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ABSTRACT

Generalized versions of the Lin-Shu dispersion relation and the Toomre-Shu conservation principle of wave
action have been derived. These are valid even in the neighborhood of all the Lindblad resonances. Because of
the finite radial epicyclic excursions of the resonant stars, each resonance influences a region of the order of one
or two epicyclic distances. For our Galaxy, these are annular regions each several kiloparsecs in width. Our
generalized dispersion relation gives finite wavenumbers throughout the resonance regions. Provided that there
is not also a very rapid temperal decay in amplitude, both leading and trailing short waves are found to decay
spatially in the direction of their respective group propagation. This decay process can be described physically
in terms of the detailed balance of energy and angular momentum through a generalized conservation principle
of wave action. This principle involves a modified form of the flux term. In addition, an important new feature
is that it also includes source terms which always result in the damping of the waves at the Lindblad resonances.
In particular, we have a detailed source density term of angular momentum which can be compared with the
integrated (total) source obtained by Lynden-Bell and Kalnajs. Under certain approximations, we have also
rederived this source density by their methods and have shown that it agrees with our formula.

Other implications of this theory include the fact that the surface mass density of the spiral wave in our
Galaxy has a peak which correlates well with the peak of ionized hydrogen density. This correlation, first
suggested by Lin and Feldman, is now found to be a possible test of wave pattern speed for some galaxies. Our
present calculation also elucidates the different behavior of leading and trailing spirals. Within certain condi-
tions, trailing waves are preferred.

Subject headings: galactic structure — stellar dynamics

I. INTRODUCTION

This is the first in a series of papers directed at mechanisms for the generation and maintenance of density waves.

Collective density waves and instabilities have been introduced by Hunter (1963, 1965), Lin and Shu (1964, 1966),
Toomre (1964), Kalnajs (1965), and Julian and Toomre (1966) as the basic physical phenomena underlying spiral
structure in galaxies. Fruitful comparisons with observations have been made by Lin, Yuan, and Shu (1969),
Roberts (1969), Yuan (19694, b), Roberts and Yuan (1970), Shu, Stachnik, and Yost (1971), and Shu e? al. (1972).
Their rapid advance has been facilitated by the Lin-Shu hypothesis of ‘‘quasi-stationary spiral structure.”

Toomre (1969) showed that the Lin-Shu spiral density waves are convective and propagate through the Galaxy
in a matter of some 10° years. In between the resonances, Toomre (1969) has suggested, and Shu (19705) has shown,
that the action density of these waves is a conserved quantity of the wave propagation. Kalnajs (1971)* further
elucidated the proportionality relations between action density and densities of angular momentum and also of
energy in a stationary frame. Thus, the action (angular momentum, energy) density of the wave is established as
the fundamental physical measure of the wave concentration in any local region. Toomre (1969) has also suggested
that these waves are absorbed in the ““vicinity”’ of the Lindblad resonances, but he ascribed the cause to a process
of ‘“‘phase-mixing.” For the Lindblad resonances, Mark (1971) derived an improved version of the Lin-Shu
dispersion relation and found that the waves are indeed absorbed by interaction with the resonant stars. A detailed
description of the wave length and amplitude was also obtained. Lynden-Bell and Kalnajs (1972, hereinafter
referred to as LBK) gave a physical interpretation of this phenomenon in terms of emission and absorption of
angular momentum by the resonant stars. They only calculated the total integrated source but were unable to
describe the details of this absorption.

Since density waves propagate and are absorbed at the Lindblad resonances, the Lin-Shu hypothesis of *‘ quasi-
stationary spiral structure’” must be interpreted in terms of mechanisms of regeneration or sources of wave action.
Thus, Toomre (1969) stated (p. 909): ““neither the damping nor the radial propagation of individual wave packets
actually excludes really long-lived spiral wave patterns in a galaxy. If such patterns are to persist, the above simply
means that fresh waves (and wave energy) must somehow be created to take the place of older waves that drift
away and disappear.” He also suggested as viable sources either tidal forcing by external companions and satellites,
or forcing by oval distortions and barlike instabilities in a disk. Lin (1969) has suggested that (p. 383): ““the reflec-
tion of the waves from the central region then stabilizes the wave pattern into a quasi-stationary form by trans-
mitting the signal, via long-range forces, back to the outer regions where the waves originated. Thus, there is

1 The result in the form of surface densities of angular momentum, etc., was not given here but referred to by Shu (19705, p. 110).
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necessarily the co-existence of a very loose spiral structure and a tight spiral structure. Population I objects stand
out sharply in the tight pattern while stars with large dispersive motion would primarily participate in the very
loose pattern.” LBK also suggested that the stars at the corotation resonance may act as a source of wave angular
momentum that emits the inward-propagating trailing waves.

Most of the details of these mechanisms have not yet been worked out. Although it is easy to imagine that bars,
oval distortions, and companions can excite very open spirals, whether they can also excite more tightly wound
waves is a more delicate question. Some early progress has been made by Feldman and Lin (1973), who calculated
the response of gaseous cylindrical and disklike systems that are driven by an imposed bar. It is interesting to
inquire in detail as to the manner in which bars, companions, and resonant stars act as sources of wave action
for these tightly wound waves. For a particularly well-known example of these phenomena, this paper is directed
at studying the problem of how source terms for wave action can actually be introduced into a modified action
conservation principle: We begin with the modest task of studying the source terms for the case of the wave
absorption at Lindblad resonances. We feel that this is a helpful approach because considerable analysis is required
to evaluate the sources even in this case where the qualitative physical mechanism is quite well known. In the
process of deriving these source terms, it is also necessary to obtain the dispersion relations governing the behavior
of density waves at all the Lindblad resonances. In a brief communication (Mark 1971), the dispersion relation at
the inner Lindblad resonance has been recorded without proof or detailed examples. Contopoulos (1971) also
discussed some aspects of this problem. Our results differ from his because we imposed a self-consistent gravitational
potential.

