into such problems as the final fate
of stellar systems and the creation of their nuclei. In view of this intended applica-
tion we are particularly interested in thermally isolated and even in completely
isolated systems. As a consequence our work contrasts with the beautiful results
of Ebert (x1), (12) amplified by Bonner (13) and McCrea (14) in which gas spheres
are under a given surface pressure and in thermal equilibrium with an external
heat bath.

2. An experiment (Antonov’s problem). A large number N of mass points
(stars) of mass m were released under their mutual gravity inside a perfectly
reflecting sphere off which they bounced with impunity. Their total energy was
E (<o), their total mass Nm = M and the radius of the sphere was 7,. Except
for certain special initial conditions explained below we found that the system
settled down to an equilibrium when 7, was less than the critical radius

7e = 0°335 GM?/(—E).

When 7, was larger than this the centre seemed to condense out and evolved
towards very high temperatures and densities; no equilibrium state was attained.
The temperature of the outer parts increased alarmingly but even so it was unable
to catch up with the runaway temperature of the central nucleus. Entropy was
continuously generated by heat conduction outwards from the nucleus. In an
attempt to halt this runaway we reduced the radius of the box to slightly less
than the critical radius, but to our surprise we found this of no avail. Far from
returning to a more normal density the nucleus continued to condense and to
get hotter at its own ever accelerating rate. The high temperatures were by now
generating such pressure inside the box that we feared lest it burst. To relieve the
pressure we expanded the box but found that this was only a temporary solution
for the nucleus continued to get smaller and hotter and to supply heat to the
outside at an alarming rate. Realizing that it was this heat flux which was the
ultimate cause of the increased pressure on the box, we decided that we must at
all costs reverse this flux. Since our sphere was non-conducting this could only
be done by the dangerous procedure of pressing the sphere down to a much
smaller radius. With much exterior reinforcement the sphere withstood the high
temperatures involved, but we had to force it a long way inwards against enormous
pressures before bringing the system under control. Only when we succeeded in
reducing the box to a size less than some thirty times the much reduced radius
of the nucleus, did we manage to raise the temperature of the outside above that
of the nucleus and so reverse the heat flux. The systems then settled into a high
temperature equilibrium. The radius was considerably smaller, the entropy much
greater and the binding energy much less in this state than they were initially.

In further experiments we found that even for 7,<7. initial conditions in
which a subgroup of the stars was tightly bound together by its own gravity
did not lead to an equilibrium but rather to a runaway similar to that described
above.

2.1 Physical explanation. For an isolated system at equilibrium in the absence
of a wall the Virial theorem reads

29 +U0 = I +E = o, ie. J = —E.
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For such systems increase in E causes a decrease in the kinetic energy 7 and
therefore in the kinetic energy per particle or temperature. Such systems have
negative specific heats. It will not surprise the reader to learn that small modifica-
tions of the strict conditions of the Virial theorem do not modify this result and
isothermal spheres within boxes also display negative specific heats provided the
system is sufficiently centrally condensed; that is provided it can be regarded as
mainly held in by its own gravity rather than by the pressure of the walls of the
box. This condition is satisfied by isothermal spheres at radii considerably smaller
than 7. (see Section 3).

Consider then the conditions of our exciting experiment. We start with our
sphere in equilibrium in a box with 7, <7, we surround it with a box of radius
greater than 7, and suddenly remove the inner box. (The system still has the
same mass and energy so 7, remains unchanged.) The first readjustment made
by the body to this sudden change is an expansion which causes some adiabatic
cooling. All parts of the body expand because some pressure has been taken off
the outside. However, the central parts which were always mainly held together
by self-gravity do not expand as much as the outer parts which are only held
in by wall pressure. As a result of this difference in expansion the central parts
cool less than the outer parts so a temperature gradient is set up. With the gross
conditions of hydrostatic support satisfied our attention turns to the slower thermal
conduction processes. The heat flow is always down the temperature gradient so
the heat flux is outwards. The inner parts being nearly self-gravitating have
negative specific heat; thus as they lose the heat they shrink and grow hotter.
The outer parts are held in by the walls and have positive specific heat. On receiving
the heat they also grow hotter. It is now a race; if the outer parts have a specific
heat smaller than the magnitude of the negative specific heat of the inner parts
then the outer temperature will increase faster than the inner one. It will therefore
catch up and a possible equilibrium state will be achieved. If however the outer
parts are too extensive their specific heat will be large. Conductive transfer of
heat from the central parts will then raise the high central temperature faster than
it raises the lower temperature of the outer parts. This is what we call the gravo-
thermal catastrophe. Now no equilibrium is possible; the centre continues to
contract and get hotter giving out heat to the outer parts but the temperature
difference increases and drives the evolution onwards still faster.

Detailed explanation of the rest of the experiment is best made with the help
of the figures derived in the mathematical section.

- In Fig. 2 we plot the dimensionless quantity — Er,/GM?2 against a parameter
|21] which is the natural logarithm of the ratio of the central density of the
configuration to that at the edge. The solid line then represents the locus of possible
equilibrium states. Also in this diagram we indicate behaviour of the entropy for
both equilibrium and non-equilibrium states. For a given energy and radius it is
seen that the entropy is maximal for the equilibrium states up to the first hump
of the curve (indicating that these states are stable). At the top the entropy curve
has an inflection and states on the downward sloping portion of the curve have
minimum entropy for given E, 7, (indicating unstable equilibrium).

In our experiment so far we have traversed the equilibrium series at constant
E by increasing 7, as described. However when we reach the maximum 4 and
increase the radius further so that — Er,/GM? increases we move to a point such
as B. As before the system tends to evolve spontaneously towards a state with
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higher entropy but, unlike previous occasions, this time there is no local entropy
maximum to which it can go and we have the runaway described above, with the
entropy continuously increasing.

The compression of the box to below the critical radius involves both changes
in E and 7, as well as in |v;]|. We, therefore, add a third dimension, log 7, to
our diagram and plot a surface on which equilibria are possible. We show a portion
of the surface in Fig. 3. Since it would be confusing to draw in the entropy surfaces
in the diagram we only plot the intersection of such surfaces with the equilibrium
surface. The regions of high and low entropy on this surface are indicated. The
first part of the experiment, increasing 7¢ at fixed E and M is now represented by
the dotted line and the entropy is again seen to increase as far as P. Further expan-
sion of the box increases both — Er,/GM?2 and log 7, and so the configuration is
specxﬁed by a point such as Q just above the equilibrium surface. We now have a
situation identical to that at point B in Fig. 2 and a runaway ensues. All changes

“of configuration that do not take place on the equilibrium surface are indicated by

solid lines.

It is now apparent that the system is going to higher and hlgher |o1| along a
line that crosses surfaces of higher and higher entropy. These entropy surfaces
only mtersect the equilibrium surface at much lower values of 7, than the system
has at present. To restore equilibrium, therefore, we must compress the box
enough for an equilibrium state to be consistent with the present entropy. We
can now see Why our action of compressing the box below the old critical radius,
and the expansion of the box to relieve the pressure, could not bring about a new
equilibrium; the entropy was too high for the states so attained.