II. THE EQUILIBRIUM AND THE PERTURBATIONS
a) Basic Equations for the Equilibrium and the Waves

As the basic equilibrium to study waves in spiral galaxies, we shall use a disk model (Hunter 1963; Toomre 1963;
Lin and Shu 1964; Kalnajs 1965). For the particular spiral galaxy in question, let (w, 6, z) represent cylindrical
polar coordinates centered at the galactic center, with the z = 0 plane representing the ‘“idealized-disk”’ of the
galaxy. This model is assumed to have the equilibrium surface density of matter X(w), gravitational potential
®(w, z), circular rotation frequency Q(w), and epicyclic frequency «(w). Of course,

_ 00 . _ 2 1dIn Q
Qz(‘w')‘w' =7 L K2(‘w') = (29) [1 -+ id_—ln ’W] . (1)

If (pw, po) are the components of momentum (per unit mass) for a star moving in this ‘““disk,” we may define
its guiding-center circular motion by the radius r of a circular orbit with (Shu 1969)

pe = Qr)r2. @

Again relative to unit mass, the orbital energy E, guiding-center circular rotation energy E,, and epicyclic energy E,
of the orbit are given by

Ew, pos pe) = 40" + 225 + 0w, 0), ®
E(r) = $Q%(r)r2 + O(r,0) = E[r, 0, Q(r)r?], 4
E(r,a) = 1<*(r)r?a® = E — E,, 5)

where g is the dimensionless epicyclic amplitude of the orbit. As equilibrium distribution function for the mass
density in phase space, we shall choose

F(E., ) = P(r) exp [—Ee/cz(r)l[l + ;’ji-] , ®)

where c(r) represents the dispersion speed of the stars in the radial direction. This distribution differs from that
of Shu (1969) only by terms of O(E,/E.) and has the additional advantage that both F and 9F/dE, give finite
integrals when integrated over phase space. For the purposes of calculating local wave perturbations, this distribu-
tion function still gives the same asymptotic result of Shu, namely,

20(r)2(r)

F=P)exp [=E[e()] + 067, P() = 55750

+ 0@, @)
where

or) = rff(’r)) ®)

is a small parameter measuring the typical magnitude of (E,/E,)'/? for a given r.
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The wave perturbation is characterized by the gravitational potential ¢(w, 6, z, t) and the surface density of
mass o(w, 0, t):

¢(w, 0, z, t) = Re [B(w, b, z, t)] = Re [v(w, 2)@ 9], 9
o(w, 0, 1) = Re [S(w)ei@t-md] (10)

where w is the complex wave frequency and m > O represents the number of spiral arms of the wave. The pattern
speed Q, of the wave is given as usual by

Q, = wgy/m, an

where we shall also use the subscripts R and I to denote the real and imaginary parts, respectively, of the quantities
involved. At the plane of the disk, we can assume v(w, z) to take the form

v(w, 0) = «e'?™@ = V(w), (12)
where « is a complex constant and all the spatial variation is included in the complex phase function p(w). The
radial wavenumber

kw) = 2 BE)

is, of course, also a complex function of =. Unlike Lin and Shu (1964) and Shu (19705), this complex wavenumber
is necessary to describe the galactic density wave at the Lindblad resonances (Mark 1971). We shall also find it
convenient to denote the amplitude of the wave potential by A(=), where

A(@) = |a| exp [~ py(=)] . (14)

If |kw| » 1, and |kgw| > 1, then, even though k is a complex number, we can still show as in Shu (19705)
that a simple algebralc relatlon exists 2 between S(w) and V(w); namely, as a consequence of Poisson’s equation,
we have

S(w) = =37 | k(a) - 5| - 1)

where G is the gravitational constant and
Sk = Sgn [kR] . (16)

Now Shu (1970b6) has shown that the density wave of Lin and Shu (1964) can be discussed by a systematic
expansion where
e~an~ lko|"tx 1. an

We shall call this the “‘epicyclic approximation” even though, strictly speaking, this should refer only to the
smallness of ¢ and a. The surface density response S(w) can also be calculated from the Liouville equation in
(@, Pw, 0, Po» t), and we have, to two orders in epicyclic approximation (Shu 1970b),

0 S(=) = 2lq], (18)
where
z(r)V(w) £+ dédn
s =~ [ 2O e | - T oo w) s 19)
V(l‘) = E_;c_(ng_(i)_] f2 + .,’2 — az’ n = 1— r/‘OJ‘, (20)
v(r)mr

qh(r), =] =1 3, @), #3))

= sin [v(r)7]

8 ) = 5= f _ exp [ivs — ik(w)wRa]{l + iwk(w)[%R 24k _ R] + im =) [3R + f]}ds, 22)

“ dln ( )
R, = 7(l + coss) + ¢sins, R, = By(w)R;2 — [1 + 2By(w)lnR, , (23)
o 3]s -3t

2 We are thankful to Dr. D. Baldwin for first suggesting that this generalization of Shu’s relationship should be possible.
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Since at this point we use the complex wavenumber k(w) to give both the phase and the amplitude variations in
the wave, the expression for §(v, w) does not contain a term involving the derivative of the wave amplitude A(w).

b) Expansion in Terms of the Resonances

The quantity ¢g(v, w) is a meromorphlc functlon of v and tends umformly to zero as |[v]| = on the square
contour with corners at (j + 4,7+ %), (= —4j+ D, (-5 -9, G+ 3% —j—3), where j=1,2,3
Therefore, we may express

q(v, ) = i - 1)

n=— o

S(n ). @25)

14

Each one of these poles at v = n represents the contribution due to one of the Lindblad or corotation resonances,
with n = — 1, +1, 0, corresponding to the inner and outer Lindblad and the corotation resonance, respectively.
Since we are concentrating our attention on the region close to one of the Lindblad resonances, say »(r) ~ n;, # 0,
we shall call the n = n; term “‘resonant,” and the rest we shall collectively denote as ‘“nonresonant’ terms. The
following consideration is the same for all but the corotation resonance n = 0. We shall write

S@) = SO(@) + SO(@), 6)

where S ®(w) is the resonant term and the complementary term S (w) is nonresonant.
For each n # n, term we may proceed as in Shu’s (19705) analysis to show in Appendix A that

SO = §,©@ + §,© 27
589w) = ~ 52 V)25, ), (28)

5:9) = D L |or E 00, 3y, ) (9

Where So@ and S, are the first two terms in the epicyclic expansion (17) for S ; v now has argument = ; and also
x = K@@l Jalw) = ol (30)

FO, x) = “;l‘c > mhe @31)

DOy, x) = 3 ln p In [xF@, x)], 32)

where I,(x) is the modified Bessel function of the first kind, of order #.

¢) The Resonant Terms

In evaluating the resonant contribution to the perturbed surface density, we must evaluate

D) — (=1D™*'n, -
SO(w) s[—(r) S )] (33)

The operator € and the function J are defined in equations (19) and (22). All functions of r such as v(r) depend
implicitly on the variable of integration » through equation (20). Since » = O(), it is customary in the calculations
of Lin and Shu (1966) and Shu (19705) to expand all functions of r as a Taylor series around r = w. For example,

1 1 d 1
V(r)_nL=V("IT)—nL_wn-dTlT[v(w)—nL]+“" (34)

However, this expansion is valid for all terms except this one. If we did expand [»(r) — n;]~?! in this manner, the
dispersion relation would have a singularity as v(w) — n;, or w — r; (r; is the radius of Lindblad resonance and »
is assumed to be real in the density waves of Lin and Shu). This resulted in a singularity in their wavenumber k(w)
and in the perturbed surface density S(=).
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This singularity can be removed and a self-consistent solution obtained (Mark 1971) through the Lindblad reso-
nance if we allow a complex wavenumber?® k(=) and also the following approximation for the term [v(r) — n;]~*:

W) = m= P = ) + i), (35)

where

s |22 |, (36)

and L is some positive constant with dimensions of length. The quantities w and »(r) are in general complex. In
order to obtain the dispersion relation for purely propagating waves where w and v are real, we follow the discussion
of Landau (1946) and first calculate the dispersion relation for exponentially growing (w; < 0) waves. The initial-
valued approach then requires that the dispersion relation for real w or v be obtained by analytical continuation
w;—> 0—, v; — 0—. Towards the end of Appendix A, we will briefly discuss the accuracy of this approximation (35).

Using this approximation for (v — n;)~*, we find, to two orders in the epicyclic expansion (17), that the amplitude
for the resonant part of the perturbed surface density is

SW(w) = SP(w) + S;P(w), 37
k2 (‘”; V(@) (@) P (@), y, ], (38)

5:9() = S50 2 {or £ 01, 3, w0, 3, + 5 LD

T[w, k(w), =], 39)

where S,© and S,® are the first two epicyclic approximations to S and also

P22 (°
B9, . ) = =y | exp [=o? + iy — ull, ), (40)
y = k(@)we(w),  x =), @n
u=x+ 2%3yr u, = s, —2—!'—[1/(117) ng) 42)
7, L we(m_) Ll>
WG, 3, m) = i In [TV, 3, ). @)

The analysis required to obtain these formulae is straightforward but tedious, and the expression for T'(w, k, =)
is very lengthy. We refer the reader to Appendix A for the details.
. THE DISPERSION RELATIONS IN THE REGIONS OF LINDBLAD RESONANCES
a) General Properties of the Dispersion Relations

If we equate S = S + S from equations (15), (27), and (37), we get, to two orders in the expansion (17),
the dispersion relationship

0= DO(wsk’w)-l_Dl(wsksw)-'_”" (44)
where
DO(w, ks w) = 1 — Sk %’ 8(”, Vs w) B (45)
D;(w km’)=—i— -—l+s 4 m'lc—%(v ), y, w)| ¢ + T(w, k, w) (46)
1 s Ny k'w' 2 k dw i kT a)’, >y3 s vy s
&, y, ®) = O, y, w) + FOW, 17, 47
90,7, ) = 7 In x50, 3, @], @8

3 Contopoulos (1971) did not use a complex wavenumber.
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where @, ©©, L ©® are given in equations (31), (32), (40), and (43), respectively, and T is given in equation
(A21) of Appendix A. Given the complex frequency w = wg + iwy, we can now calculate the complex wavenumber
k(w) to two orders in the small parameter e(w). This dispersion relation is derived at first for growing waves
w; < 0; but since the functions & and © have immediate analytic continuations to w; > 0, we can apply equation
(44) to both neutral waves and damped waves (of course, wy = mQ,).