In our final drastic compressxon all three parameters plotted in Fig. 3 are
decreased; (i) 7, is decreased; (ii) — Er,/GM? is decreased both because of (i) and
because by adding energy we decrease —E. (iii) |v1| is decreased because we
are reducing the density contrast between the centre and the edge. Since the box
is non-conducting the compression is at constant or spontaneously increasing
entropy. At each stage a section through the equilibrium surface at a partlcular
re would look like Fig. 1 and the system would be at a point such as C. This is
unstable for the same reason that B was, so leavmg the system near C would
merely lead to further runaway. The compression continues until we arrive at a

point, such as D, underneath the equilibrium surface where the entropy surfaces

slope the other way so that spontaneous evolution decreases |v;|. Evolution then
continues spontaneously until entropy is maxnmzed on the stable branch of the
equilibrium surface

2.2 Other experiments. In the experiment described above we investigated
the stability of a self-gravitating system of fixed mass M, thermally isolated from
its surroundings, and having the energy, E, and volume V, specified. At equilibria
the entropy, S, is a maximum for given E and V. When discussing the stability
of such systems for different external conditions it is natural to think in terms of
the free energies. In the case of pressure equilibrium (i.e. a situation in which
our rigid non-conductmg wall is replaced by a perfectly plastic one, free to expand
or contract under any pressure difference between the system and the constant
pressure of the surroundmgs, but still non-conducting) the equilibria are states
of maximum entropy for given enthalpy 5 and pressure P. Similarly, for a system
surrounded by a perfectly conducting wall and in thermal equilibrium with its
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surroundings (assumed to be a constant temperature heat bath) we can again
consider cases where we have a rigid wall (fixing the volume) or a plastic wall
(fixing the pressure); the free energies concerned are then the Helmholtz free
energy, &, and the Gibb’s free energy, ¥, respectively. A study of the behaviour
of these free energies enables us to predict the results of experiments under the
different conditions.

3. The mathematical problem. Equilibrium states in the presence of encounters
are states of stationary entropy at given energy and volume. Here we study the
problem of finding these. Taking Boltzmann’s view of entropy we put

S = —k;fﬂ log fidSz (1)

where (i) S is the entropy,
(i) % is Boltzmann’s constant,

(iii) The integration is over the phase space available, that is over all
velocities and over all positions within the confining sphere of
radius 7,.

(iv) We have not assumed that all stars are of the same mass but have
divided them into groups according to mass. f ¢ is the number density
in phase space of stars of the ith group. f? is a function of position
in phase space. mt is the average mass of a star in the 7th group.

(v) Points in phase space will be specified by position vectors r = (x, ¥, 2)
and velocity vectors ¢ = (u, v, w). We denote phase space integrations
by the symbol

dSr = d3r d3c = dxdydz dudvdw.

The states for which S is stationary subject to constraints are equilibria. The
constraints are that the energy is fixed at E and that the numbers of stars in the
different mass groups are fixed. If one wishes to consider rotating systems one
must fix the total angular momentum H. This is simple to do but the extra formal
complication obscures our main point so we shall not do it here. Fixing H = o
gives the same result as ignoring the angular momentum altogether in the statistical
calculations.

We define the total phase space density at r, ¢ to be f(r, c)=)mif i(r, c).

(2

The spatial density p(r) is then
ple) = | 76, e)ave

with the integration over all velocities.
The kinetic energy is

T=3 f Lmic?f i(r, ¢)dSr = f 1c2fdSr.

The total potential energy is U

D = —G” (r)P(r)d3rd3r

{r—r'|
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which can alternatively be written

U= -_” S a5, asy

ERtd

where f' = f(r', c’).
Thus the total energy E

E=T+0 = f 1c%f 46— G” e ff oo (2)
The total number of stars in the 7th mass group is
N = [ giaon G

Our problem is to maximize the entropy S, given by (1), keeping the energy
E, (2), and the numbers N?, (3), constant. We do this using Lagrange multipliers
kB’ and kot

55 = 55+ K'SE+ Tha'bN!
[y f 5fi(log fi+ 1) dbr
LB Ulczsjfdﬁ G”faf +31f" 4or asr ]

+ Zkaif Sftdsr.

\'g

(4)

il
A

By exchanging the dummy variables r, c and r’, ¢’ in the f §f term of the potential
energy contribution, we see that on integration this term is equal to the f’8f
terms so 8E may be written

o [ufiacf g o

8 = [ (5 mof)(h 2 gte) dor (s
where y(r) is the gravitational potential caused by the density corresponding to
fie.

(/J(r)_Gf (") d3r—fo(r 1 €) 46,7, ()

Substituting the expression (5) for the 8E term in equatlon (4)
2
55 = —sz :sﬂ[logfwr . (2—-—-¢)+a{| dor.,

Since the 8f¢ may now be considered independent within the integration the
condition that S should be stationary (dS = o) gives

2
log fi+ 14 B'm (:——1/1) +af = o.
fi - Aie—ﬂle“ = Aie—ﬂ’m‘G (7\

4
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where c2 2

= om (- =_

e =m (2 t/r), €= P (8)
and

At = exp [—(of +1)].

As expected equation (7) is the Maxwell-Boltzmann distribution and we note
from equations (8) and (6) that it is Maxwell-Boltzmann within the self-consistent
potential ii(r).

We now show that equation (7) gives equipartition of kinetic energy for the
average star of each type for all positions. The average kinetic energy of a star of
mass m’ at r is

fft(r,c)mif;d% _ fCXP (—'B’mi;f) W?d% -3 (9)
ffi(r, o) d% f exp( B'mi - )dsc 2" 9

which is independent of both 7 and r as required. This also indicates that B’
should be identified with 1/kT where T is the temperature. We show in Appendix
I that B’ is indeed an integrating factor for the heat and so gives an absolute
thermodynamic temperature.

Although equation (7) is in part the solution to the stationary entropy problem
nevertheless ¢(r) appears implicitly in its right hand side. ¢ itself was defined by
equation (6) which involves f again (and therefore f?). The procedure to break
this roundabout is to integrate equation (77) to obtain an equation for ¢, solve
it, and substitute the solution back in equation (77) to obtain the explicit solution
for ft.

Integrating equation (7) we obtain the density of the sth mass group

pt = fmﬁ‘f d3c = Bt exp (B'miy), r<7e

where
. 3/2
B4 () (1)
and has the dimensions of density. The total density is

p= Yot = YB exp (B'mi),  r<r.
so the potential is

I YB exp Bmye)]
-of, Eyaemof BRI,
This integral equation for i may be solved by differentiation which gives
—4nGY Bt exp (B'mif(r)), r<r,
V2(r) = —4nGp(r) = (1)
o r>7,

This equation must be solved under the boundary condition that ¢ is of order
1/r at infinity and ¢ and 9y/dr are continuous at 7 = 7.
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In Appendix II we repeat Antonov’s proof that only spherically symmetrical

 states can correspond to local entropy maxima. 'Thus only spherically symmetrica]
 solutions need to be considered. To proceed further with the general case numerical

integration of the ordinary differential equation is required. This presents no
difficulties, but it is instructive to study the simple case of just one mass group
in greater detail. We specialize in stars of one mass only and drop the suffix ;.
Equation (11) then reduces to the well known equation for the isothermal gas
sphere. ; Lo

1 d ([, db\ | - X
55 (%) - —4mCB e B0, < @)
where B = mB’. | , ‘

It is well known that there are three classes of solutions to this equation:

(1) the singular solution - ' :

4= }log 2 (2nGBB) 1

(2) the isothermal gas sphere solutions with finite density at r = o,
(3) the general solutions whose densities tend to zero as 7 approaches zero,
We have not as yet imposed any condition to determine the gravitational flux
emanating from 7 = o. Considering each type of solution in turn we find that
no flux arises from 7 = o in solutions of type 1 and 2 but that all solutions of
class 3 have a flux corresponding to a negative mass situated at the centre. We

reject such unphysical solutions and find later that the singular solution is in

fact the limiting case of the finite density solutions. These therefore becomq
our main concern. We have not, as has been customary, rejected infinite density

solutions but we have shown that the only one that can exist is the singulag

solution 1. :
The transformation

- 1= B ()
11 = {4nGPB exp [{(0)p]}/%r (1)
= (nGpofylsr ~ »

is applicable to solutions of class 2 provided y(o) is finite. Note that we may thm
write the density in the form ~

+ P =poen (14)

Equation (12) reduces to the standard Emden form (x5) g
d?%; 2 dvy, |

a2 tam T =0 (15)

(the variables are named differently by Chandrasekhar (16)). The solutions of
class 2 when transformed all become the standard solution of equation (15) for
U1 = @ =0
dry ;
when 71 = o. However these solutions are terminated by the box at different
radii given by r1 = {4#GpoB}1/%r,. The solution is readily computed numerically
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and was tabulated by Emden. With the solutions known it is possible to calculate
the total energy and total mass within 7., and to choose the values of B, B etc.
so that the energy is E and the mass M. We may also calculate the total entropy .S,
the surface pressure p etc. So far this section has merely rederived well known
results which are all too depressingly familiar and must have been derived some
hundreds if not thousands of times before. However, it is at this point that Antonov
asked and answered the crucial question: are these configurations of stationary
entropy genuine entropy maxima or are they saddle points, inflection points,
etc.? He also distinguished carefully the case of a local entropy maximum, in
which the configuration has more entropy than all neighbouring configurations of
the same mass and energy inside the same sphere, and global entropy maxima for
which the other configurations are not necessarily neighbouring.

In Appendix III we give Antonov’s demonstration that no globally maximum
entropy state exists for particles of fixed total energy inside a box of fixed radius.
He also showed that locally maximum entropy states only exist provided the
radius of the box is less than o-335 GM2/—E. This corresponds to a density
contrast between the centre and the edge of the confined isothermal sphere of a
factor 709. We shall find these results among others in our study of the series of
equilibria of the bounded isothermal gas sphere. Antonov’s method was a more
direct study of the second order terms in the variation of the entropy at constant
energy, mass and confining radius.

3.1 Calculation of thermodynamic parameters for bounded isothermal spheres.
Certain relationships between thermodynamic variables follow without use of
detailed structure computations. In this section we first deduce such relationships
and then show how Emden’s tables or their equivalent may be used to deduce the
values of all variables.

The virial theorem of Clausius may be applied to our equilibrium system
provided the surface pressure terms are not dropped. For an equilibrium it

reads 2T D=V (16)
where p is the surface pressure
p= [rrymeaxl,, (17)
V = 41,3 is the volume (18)

U is the total potential energy
J is the total kinetic energy.

From our equipartition theorem we have

7=iae=3% (19)
while the definition of total energy reads
E=7+0
so using the Virial theorem
E=3pV-T = 31>V—§ %; (2c
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similarly ' S
; M 2

‘ U= 3pV-— ——E ) ‘ : ’ (21)‘

which vamshes for a perfect gas in \ the absence of gravitation as it should. The
surface pressure may be related to the edge density by use of the equipartition
theorem

_ ' 1 o3 =23 | figsc = Pe _ Pe |
P atr, f %mc c § ZB' ate, f c m 7 ﬁ (22)
For one mass group equation (7) takes the form :
, B -
sr=aep|-p(5-4)| (23
and atr = 7, o ; _
GM
o=

2 | | 3/2
e
B Te
Relatlonshlps (1 6)—(24) enable us to simplify our expression for the entropy into the
form gnven by equatlon (25) as follows: :

S - ;k f1 log /o7 - —k Ufl log Ad®r— fflﬁ d“r-l-ﬁffln/:d“r]

hence :
T S Migarps—pfwar. G
Ais eliminate:(‘_i:{in favour of p by use of equations’ (24) aed (22) to give ‘
S M gy (9]‘-4—+f+zv)——— (log m
= Mg (B'5/2)+ B ( +2E) _3M, +log m). (26)
Alternatively we may use instead of B’ to obtain the form -
";S = —M log (pﬁ5/3)+ﬁ(—G—M—~+ zE) § M(1—-% log m). (27)

Further relatxonshlps require use of the solution to the isothermal equation (15).
Emden gives the functions vy(r;) etc. in his tables so we express our thermo-
dynamic functions in terms of these dimensionless variables. We place stress on

the functions 712 ¢?1 and ‘—rrvl both of which become constant for large r;
oscillating as they do so.

Radius. By definition equatien (13):
71 = (47G poB)'/?r.

The value of 71 at the edge r = 7, deserves a name; we call it 2. It is the dimension-
less radius out to which the isothermal sphere extends before it reaches the box.
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It is a non-linear monotonic function of the density contrast between centre and
edge. Actually

P = exp vi(2),

PO

v3(r1) decreases monotonically from zero at r; = o.
By its definition

5 = (4G poB)1V27, (28)
Mass _ 2d_z/1) _ __r_e( dv1(71))
GM = (r r)r. B rl-ﬁl‘—Z’
and SO
GMB R
Temperature e ot (29)

Here and hereafter v1, v1” are understood to mean v;(2) and 21'(2) respectively.
GMSB|r, is plotted against the central concentration |1| in Fig. 1.

Pressure. Formulae (14) and (22) read

pe = poe®; p = %,
whence using equation (29) for B
. e”r  GM? z2e% (30)
P= Gpre B T qmd (—aw)? 3
and so
GM?2  z2e%,
3pV = mt (—zvl’)z'

Energy. Returning to equation (20) for the energy and eliminating 8 by means

of equation (29) e GM2 [ s2evt 3 1
_ [(_zm')z‘a (_zvl,)]. (31)

Te
Entropy. Formulae (29)—(31) enable us to calculate the entropy in the form

= }log V—2log 2—1 log (—2v1")+(—=2v1)

EE

2Er,
GM?2

Constants may be omitted with impunity from the entropy, while Er,/GM?2 is
given as a function of ¥ in equation (31) and plotted as a graph in Fig. 2. Like-
wise equations (18), (20) and (27)—(31) enable us to calculate other thermodynamic
variables.

—o1+ (—=v1")+const.  (32)

3.2 Asymptotic forms for the thermodynamic variables. We have pointed out
that in general the solution of equation (15) must be computed numerically.
However for large values of 7; an analytic asymptotic form may be deduced as

- follows. Transform variables to

0 =logri, u=wv+26.
32
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Equation (15) then becomes

d’u  du

202 + 70 +e%—2 = o.

This is the equation of a damped oscillator in the potential well e%—2u. This
well has a positive minimum at # = log 2. Asymptotically the motion damps out
and the oscillator comes to rest at the minimum so #->log 2 as §—>o0. For those
who prefer a more mathematical proof let us consider the energy A of the oscil-
lator.