Since D, is smaller than D, by one order in our small parameter (eq. [17]), it is actually more convenient to
expand k(=) in the same small parameter:

k(@) = ko(@) + ky(w) +---. 49

Although not absolutely necessary, it is convenient also to let (w;/mQ,) = O(¢), so that from equation (44) we now
have two separate dispersion relations determining k(=) and k,(=), namely,

k
Dy(wg, ko, w) =1 — 5, k_T(%f—) §lvr, kowe(w), w] = 0, (50)
, 0 0
lwy E DO(wRa ko, ‘07) + ky ﬁ{; DO(wR’ ko, ‘W) + Dl(wRa ko, "f’) =0. (51)

We may note that, using relations (20), (48), and (50),
0 siko b}

B, Dy(wg, ko, @) = ~ (@ )eo(@) B, §lvr(@), kowe(w), @], (52)
B Dofwns Koy ) = - {1 = 29[ (), kgmwe(w), w]} . (53)
ok, ko

For the inner Lindblad resonance where n, = —1, 5, = 1, dispersion relation (50) was already given by Mark

(1971). For fixed vg(w) or wyg it determines kq(w=) the principal part of the complex wavenumber k(=) near the
Lindblad resonances. Far away from resonance

Juizf,
m (=) — n]

> 1, (549

uz| =

so that on integrations by parts, we find from equation (40) that

_ i212 (e~* 212y g N
5= _nLSVHw—)x{E L, (x) + w dx [, (x)e=*] + - - }

R ___imwe(@) d .

= T te) =l Y T Sie) — e dx U9 (55)

If only the first term is retained [the corrections are smaller by O(ew/L)], then [(1 — +2)(F® + F*)] reduces to
&,(x), the “reduction factor” as defined by Lin and Shu (1966).

Numerical results for kq(w) are more conveniently obtained from another form of the dispersion relationship
(50). This is obtained by expanding e~ *[,, (1) (Where u = x + 2/2y7) as a Taylor series in powers of (21/2y7). Then

) I e R I S N LAY G AN -
P, y, w) = —n, 2 P are(w)x IZO 7|21z ysy| w Sy 2 ) a7 [InL(x)e 1. (56)
where w(u) is the plasma dispersion function (Fried and Conte 1961; Abramowitz and Stegun 1964, p. 297),
e 2% (% o, ] 1 ([° e
W) = e [1+;mfoeds]_;i = 67
and
d'w(u
W) = 2200 (58)

In the contour integral over A, if Im (#) < 0, it is assumed that the contour is deformed so that the path of integra-
tion passes below u. The values of w(u) can be obtained by methods outlined in the above-mentioned references.
The function w”(u) can then be obtained from the well-known recurrence relations

wOW) = —2uw(u) + i 7%,2 > (59)
whw) = —2[uw*~"Pw) + (I — w*2@)] (forl > 2). (60)
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For the inner Lindblad resonance in the Milky Way system, the first term of equation (56) already represents an
approximation accurate to 3 percent for trailing waves and 6 percent for leading waves (w; < wg). Retaining a
few more terms gives excellent results. There are two reasons why this approximation is so accurate. First, when
|@w — r;] <2, we have |y| > 5; and since also Re (x) > 0 remains true, then the succeeding terms of equation
(56) are smaller than the preceding ones by O(1/2'/2y). Second, when |w — r;| > 2, we have u, > 3 and the
succeeding terms are again smaller because wP(—u;/2) = O(u, ™'~ 1).

b) Some Numerical Results from the Dispersion Relations

We give here some detailed numerical examples for the short-wavelength waves. Using a Schmidt (1965) model
for the Milky Way system, we consider stationary (w; = v, = 0) waves of pattern speed Q, = 13.5km s~* kpc~!
(cf. Lin et al. 1969). For this pattern speed the inner Lindblad resonance (n, = —1, s, = 1) occurs at the radius
r;, = 3.2 kpc where [vg(r;) — n.] = 0. Table 1 gives the wavenumbers and wave amplitudes for the short-wave-
length trailing wave. Values of the radial distance = (first column) range from 3.2 to 6.5 kpc. The next three
columns give some of the parameters that occur in the dispersion relations. We can see how u;(w) varies rapidly
compared with other parameters of the equilibrium, such as represented by (we). Also, k, and k,; are, respectively,
the real and imaginary parts of the wavenumber k(=) as obtained from the approximate dispersion relation of
Mark (1971, eq. [11]). However, in using this relation, we have evaluated his quantity k; at radius = rather than
at radius r;. We see that the approximate wavenumber k,(w) = k,g + ik, has indeed the qualitative behavior
discussed in this earlier paper. The accurate form of k,(w) = ko + iky; also exhibits this same behavior, and we
see that the approximation k(=) gives k, to within an accuracy of 30 percent. Most of the errors in this approxima-
tion result from omitting the & term from equation (50). The quantities k,y and ky; are the real and imaginary
parts of k,(w). Clearly |k,| < |ko|, in accordance with the requirements of expansion (49).