A= i (Z—Z)z+(eu—zu)

and the oscillation equation may be written

dA (du)2
= = —|%) <o.
do do

The energy always decreases but A as indicated above consists of two essentially
positive terms. Hence du/df— o as 8 co. It then follows from the original equation
that u—log 2 as 6—oo.
Transforming again via
u = u—log 2,

the equation becomes

d%uy  duy

——t+—=—+2e%1—2 = 0,

a2 ag "
For large 6, u; is small and expanding the exponential and taking only the first
two terms we have '

ézll+d—u}+2u =0
dez g9 Tt ™
A solution is

u; = Ae?

where A, A are constants. Solving for A in the usual way and taking only the
real part of the exponential we have for u;

uy = Ae%/2 cos [% (0+ oc)]

Where « is some ¢ phase ’ constant.
Hence v; is r
v1 = log 2—20+ Ae9/2 cos [77 (0+ a)]

and we can differentiate this to get

dvl . dvl
a0~ tar
We note that ri2e%1 = e%1*2% js readily obtainable. Then with quantities v1,

—r1(dv1/dr1), r12e?1, we can evaluate the asymptotic forms of all other thermo-
dynamic variables as given in equations (29)—(32), e.g.

M = +é—fé {2+%Ae"'9/2 cos [\/75 (9+0ﬂ)] +\§7—*A8_9/2 sin [%; (0"'0‘)]} (33)
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In particular we note that as 6—
r12 ev1>2; —ry ij—l—>2,
a'r1
so that
27,
M~ ce
I
P 27GB%r,2
and since p = 2
P
>
P aGhr?
Te
e
m
WS—> log (27Gr¢%)— % log (B).

These expressions give the limiting behaviour of the thermodynamic variables
as §—>o0. We compare them with the results derived in the next section for the
singular solution 1.

3.3 The singular infinite density solution. In the singular case the solution of
equation (15) is
v1 = B = —2 log r—log (2nGBB).

But we know

p = Be",
so that

!

P = 2nGpr?

giving

M) = | amr2pdr = 22
0) = [ 4mrpar = 2

We see at once that these last two results are identical to the corresponding limits
of the last section. In fact it is found that the other thermodynamic variables,
as given in equations (18)—(22) and (27) also give the limiting values found above.
Thus the singular infinite density model is the limit of the family of finite density
models as they become more centrally condensed.

4. Stability. In this section we reconsider the general theory of linear series
of static equilibria, which is particularly suitable for discussing stability. We
apply this approach to thermodynamic systems, with special reference to self-

~ gravitating isothermal spheres subject to the different external conditions described

in Section 2.2. As a preliminary to this general analysis we include a paragraph
on the specific heat of these objects, since the sign of the specific heat is intimately

connected with stability.
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4.1 Specific heat. By definition the specific heat at constant volume is

co_ (4BY _ 4 [ dE e (aﬁ)
v = (d—T)re =k ;@ B ( (dﬁ) (34)
e D1/ re

If we consider a system of constant mass inside a fixed box then the variation of
the inverse temperature § and the energy E with v; may be plotted using equations
(29) and (31) and are shown as Figs 1 and 2 respectively. The sign of the specific

)., =

2.4~

04

oo Lt .t % Vo 1 1 or i1t 1

Fi1G. 1. Radius—temperature—density contrast relationship. —v1= —log is a monotonic

function of z. See Table and Ref. (15).

heat for a particular configuration depends on the gradients of these two curves
at the value of v; which specifies that configuration. It is seen that for small v; the
specific heat is positive and that it increases until it becomes infinite atv; = 3-35,
the turning point of (dB/dv1)r,. For v1 just greater than this Cy is large and negative
and remains negative for progressively larger values of v, until v; = 6-35, the turning
point of (dE/dv1)y,, is reached, when it passes through zero to become positive
again. The whole sequence is repeated for larger v;. To relate this to the stability
we consider Fig. 1, still thinking of M and 7, as fixed so that we have 8 as a function
of v1, and consider an equilibrium configuration at small 9; in contact with a heat
bath. As the temperature of the bath is decreased the central concentration starts
by increasing but later becomes multivalued. For this latter portion of the tempera-
ture range several central concentrations are available for a single temperature.
We see also that if the temperature is sufficiently decreased no equilibrium state
exists at any concentration. The least temperature attainable by an equilibrium
isothermal sphere of radius 7, and mass M is

GmM
2'52 krg

£(3)
0

Tmin =

and is achieved at 91 = 3-5 (or a density contrast, po/p, of 32-2). This is just the
point at which Cy became negative and it is easy to see in physical terms why
no equilibrium is possible for a system of negative specific heat in contact with
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a heat bath. If the sphere is cooler than the bath it will accept heat from it and
grow still cooler as a result, thus becoming unstable. Similarly if the sphere is
hotter than the bath it loses heat and becomes hotter. We must be careful to
note that both these instabilities depend on the presence of the heat bath; that
thermally isolated systems do not suffer this type of instability* is illustrated in
Fig. 2 where there is no turning point until 2 = 34, v1 = 6-6.

A similar instability is found at v; = 2-6 by consideration of the specific heat
at constant pressure, Cp, and this is the critical point discovered by Ebert. Since
details of this instability are already in the literature we shall not discuss it further
here but merely refer the reader to the relevant critical curve, Fig. 5.

0-3

0-2

- £7,
GM?

00

-0-2

Fic. 2. Energy—radius—density contrast relationship. By using v1 as a coordinate we represent
all spherical equilibria in the diagram. Other spherical displacements, corresponding to other
generalized coordinates qi, will therefore remain stable displacements along the sequence. The
constant entropy lines are purely schematic; vi may be defined for the non-equilibrium
configurations with densities

po exp vi(r1) v1(r1) <1
p —
(o] ¥>7e.

but with non equilibrium energies E. The entropy of such a configuration falls below the
equilibrium entropy for that vy and re by

3 kM @)
2 m B\E/)
Here Ey is the equilibrium’s energy.

4.2 Linear series of equilibria. In statics the condition for a stable equilibrium
is that the potential energy is a minimum. In many static problems the description
* In the thermodynamics of homogeneous equilibria negative specific heats always
give rise to thermal instabilities between different parts of the system. This is not so here,

where we have a grossly inhomogeneous equilibrium coupled together by the long range
gravity field.
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of the system depends on some parameter other than the generalized coordinates
¢; in terms of which we describe the configuration of the system. An example
of such a parameter would be the length of a lever arm or the fixed angular velocity
at which a system is forced to spin. Such a parameter is a part of the definition
of the system considered so the condition for a stable equilibrium takes the form
U(w; qi, ... ) is a local minimum for variations in the ¢; keeping u fixed at
the prescribed value.

Let us call the value of g; attained at such a local minimum ¢;%. These ¢;°
will depend on the specification of the problem so in particular if p is changed
to some different value the ¢;0 will be different in general. Thus we write

q® = q%(p).

Furthermore the minimum value of U attained at any definite value of p may be

written
U= Uus 0 - - - ).
Now let us plot the surfaces
U(p; gi, ... ) = const = Uy (say)

in the multidimensional (g, ¢; ... ) space.