Knowing the imaginary part k; = ko; + k,; of the wavenumber (to two orders in expansion 49), we may calcu-
late A(w), the amplitude of the wave potential (eqgs. [12]-[14]) and also S(=), the corresponding amplitude of the
self-consistent surface density response (cf. eq. [15]). These are also given in table 1. As we approach the resonance

TABLE 1
SHORT TRAILING WAVE AT INNER RESONANCE

A S
we (w) kar kar kor kox kir ki1 (arb. (arb.
u, (kpc) (kpc~') (kpc™1) (kpc™?) (kpc ) (kpc') (kpcT!) un) un) DOY®r—1)

763 —-512 —-0.87 —6.73 —0.98
J71 —-493  —-073 —-6.53 —0.85
J79 —475  —-062 —634 —0.73
786 —4.59 —-0.52 —6.16 —0.63

075  —.255 0410 0.632
103 —.243 0460  0.690
127 =229 0.510  0.743
149 —.212 0.558  0.792

0.00 .641 —624 —-624 —811 —6.18 +.161 —.283 0.009 0.021 -
0.32 .654 —6.55 —548 —838 —545 +.131 —.241 0.017 0.038 -
0.61 .666 —6.71 —474 -850 —4.75 +.120 —.216 0.029 0.063 -
087 .677 —6.73 —4.07 -850 —4.10 +.117 —.207 0.046 0.097 -
1.12 688 —6.67 —346 —841 —3.51 +.112 —.211 0.069 0.140 —
135 699 —6.54 -—293 —826 —3.00 +.102 —.223 0.097 0.190 -
1.56 .709 —6.37 —247 —8.07 —2.55 +.084 —.237 0.131 0.248 -

719 —617  -208 —-7.85 —217 +.060 -—.250 0.170 0.310 -

729 —-595 175 —-7.62 —185 +.041 —.257 0.213 0.375 -

738 =574 -—-147 -739 —1.57 +.019 —.262 0.260 0.440 -

7147 -553 —-123 -717 —134 —.014 —.265 0.309 0.506 -

755 =532 —1.04 —-695 —115 —.045 —.262 0.359 0.571

794 —443 —-044 —-6.00 —0.55 —.168 —.194 0.604 0.835

.801 —4.28 —-037 -—584 -048 —.183 174 0.648 0.874

807 —415 -032 -569 —-042 —.19%4 156 0.689  0.907 -

|

814 —4.02 -027 555 -—037 —.203
820 -39 -023 -543 -033 -.210 118 0.763  0.961
826 -379 -019 -531 -0.29 -—.215 100 0.796  0.981
832 -369 -017 -519 -026 —.218 —.082 0.826 0.997
838 -—-359 -0.14 —-5.09 -024 -—-.219 —.065 0.853 1.009
844 -350 -012 —499 -021 —.218 —.049 0.878 1.018
849 —-342 -010 —489 -019 -—-.217 -—.035 0.899 1.024
855 =334 -0.09 -—-481 -0.17 -.214 -—.021 0919 1.027
860 —3.27 -0.08 —472 -—0.16 —.211 —.009 0.936 1.028

137 0.728  0.936

[
|

QOVHOINUNDBWNN=OOVOIWNDN-=O

CHAQOWALO=LWUNAAXRXOOOXJUNWOINI~=IW

[ I A e

NN N N N SN N N SN N NN NN SN LN, LN LN N SN, N SN N, N, SN SN LN N NN N N N
PAPRARARLWLULWLLLWULWERNNNERNNNNRNNNNNN NN - —-——
N’ N e e N N s e s s s s s s " e s s "t st s s " " " e s "

QAANAANAUNAANNNNANBBRBBRRBRRBRRARLLOWLWLWLW
NAWNROLVIIANAWNROOVREINANANAWN=OWVEIAULNDWN
Ll +++++++++++++++++++++++++++++++
OARWROSRNWRARUNNOO == INNWWWAUNULNONN0000100 = = =
AN NVNWEEREWARONAANONAORALOUNOIRANOOVOO—=DNWWL

PRAARAADALLLELLLLWWINNNNNNN =

1 865 -320 -0.07 -—465 -—015 -—.207 +.001 0951 1.027

2 870 —-3.14 -0.06 —457 -0.14 —.202 +.011 0.964 1.024 -
3 875 -=3.07 -005 —450 -—-0.13 -—.198 +.020 0.975 1.020 -
3 880 —3.02 —-0.04 —444 -—-0.12 -—.192 +.028 0.985 1.014 -
4 884 —-296 —-0.04 —437 -011 —.187 +.036 0.993 1.008 -
5

889 -291 -0.03 —432 -010 -—.182 +.043 1.000 1.000
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TABLE 2
SHORT LEADING WAVE AT INNER RESONANCE
w Kor kor @ Kor kox

(kpc) (kpc™?)  (kpc™Y) (kpc) (kpc™?)  (kpc™?)
31,000, 8.18 +17.04 Sl . 5.66 +0.14
32,00, 8.63 +6.26 5.2 i, 5.52 +0.10
33,0, 8.89 +5.47 53 ... 5.39 +0.07
34, 8.99 +4.71 54,0 ... 5.27 +0.05
35 ... 8.97 +4.01 5.5, . 5.15 +0.03
36, 0., 8.85 +3.39 56, ..., 5.04 +0.01
3.7 i, 8.67 +2.84 ST, 4.94 +0.00
38, ... 8.45 +2.37 5.8, ... 4.85 —-0.02
39, 8.20 +1.97 59. .. 4.76 —-0.02
40............ 7.95 +1.63 6.0............ 4.68 —0.03
41............ 7.69 +1.34 6.1............ 4.60 —-0.04
42, ..., 7.44 +1.10 6.2, i 4.53 —-0.04
43, ... 7.19 +0.90 6.3, ... i, 4.46 —0.05
44............ 6.96 +0.73 6.4............ 4.39 —0.05
4.5, ... ..., 6.74 +0.59 [ 4.33 —0.05
46............ 6.53 +0.48 6.6............ 4.27 —0.05
4.7. . ... ... 6.33 +0.38 6.7 it 4.22 —0.05
48... . ... ... 6.14 +0.30 6.8.. ... ... ... 4.16 —0.05
49.. ... ... 5.97 +0.24 6.9............ 4.11 —0.05
S0, 5.81 +0.18 7O ool 4.06 —0.06

radius r, = 3.2 kpc from the outside, both 4 and S eventually decay monotonically inward. At r, their values have
become negligibly small. This is in marked contrast to the behavior given in Lin and Shu (1964) and Lin et al.
(1969) and in Shu (1970b), where the wavenumber kq(w) and density amplitude S(=) tend to infinity. These
singularities have been removed by our more accurate analysis. We may also note that, even at radii w ~ r;, +
(2 kpc), the wave is already affected by the resonant stars. This is because those stars which have guiding center
radii at r = r, may have excursions due to epicyclic motions which are typically of the order of |w — r.| = (c/«).
Finally, the last column of table 1 gives a quantity which is of interest only to § IV.

The situation for the short-wavelength leading wave is very similar to that of the trailing wave. In particular,
the wavenumber k, of the approximate dispersion relation (Mark 1971, eq. [11]) can be obtained from table 1
(the columns labeled k,5 and k,;) by a mere change of sign. But in the solutions of the accurate dispersion relations
(50) and (51), the leading and trailing cases differ slightly more than by a mere change of sign. We illustrate this in
table 2 by giving kog and ko; (from eq. [50]) for the leading wave case. Of course, the sign of kop determines the
sense of winding of the waves. On the other hand, the sign of k; determines the direction of decay of the wave
amplitude. Both leading and trailing waves decay in the direction of their respective group velocities (cf. § IV).
Thus both of these waves are evanescent.

Near the other Lindblad resonances, these two waves again decay in amplitude in the direction of their group
velocities. The various possible configurations are summarized in table 3. The first three columns identify the sense
of winding of the waves, and also the type of Lindblad resonance involved. Columns (4)-(6) give the behavior of
some physical parameters that identify the wave-propagation side of the resonance. Note that u;5 and (w — r;)
are both zero at the resonance radius. The last two columns give the behavior of the wave amplitude and the direc-
tion of the group velocity. Since s, = —sgn [d(Q + n.«/m)/dr]],,, cases where s, = — 1 are rather rare. For galaxies

TABLE 3

CLASSIFICATION OF THE BEHAVIOR OF THE SHORT WAVES AT THE
VARIOUS LINDBLAD RESONANCES

ny, Sy Q + n(x/m)  wm w — I A (w) Cq
T N P D 1 I I N
T N N D D D D N
T P P I D D I P
T P N 1 1 I D P
L N P D I I D P
L N N D D D I P
L P P 1 D D D N
L P N I 1 I 1 N

Key.—T = trailing wave; L = leading wave; P = positive; N = negative;
“I” (or “D’’) means this quantity increases (decreases) in algebraic value as we
proceed from the resonance radius r, into the wave-propagation region.
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where (Q — «/2) increases slowly from galactic center, there may be a propagation region between the galactic
center and an n;, = — 1 resonance occurring at the point where the pattern speed Q, = Q — «/2. At this resonance
sy, =—1.

Dispersion relations (44), (50), and (51) all allow the wave solutions to be growing with time (w; < 0) or decaying
(w; > 0). In this case, the temporally decaying solutions are obtained from dispersion relations which are the
analytical continuation of the ones for temporally growing solutions. This is appropriate when we are considering
the initial-valued problems in the sense of Landau (1946).

Lest there be any confusion concerning the role of the various dispersion relations, we would like to remind the
reader here that equation (44) is the most general form of the dispersion relation for short-wavelength density
waves for all spatial regions except at the corotation resonance. For given complex wave frequency w, it gives the
complex wavenumber k(w). However, since D, is of O(e) smaller than D,, we have expanded k according to the
series (49). Then k, is determined by equation (50) and k, by equation (51). The quantity k, is usually much smaller
than k,, and the main importance of equation (51) is that it contains information concerning the detailed balance
of wave action (§ IV). Equation (44) is valid for all complex values of w, while in relations (50) and (51) we have
assumed (wi/wp) = O(e). If |wi/wg| > O(e), these two latter relations must be modified by replacing wy with w
and by omitting the first term of equation (51).

1V. DETAILED BALANCE OF WAVE ACTION
a) Continuity Equation for the Density of Wave Action

In the propagation region in between the Lindblad resonances, Toomre (1969) and Shu (19705) have found that
the amplitudes of density waves can be determined by the principle of conservation of wave action:

ou 1 o

where U(w, t) is the surface density of wave action and ¢,(w) is the kinematic group velocity of the waves (¢, =
—dw|dk). Near the Lindblad resonances, we will show here that we have a continuity equation with a source
term, namely,

ou 1 o
5 T o @P =9, (62)

where P(w, t) and &(w, t) are the flux and source of wave action, respectively. It is no longer possible in general to
write P = (—dw/dk); but as one approaches the propagation region away from the resonances, the quantity B
reduces to this previous form of the flux.