Each point corresponds to one configuration which has one potential energy
so no two of the surfaces can intersect. Wherever one of these surfaces just touches
one of the planes p = const the configuration corresponding to the point of
contact is an equilibrium since for fixed u, U(p; ¢, ... ) is stationary there.
Let us suppose that for some value p = po we know that the system has a stable
equilibrium. Then the point ¢;%uo) is the tangent point of the surface U = Dy
and the plane u = po and Uy is the minimum value that U attains in that neighbour-
hood of the plane. Note that one may also deduce that pg is the extremal value
of u attained in that neighbourhood of the surface U = Uy. If the U = Dy surfaces
are concave towards the higher values of U in the neighbourhood of a tangent
point then the configuration is stable. Furthermore concavities at touching points
at neighbouring values of u will normally be the same so that a whole linear series
of stable equilibria may be traced out as u is varied. It is shown in many classical
works (17)-(20) that such a series of stable equilibria only terminate when it
meets another series or turns back through the values of p that it has already
traversed. The reason behind this is topological and is most readily understood
by drawing. The case we shall be concerned with here is that of a series of stable
equilibria which is traversed as we change . The series turns back so that when
we set p above some critical value there is no equilibrium.

Although these concepts arose in classical statics they are very generally
applicable throughout thermodynamics and dynamics. In dynamics gyroscopic
terms appear which considerably complicate application of the method unless
friction is also present but in thermodynamics the whole theory may be cast in
similar form.

4.3 Applications of linear series of equilibria in thermodynamics. Consider our
system of particles of total energy E inside a fixed spherical box of radius 7,. The
condition of equilibrium is that —.S (the negative of the entropy) should be a
minimum for fixed E. Thus — S takes the place of U and E takes the place of p.
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The set of all coordinates ¢; that specify the configuration is replaced by the
distribution function f(r, c). We consider the sequence of equilibria of increasing
E and we plot the sequences in E, v; space where v; = loge (pe/po) and pe is
the density at the edge. We have already shown that all spherical equilibrium
configurations are Maxwellian and are included in Fig. 2.

At large positive E the system behaves like the non-gravitating gas sphere
and the equilibria are stable. As E is decreased we traverse the equilibrium sequence
of Fig. 2 and S steadily increases until the sequence turns back towards larger
values of E. At the top we reach the maximum entropy attainable at equilibrium
with box radius 7.. The entropy surfaces have an inflection here and, at this value
of E, higher values of the entropy can be attained by moving off the equilibrium
sequence to the right in Fig. 2. The sequence thus loses stability here. We remark
again that the stable series is not only the series of states of maximum entropy
for fixed energy but also the sequence of minimum energy for fixed entropy as
may be seen from Fig. 2. We use this in Appendix II.

increqasing

Fic. 3. As Fig. 2 showing the equilibrium surface and its intersections with the constant
entropy surfaces.

Above we chose to discuss the series of equilibria at fixed 7, for E varying.
We thus established that stable equilibria exist well into the range in which E is
negative. However starting from any one of these stable configurations we could
equally well discuss series at fixed E and varying 7.. The figure for the equilibrium
sequence is precisely Fig. 2 but the positions of the constant entropy line are
slightly altered because S depends on the volume of the box as well as on the
density contrast. However even these constant entropy lines are qualitatively
similar. To explain the situation more fully we have drawn the three dimensional
diagram which plots the lines of constant entropy on the equilibrium surface in
(— Ere/GM?2, v1, log r.) space, Fig. 3. Since — Er,/GM?2 is a function of v; alone
this surface of states of equilibrium is cylindrical (in the general sense). However
the surfaces of constant S are not cylindrical and intersect the equilibrium surface
in the lines shown.

We have shown in detail how to determine the stable series of equilibria when
our system is in a rigid box and exchanges no heat with the outside world. Basically
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we used the fact that there was a functional (—.S) of the distribution function
describing the system which was a minimum for certain fixed conditions. However
starting from the law of entropy

TdS > dE+pdV

one can readily prove not only (i) below but also (i), (iii) and (iv) below. As an
example we prove (ii). For spontaneous change entropy increases so the inequality
holds. We have

d¥ = dE—TdS— SdT < —pdV — SdT.

For spontaneous changes at fixed V' and 7, d¥# must be negative. Now consider
a point at which & is a minimum for given ¥ and 7. Then no change exists for
which d# is negative so spontaneous changes can not occur. The system is therefore
in stable equilibrium.

Similarly :

(1) for a system in stable equilibrium with fixed E and ¥V the entropy S is a
maximum (—.S is a minimum);
(ii) for a system in stable equilibrium with fixed 7" and V" the Helmholtz free
energy # = E—TS is 2 minimum;
(iii) for a system in stable equilibrium with fixed entropy and pressure the

enthalpy & = E+pV is a minimum. We shall use this in the variant
form that S is a maximum at constant 5 and p;

(iv) for a system in stable equilibrium with fixed T and p the Gibbs free
energy 4 = E—TS+pV is a minimum.

The graph of GMPB|r. as a function of v; is shown in Fig. 1. Since 8 is a function
of T and v; is a measure of 7, this is the sequence of equilibria envisaged in (ii)
and we could mark values of & up the series. The series turns over at & = 9 and
the minimum of & on the equilibrium sequence is attained there. For completeness
we would need a three dimensional diagram like Fig. 3 but all these diagrams
look alike and it is too time consuming to draw all of them. We deduce that stability
ceases at this turnover point, following Section 2.1.

In Figs 4 and 5 we plot S#/(pG3M6)1/4 against |v1| and G3M2B% against
|21]. These are combinations of the independent variables of (iii) and (iv) which
are functions of v; alone. Namely

H|(pGBMO)L/A = [422 ¥1(— 201’2 — §(—201')1] [(‘zvl')z] 1
? =13 1 E) 1 m
and

G3M2B%p = - (2%01")%2 27,
47

The maxima of these curves correspond to the least values of —S and ¢
attainable on such sequences of equilibria. Stability ceases at such points which
are tabulated in Section 5.

4.4 Adiabats and isotherms. Although free energies are the most complete and
powerful descriptions of thermodynamic systems nevertheless few physicists think
in terms of the surfaces of constant free energy. By contrast adiabats and isotherms
are familiar from the schoolroom cradle and are therefore more readily visualized.
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Fic. 5. Pressure—temperature—density contrast.

The isotherms are readily calculated since equations (29) and (30) may be rewritten
in the forms

re = GMPB(—=zv1')71,

P = (47G3M2BY)~1 (— 2v1")2 2%,
while

V = 4mr3.
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For an isotherm B is constant and these may be regarded as the parametric equa-
tions. The detailed form of the isotherms has already been calculated from such
formulae by Bonner, one is plotted here as Fig. 77. All others are scalings of the
same curve.

To calculate the adiabats we take equation (27) eliminate B using equation
(29), E using (31) and p using (30). We thus obtain

kM 7,3/2

2321 9
— 204’ 3/2/f1/2p) — 2
+(—=2v1 )+(_zv1,)+log (47G32M 1 2m) >
For any given S this is a relationship between 7, and z; a further relationship
for p(re, 2) is provided by equation (30) with V' = 4a7e3. Together these provide
parametric equations for the adiabats which we may now determine using Emden’s
tables or their equivalent.

| Adiabat

Fic. 6

An adiabat is plotted as Fig. 6. Other adiabats may be obtained by scalings.
The reader should note that the breakdown of the adiabat occurs not at small
volumes but at large ones. The bounding sphere can be too big for there to be
an equilibrium. The physical explanation of this phenomenon is that given in
Section 3.