We will show that equation (62) follows from relation (51). A considerable simplification of the following
analysis is possible if we notice first of all that the quantity 1 — 29 (eq. [53]) is almost a real number even near
the resonances. In the propagation region between the resonances, this is obviously true since both k, and D, are
real numbers to a very good approximation (D, = 0 reduces to the Lin-Shu dispersion relation). Near a Lindblad
resonance, if we use the approximate formula

Dy(w, k, w) = 1 + inL[kL(w)we(w)]Z)l—c w[—sv Lﬂ"—”f)] , (63)

21/2613'
which corresponds to the approximate dispersion relation of Mark (1971, eq. [11]), then we find that

D, . @D, _
1 =29 = o2 = 25 =

2, (64)

which is real. For the particular example we have (§ I116) of a short trailing wave, the last column of table 1 shows
that the imaginary part of (1 — 29) is less than 15 percent of the corresponding real part.

With the understanding that we keep only the real part of (I — 29), then on multiplying equation (51) with
(—2isko|B|2.=0/87G) and using equations (9), (46), (49), (52), and (53), we find

0 ko? . oF 1 0 — Sk 1onla
at [87TGKkT 12 z=°5;;] + - 0w [m(l - 2®R)(87(‘; B]%=0

. 1 —-29 ik
= 2kr + ) 5 g [0 + 51 o T oy Do (69)
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The imaginary part of this relation gives a small correction to the phase of the wave corresponding to the wave-
number k. The real part of relation (65) gives the continuity equation (62) mentioned earlier. We can now identify

e, 1) = Re (R0 L Gln(o) ket 1) (66)
P(w, t) = —5; -!Q}—8|7-T2—ZGLO Re{l — 29[vg(w), ko(‘w')‘w'e('w'), wl}, (67)
S(w,t) =G, + &, (68)
So(w, t) = =2 Im [ko(@)|B(w, 1), (69)
&, (m, 1) = S )% o Tm (ko) T (o, ko @)} (70)

$, 9, and T are defined in equations (47), (48), and (A21), respectively. &, is the dominant part of &. For a stationary
problem (02/0t = 0), &, corresponds to the dominant spatial decay of the flux due to the term exp (—2 [ kodw).
This decay depends on k,; as determined from the dominant dispersion relation (50). Hence the subscript zero in
&,. Since the flux P and especially its divergence must have other more slowly varying terms, these are balanced
by the &, term of the source &.

We have expressed 2 and P in terms of the functions & and ® (eqgs. [47] and [48]). Far away (Ju,| > 1; cf.
discussion beginning at eq. [55]) from the resonance in question, the function (1 — vz?)G reduces to the reduction
factor &,(x) of Lin and Shu (1966). © also reduces to the function ®,(x) defined by Shu (197056). Thus we can easily
see that far away from the resonances, 2 reduces to the wave action density of Toomre (1969) and P reduces to
(c,). Our generalized conservation relation (62) also reduces to equation (61) of Toomre (1969) and Shu (19705)
because & becomes very small. This behavior of € can easily be seen from equations (68) to (70) and (A21) if we
bear in mind the vanishing of k(=) and use the same systematic approximations in equation (A21) as we did in
equation (55) for |u;| > 1. In this limit, the dominant parts of &, and &, actually cancel.

For short trailing waves at the inner Lindblad resonance and the same model as § IIlc (Q, = 13.5km s~* kpc~2,
r;, = 3.2 kpc), table 4 gives the action density 2, flux P and source density & as a function of radial distance .
The peak and subsequent rapid inward decay of |2| can be explained as follows. As we proceed inward toward the
resonance radius, the negative action density 2 first increases in magnitude because the flux ¥ decreases. But
eventually the magnitude of % decays rapidly because of the positive source €. The small positive values of % for
@ < 3.7 kpc may be due to numerical inaccuracy since 2 is already so small in magnitude compared with its peak
value. Although &, contributes only about a quarter of the integrated source f S2nwdw, &,(w, t) can occasionally
be about half the magnitude of &y(w, t) at the same radial distance w.

TABLE 4
AcrtioN DENsITY, FLUX, AND SOURCE

w A B S @ A P €
32,0l 0.0 0.0 0.2 49.... ... .. —16.7 55.9 80.0
33,000 0.0 0.0 0.5 50 . 0., —18.4 62.7 79.9
34, + 0.1 0.1 1.3 S, —-19.9 69.3 78.7
35 + 0.1 0.3 2.9 520 ... —21.3 75.6 76.5
36.. ... + 0.1 0.7 5.5 53, . —224 81.6 73.4
37 + 0.1 1.4 9.4 S4.. ... ... —23.3 87.2 69.8
38, - 0.1 2.6 14.7 5.5, i, —23.9 92.3 65.7
390l - 0.5 4.3 21.3 560 ... —24.4 96.9 61.5
40............ - 1.2 6.7 28.9 57 ... —-24.7 101.1 57.0
41............ - 2.1 9.8 37.1 S8, —24.9 104.8 52.6
42. ... ... — 34 13.6 45.5 59, ... —24.9 108.0 48.3
43, — 49 18.2 53.7 6.0............ —24.9 110.8 44.3
44, .. ......... - 6.7 23.5 61.1 6.1............ —24.7 113.1 40.4
45, ........... — 8.7 29.3 67.6 6.2. .. ... —24.4 115.1 36.6
46............ —10.7 35.6 72.8 6.3... ... —24.1 * 116.8 33.0
4.7, ... —12.8 422 76.6 6.4............ —23.8 118.1 29.7
48............ —14.8 49.1 79.0 6.5, ... —23.4 119.0 26.7

NotEe.—(Mass, length, time) are in units of (10° Mo, kpc, s kpc km~1),
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b) Interpretation in Terms of Wave Angular Momentum and Energy

So far, the derivation of the conservation relation (62) and the forms (66)—(68) of A, B, and & have proceeded
in a formal manner. It would certainly be most interesting if it can be shown, for example, that the quantity 2
which we have formally called wave action density indeed satisfies

$=mA, €=wyd, (71)

where 9 and & are the densities of wave angular momentum and energy, respectively. It would also be of value
to compare (m&) with the wave angular momentum emitted by the resonant stars (cf. LBK).