4.5 Criticism of the statistical calculation.—By taking Boltzmann’s view of
entropy rather than Gibbs’s we have left out the entropy of the fluctuations about
the state considered and have treated the particles as independent so that the
two particle distribution functions f(1, 2)=f(r1;, c1; rz, c2) factored into
f(, 2) = f(1).f(2). Here f(1)=f(r1, c1) etc. We have thus ignored pairwise
correlations. In a normal astrophysical gas this is a good first approximation but
the attractive force of gravity clearly helps correlations. In fact had we chosen
Gibbs’s viewpoint it would have been clear from the start that no full thermo-
dynamic equilibrium was possible at all. Gibbs’s canonical approach is to consider
every possible state of the whole system giving equal weight to equal volumes
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of the system’s 6N dimensional phase space apart from a factor exp {—B'E’}.
Here E’ is the total system energy and B’ is chosen so that the average of E’
over the ensemble is E. Consideration of simple models shows that the system
with a large subset of the particles very closely bound together by gravity and
the remainder banging about with the high energy released has a large phase
space volume associated with it. So also does the system in which a pair or many
pairs of particles are very close together. To obtain any sense from statistical
mechanics we must consider systems in which these highly desirable states with
infinite weight are unattainable. In practice this is almost the case for real systems
because very rare events must be invoked if binaries are to form from the general
field. We can therefore consider ‘frozen equilibria’ in which the number of
binaries is unchangeable in the time available. A one particle distribution function
is then allowable provided many particle correlations are not pronounced. In a
certain rough and ready sense the Gravothermal Catastrophe occurs when such a
many particle cooperation just must occur, and we have seen that the statistical
method fails to give any answers beyond that point. We have also seen how sub-
clustering in the initial conditions can change the whole behaviour even before
this. Our other excuse for leaving out high order correlations is that only a fool
tries the harder problem when he does not understand the simplest special case.

4.6 Criticism of stability deductions. We have argued that we know our
sequences are stable at one end, that they do not cross any sequences until they
turn-over and therefore that they are stable up to that turnover. We wish here
to comment that we do not rigorously know that they do not cross any other
sequence. We have calculated all the spherical configurations and Appendix II
shows that the only stable equilibria are spherical. However these two facts do
not prove that our sequence is not crossed by an unstable non-spherical sequence
whose only spherical member is at the crossing point. In practice it is hard to
think of non-spherical equilibria in this problem but we are led to believe that
such exist after the system has become unstable to spherically symmetrical de-
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formations. We believe that this point can only be fully cleared up by a stability
analysis (21) in the neighbourhood of zero frequency oscillations. Should such a
non-spherical unstable sequence cross our sequence before turnover the con-
tinuation of our spherical sequence will be unstable.

TaBLE 1
z |o1] po/ pe Remarks
407 1-61 5°0 Turning point of dM(z)/dz (the incremental increase of mass
with radius).
474 1°93 6-8 Zero of energy for an isolated system of given volume (i.e.

the configuration in which the gravitational binding energy
just balances the thermal energy).

6-45 264 14°1 Minimum of Gibbs free energy for equilibria of systems in
contact with a heat bath at constant temperature.
Onset of thermal instability at constant pressure (Ebert).
Onset of negative* specific heat at constant pressure, Cyp.
Maximum of isotherm.

7:25 2:93 18-7 Zero of enthalpy for an isolated system at given pressure.

8:99 347 32°2 Minimum of Helmholtz free energy for equilibria of systems
in contact with a heat bath at constant temperature.
Onset of thermal instability at constant volume.
Onset of negative* specific heat at constant volume, Cy.
Vertical tangent to isotherm.
Schénberg—Chandrasekhar limit (approx.).

22°5 5-65 287 Minimum temperature for a given energy.
Maximum energy for a given temperature.

25-8 5:96 389 Maximum entropy for an isolated equilibrium configuration
at given pressure.
Least enthalpy for an equilibrium state of given pressure.
Onset of dynamical instability in thermally isolated systems
at given pressure.
Minimum of adiabat.

34°2 6-55 709 Maximum entropy for an isolated equilibrium configuration

of given volume (Antonov).

Least total energy (greatest binding energy) for an equilibrium
state at given volume.

Maximum volume for an equilibrium state of given energy.

Onset of the gravo-thermal instability in completely isolated
systems.

Vertical tangent to adiabat.

* It should be noted that (as described in Section 4.1) the specific heat goes to negative
values through infinity at these points.

5. Interesting and critical points. In Table I we give all the special points
found in our discussion. It is imagined that we traverse the sequence in order of
increasing density contrast. For the readers convenience we repeat some definitions
here.

The radius of the bounding spherical box is 7,
3

- is the kinetic energy per unit mass ¢*

2B
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po is the density at the centre
pe is the density at the boundary

v1 = log (pe/po)(This is also proportional to the potential measured from
zero at the centre.)

z is the dimensionless scaled radius of the box 2 = (47GpoB)L/?r,
v1(2) is the function found by integrating the isothermal equation.

6. Astronomical applications

6.1 Galaxies. Throughout this work we have assumed that heat can flow
from point to point in our systems. That is we have assumed that the time scale
for heat flow is shorter than or of the order of the age of the system. If only
interactions between individual stars are considered then the time scale in galaxies
is on the contrary much too long, except possibly in the most compact galactic
nuclei. On the normal level there is no sensible application to galaxies. However
Lynden-Bell (22) recently considered the statistical mechanics of the violent
relaxation that occurs when the mean gravity field of the system is unsteady and
showed that significant evolution might occur even if these conditions only per-
sisted through the galaxies’ birth stages. Furthermore this form of relaxation
does not lead to mass segregation and the relaxed states are the same as those of
the Fermi-Dirac self-gravitating gas but with a completely different interpretation
of the degeneracy. In the relevant limit one recovers the classical isothermal
distribution but with no mass segregation. Once this is accepted it is relevant to
ask ‘ Did galaxies in their birth stages undergo the gravo-thermal catastrophe and
if so what would they do about it?’

Since galaxies are not contained in hard boxes it is evident that conditions
must have been ripe for this event. However, the violent relaxation may not have
persisted for long enough for relaxed conditions to be set up throughout a region
with a density contrast of 709 to 1. At present this must remain a matter for debate.
For our interests sake we shall assume that at least a fraction of galaxies do undergo
the gravothermal catastrophe. The centres will then begin to separate into a
core—a sort of separate body which might even be called a nucleus. This will
cease to shrink when it becomes degenerate in Lynden-Bell’s sense. The system
will then have a core-halo structure which is an equilibrium of an isothermal
Fermi-Dirac gas sphere. These will show a variety of different nuclear concentra-
tions depending on the degeneracy parameter.

It is evident that theory developed along these lines has the chance of making
sense of the variety of different galactic nuclei. The first problem to be tackled
is obviously the computation of isothermal Fermi-Dirac spheres. This is almost
complete. The second is the incorporation of rotation into the study of the gravo-
thermal catastrophe.

Two remarks should be added. (i) If in galactic nuclei the star-star relaxation
time is short enough then these will in turn relax by the normal process and may
undergo the gravothermal catastrophe on their own account. This might be a
natural process leading to very high densities in which stars can collide and shed a
large proportion of their gas to lead to a dynamic currant bun model. The currants
are the cores of the stars, the bun is the gas which is highly turbulent and grows
to contain a large fraction of the mass. Such models have been speculatively
discussed in the literature in connection with Seyfert nuclei (23), (24) and quasars
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(24). (ii) It is not clear that violent relaxation is confined to the birth stages of
galaxies. Jeans’s instabilities might occur persistently in stellar systems and lead
to a continuing violent relaxation.

6.2 Relevance to the evolution of star clusters by encounters. Discussions of the
evolution of stellar systems due to stellar encounters have emphasized the
importance of the escape of stars as the primary cause of continued evolution.
Antonov’s discussion has shown this to be false. Even if the system is surrounded
by a spherical reflecting wall there will be continuing evolution provided that
the radius of the sphere is greater than 7,. Once that limit is surpassed the basic
urge of the encounters to make the system isothermal is more than counteracted
by the heating of the centre due to gravitational contraction. Models based on the
hypothesis that the system is close to the isothermal except near the escape energy
will therefore breakdown whenever the central concentration becomes large. To
demonstrate this still more clearly in models which do not require confining
boxes we have calculated the entropies of a sequence of Woolley’s models with
fixed mass and total energy. Woolley’s models are the simplest modification to the
isothermal obtained by truncating the distribution function above a certain energy
so that

A exp —Be —Be>k,
f(o) =

o) — Be<k,

k, the cut off parameter, will not be confused with Boltzmann’s constant. Such
models reach an edge at a finite radius. The larger the value of k the larger is
that value of r; at which the model starts to deviate from the complete isothermal
gas sphere. Evolution of the system may be represented by allowing the system
to approach the isothermal sphere by gradually increasing its k. In the absence
of escape this evolution will be rigorously at constant £ and constant M. In the
presence of escape E will still be approximately constant since escapers carry
away very little energy. M will decrease but it is probable that the main drive of
the evolution goes towards increasing k& since this involves the more frequent less
violent encounters. It is therefore reasonable to consider the idealized evolution
at constant E and M to illustrate our point. The evolution proceeds from the
low value of k (say k = 3 to 5) at which the system is presumed to have been
born, and meanwhile the entropy is increased according to the values shown in
Table IT. However once the cluster has reached k£~ 8- 5 we see that further increase
in & would be accompanied by a decrease of entropy. In practice the entropy will
inevitably increase so we are forced to deduce that the actual path of evolution
departs radically from Woolley’s models at this point. It is perhaps worth remarking
that actual clusters appear to congregate with values of & somewhat below the
critical one.

These clusters truncated in energy space in fact behave in a similar manner to
the isothermal spheres truncated in radius which we have been considering in
detail. The maximum of S as a function of & found for Woolley’s models cor-
responds to the maximum of S as a function of o; which we showed was associated
with the gravothermal catastrophe. It is therefore natural to deduce that the same
thing happens. Further evolution ceases to be towards the isothermal gas sphere
but instead the temperature contrast between the central nucleus and the outside
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TasLE 11
— _ ’ GMB - _ , _B_E‘ Efe S*
k(= —ov1) z v1 py (= —2zv1) M GM?2 kM
3 9:64 o-140 1'35 0°734  ©0°543 —3-68
4 14°1 0101 1°43 o 874 o-609 —~3°46
5 21°3  0-0b45 1-36 0-964  o-694 —3°33
6 340 0:0359 1°22 1-008 0-826 —3-23
Vi 574 o0-0185 1°06 1-006 0-946 —3-16
8 102°3 0°00914 0°'935 0-956 1-022 —~3-13
9 183 0-00485 0-886 0-898 1-013 —3-15
10 314 0:00291 0'914 0-858 0°939 —-3-21

will increase. Further evolution will probably form a core and an envelope similar
to that discussed in the stellar evolution of the red giants.

We emphasize that this is not a peculiar property of Woolley’s models by
considering the special cases of Michie’s models which have been more fully worked
out by King (x0). These again show the phenomenon of a maximum in the binding
energy at fixed outer radius; see Fig. 8. The complication of the formula for the

King

Woolley
o8

/\—"’ Isothermal

00 ! | 1 ] J | 1 L
0 2 4 6 8 10 12 14 16
Bl

- E7,
M

)

I

Fi1c. 8. Energy—extreme radius against cut off parameter. At constant energy and mass
the maximum entropy state corresponds to the maximum.

entropy deterred us from working it out but in all our other models the maximum
in this binding energy occurs at the entropy maximum. We have little doubt that an
entropy maximum in the Michie-King sequence occurs at or close to this model.

If this is accepted there becomes an obvious need for models of cluster evolution
which are not based on the gradual approach to the isothermal. The basic features
of such models must be a core, which evolves towards higher temperatures at a rate
determined by its own more rapid relaxation, surrounded by an extensive halo
which remains cool. The evolution is similar to the gravitationally contracting
stage of a red giant.

6.3 Analogies with stellar evolution. It is perhaps worth speculating whether the
formation of giants in stellar evolution might not be essentially the same pheno-
menon as the evolution of a stellar system into a core and a halo. We have not been
able to convince ourselves that this is the case but some idea why the systems behave
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similarly is as follows. The temperature contrast in a star leads to greater pressure
per unit density in the core, but this is to some extent offset by the molecular weight
contrast so that the system may simulate an isothermal gas sphere more closely than
one might suppose at a first glance. Some might consider that the lack of nuclear
energy generation in the dynamics of a star cluster would provide a radical difference
inthe equilibrium states. However it is salutary to remember that the main properties
of the main sequence were deduced without knowledge of the energy generation.
It could perhaps be argued that in the less advanced evolutionary stages the main
role of energy generation is to slow down the evolution while the energy comes out
rather than to alter the evolutionary path. (That is an oversimplification because
the change in molecular weight also occurs.)

Star clusters evolve unimpeded by nuclear hold-ups, thus gravitational con-
traction gives place directly to core formation and the giant phase. Studies of star
clusters have the added attraction that one can see the interior!

There are correct analogies between isothermal spheres and stellar evolution.
The Schonberg—Chandrasekhar limit (25) is caused by the isothermal core of a
star exceeding & = 9, which is approximately one of the critical points of Table I.

7. Acknowledgments. We would like to thank Sir Richard Woolley for a stimulat-
ing discussion of Antonov’s result which led to the physical explanation of Section 3,
W. B. Wilson for helpful advice on numerical methods, and R. D. Cannon for sup-
plying detailed model calculations enabling us to construct Table II. The calcula-
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APPENDIX 1

Identification of B’ with 1/kRT and S with thermodynamic entropy
From equations (31) and (30)

GM?
= =, 1),
GM?2
p= pry &(2)
where
_ 2%en _ 3 _
g(z):m and ¢(2) = 2= 2o1) g(2). (A.1)

The heat dQ is given by

GM?2 ‘GM? ,
dQ = dE+pdV = 2 [g(2)+q(2)] dre— . q'(?) dz.
We rewrite this
do sdre  $q'(2) d
= =§ ——227 _d A.2)
G ¥ +e@®) (
Oy O A

But £[g(2)+¢'2)] = [—271']"! and from equation (29)

B =[] (-mor)

Te

hence equation (A.2) may be written
BdQ = Md [% log V—$ jg%zq)-dz] = Md [} log V-1I]. (A.3)

B is thus an integrating factor for dQ. After a lengthy calculation using the de-
finitions (A.1) and the fundamental equation (15) written in terms of log z instead
of z we find

_[* 4= _ 1 — 2y’ — 201 ) — (301"
I_f He+q) dz = 2 log 2+14 log (—2v1")+2¢9(— 2v1")— (2v1")+ 01
Comparing this with equation (32) we see that 1 log V' —I is the quantity formerly
called mS/kM, equation (A.3) may therefore be written k8'dQ = dS. 8’ may be
identified with (k7")~1 and .S with thermodynamic entropy. To ensure uniqueness
of this identification it is necessary that .S should be additive. In one sense this
follows directly from the definition (1) which may be used to define an entropy
density. However it is not possible to put two gravitating systems side by side

33
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without them affecting one another so neither energy nor our entropy S is a
simple extensive parameter in the normal thermodynamic sense (i.e. at constant
B’ and M|V they are not proportional to M).

APPENDIX II

Antonov’s proof of spherical symmetry

We have shown in Section 4.3 that the equilibrium states at constant volume
can be considered either as states of maximum entropy for given energy or as
states of minimum energy for given entropy. Whereas we have formerly employed
the first of these to discuss equilibria it is convenient here to use the second.
Suppose we have a non-spherically symmetrical system of density p(x, y, 2).
Now imagine an inhomogeneous incompressible fluid also of density p. We can
displace the elements of fluid without changing their density so that the fluid
becomes spherically symmetrical with density monotonically decreasing outwards.
During the displacement the entropy of each element of fluid its mass and its
kinetic energy remain unchanged. However the potential energy of the whole
system has been decreased (since heavy liquid sinks spontaneously). Thus the
systems of locally minimal energy for given entropy are spherical. The systems
of locally maximal entropy for given energy are the same, so they are likewise
spherical.

APPENDIX III

Antonov’s proof that global entropy maxima do not exist

Consider the following non-equilibrium distribution. Let mass o/l be uni-
formly distributed inside a sphere of radius r;. Let the velocities have an upper
limit ¢; but let all velocities less than ¢; be equally likely. Let the remainder of
the system of mass (1—«)M be distributed in another distant sphere of radius
re with an analogous distribution with speed limit co. Let the distance between
the spheres be r12.

The distributions functions are

fi= oM _ oM
LT mgmrd gme®  migmPriier®
. _(-oM
fa= m L81r2ra8cy3’
The entropy is
_ oM L (1—a)M
= k-;logfl k——m—logfz
- _.’ii‘l_/" [o log a+(1— o) log (1 — )]
EM kM M
+ ?_’_7_,1— [(1— &) log cora+ o log c1r1] — P log —I—g;% (A4
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The total energy is

2 (1—q)2 —
E=—2GM? [9‘..4-(1 %) +3 o o‘)] + 2 M [ac12+ (1—a)c22].  (A.5)
r 2 r12

The aim is to make S large by keeping the (1 — «) log carz term bounded and

' making the « log ¢j7; term tend to infinity. To this end we fix

(1— o) log corg = — L = const
and we keep ¢z and 7, constant also. To satisfy equation (A.5) we choose

o _I[10 Go(1 —a)M?\  2Ge®M | 2GL2M ]
1 [3 T {E + _— + " (1— )2 +;———~—2[log )’ (A.6)

6.1
Now let rg—o then by equation (A.5) a—>1.
From equation (A.6) c¢;— 0 and from equation (A.4)

S—>o+o—?3kmilL+ o0+ const = ©o.

It is perhaps worth noting that the departure from spherical symmetry assumed
in this proof is unnecessary since a similar proof holds if the first system lies
between spheres concentric with the second system.

APPENDIX IV

Gravitating hard spheres and the non-relativistically degenerate problem

It is perhaps of interest to note that gravitating hard spheres always have a
true maximum entropy equilibrium state. When the system approaches the
gravothermal catastrophe the system undergoes a phase transition in which a
core of hard spheres in contact with one another is formed; outside this core the
system obeys the isothermal equation but now takes up one of the ¢ other ’ solutions
of type (iii). The central support provided by the close packed hard spheres
takes the place of the support provided by the unphysical repulsive mass at the
origin.

Very similar circumstances prevail with the non-relativistically degenerate
spheres. In this case the central part instead of going rock hard becomes degenerate
and is thus a polytrope of index 3/2, hard enough to resist gravity. Again outside
this degenerate core the system lies on the  other’ solutions of the isothermal
sphere.

It seems that in both these systems a phase transition is occurring which
replaces the catastrophe of the classical point-particle model.

APPENDIX V

Calculation of the energy and entropy of Woolley’s truncated isothermal spheres
The distribution function for these models is

{ Aexp(—Be)  Pletio)<k,

7=, Be+ o) > .
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This leads to a density
erfz (k+v1)1/2
p={ P afer Tk
o —o1>k

where v; is defined in the same way as for isothermal models (equation (13)).
Defining 71 = (47G poB)1/2r Poisson’s equation becomes

1/2
1 d o dU1 —evlw-l_f—lz)/ —v1<k,
7'__2 27—'; T Er—l = erfs k1/
! o —‘Z)1>k.
This is solved numerically subject to the conditions
_ du _
v = I =

at r1 = o. The total potential energy may be found as follows

I

0= -3 [ ppa = 2o [ yvrpan

- _S_Jéf(w)z d3r+8—;—(—;f¢v¢:.ds

where d8S is an element of surface area of the body (477,2). In terms of vy(r1) the
potential may be written

2
(r101")2%dr;—~
0 2

—1
|

where 2 is the value of 71 at the surface.

[

Now
_GM = (‘y—’) S0 GME = —2vy’,
782 dr Te fg
Hence
2 dry
_B_E__@_fo(““’ o
M- M- 43 (—%01) +;A( zv1’). (A.7)

The right hand side may be computed numerically from the solutions to equation
(15). This must be done for each value of the cut-off k.
To calculate the entropy we note using equation (25) for log f

__S%= fflogfdﬁT = —BT —2BU+ M log A.

Using the Virial theorem this may be written

S

E
37 = —3pB M+log A.

One may show that

po= A(?Bj) " exp (Bo) erfs k1/2
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and that
GM
B (4-Y) = — i@
Te
while
471G poB = (sfro)?
and
= (e )= 20,

B - (GM)( .2"0]_)

and

V = 4713 = 4

BE
=230 oy

From these equations 4 may be determined to give the following forms for the
entropy

S

—mz = 3P y%-% log V +log [2%(—201)}/%] - (—zv1)

—log (erfs k1/2)+v1(2)— § log (9674¢G3M)
or eliminating V" and putting

=~ g blog (= ) +log [ 1)+ @)

—(—2v1’)—log (erfs k1/2)

we have
s _ S*
—kM ~ —kM
BE|/M is the function of 2 given in equation (A.7) while the last term is constant

and may be omitted for a discussion of our sequence of models. The relevant
integrated properties of Woolley’s sequences are given in Table II.

1 log [128 75G8M8/(— E3)].
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