Let us first address ourselves to the latter question. For each category of resonant stars (i.e., each n;) LBK
calculated the total rate at which these stars emitted angular momentum to or absorbed it from a density wave.
For the particular Lindblad resonance n = n; in question, their result corresponds to our integrated source

dit@m - f m&(a, 1 2nwde . (72)
0

Rather than being content with comparing these integrated sources, we shall show that it is possible, under certain
approximations, to obtain a source density Sy(w, t) using the methods of LBK. They calculated the change in
angular momentum experienced by a resonant star in its orbit. The total rate of change is obtained by summing
over these individual changes. For each such star, the problem of identifying its contribution to & reduces to that
of identifying what parts of the angular momentum change of this star contributes to & in the range = to (= + dw).
The situation for the Lindblad resonances is greatly simplified by our knowledge (§ III) that the complex wave-
number k(=) is large. In particular, the wave amplitude A(w) varies rapidly in space but in a monotonic fashion.
Thus we expect a resonant star to interact most strongly with the wave (and thus emit or absorb) at the point along
its orbit where it experiences the largest wave amplitude. Since the wave amplitude is monotonically varying in
radial distance =, we see that this point on the resonant orbit corresponds to the point of maximum or minimum
radial excursion. Let us call this point @ = r,,. Moreover, at r,, the star is traveling along a wave front because the
wave fronts are nearly circular in shape due to the low inclination of the arms (large k). Thus we also expect for
this resonant star that r,, is a stationary phase point in the wave-star interaction; also confirming the fact that most
of the exchanges of angular momentum occur here. Thus we are led to the following approximations listed in
order of decreasing importance:

i) A resonant star emits or absorbs angular momentum at that point (= = r,,) of its radial excursion which
corresponds to the stationary phase point of the wave-star interaction.

ii) The inequality |kwe| > |n.| holds, which turns out to be necessary in order for this stationary phase point
(w = r,) to be also the position where the star experiences the largest wave amplitude on its orbit. This makes the
stationary phase point a saddlepoint.

iii) The wave-star interaction integral is evaluated by saddlepoint integrations assuming |kwe| > 1.

iv) In the epicyclic approximation (17), only the dominant terms are kept.

The actual reduction of the result of LBK is summarized in Appendix B. For the source density of wave angular
momentum, we obtain

6}1(@'5 t) =

mngLS(r) | D12 <o [_1 (w - ")] , (73)

G (o)t k@) P | T2\ "o
where the subscripts L imply that the corresponding quantities are evaluated at r = r;. In order to compare with
this formula, we must also apply the above-mentioned approximations to [m&(w, t)], where & is obtained from
equation (68). Only approximations (iii) and (iv) are relevant. Approximation (iv) implies that in equation (68)
we keep only the first term &, of & because it is from the dominant epicyclic approximation. Approximation (iii)
implies that we apply similar saddlepoint methods to & which determine k; and ®. Similar methods have been used
in Mark (1971) to obtain his approximate dispersion relation (11). If we use this latter relation to determine ko; and
(1 — ®y), then the first term of (mS) (eqgs. [68] and [69]) gives the same source density of wave angular momentum
as Sy(w, t) of equation (73) (using eqs. [35] and [42]).

Thus we have shown that under the aforementioned approximations (i)—(iv), we have the same source density of
wave angular momentum as that which could be obtained from the results of LBK. We may note that approximations
(iii) and (iv) do not altogether justify the omission of F relative to F™, a necessary step in the derivation of the
approximate dispersion relation (Mark 1971, eq. [11]). They are omitted because we found in § Illc that it is a
good approximation (30,) to do so. Even though they are not a large contribution, these & terms (cf. § I15) are
interesting because they are probably not contained in the results of LBK. They are from the so-called nonresonant
terms of the wave-particle interaction in the resonance region where »(r) ~ ny.

Let us now turn our attention to the interpretation of action density 2 and to equations (71). Toomre’s (1969)
formula for 2 applied only far away from resonance. Moreover, his energy density is calculated in a rotating frame.
Kalnajs (1971) gave formulae for 2, 9, and €, and also showed that both of equations (71) hold. However, his
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formulae are difficult* to apply to our present context. We prefer then to give in Appendix C a simple physical
derivation which gives the results in a form similar to that of Toomre (1969), but for an inertial frame and more
general in that it applies even at the Lindblad resonances. We show in this appendix that the wave angular-
momentum density 9 and energy density € indeed satisfy equations (71) provided 2 is of the form given by equation
(66). Note that we actually showed that the integrals of $ and € over the disk are the total wave angular momentum
and energy, respectively. There may be some who would doubt that we should identify the integrands $ and €
as the respective densities because, in principle, a divergence term could well be added on to 9 and €. Quite apart
from the fact that several workers (Toomre 1969; Shu 19705) in the field identified $ and € in this way, a similar
derivation was used in the well-known case of electrodynamics. There, one (Landau and Lifshitz 1971, p. 78;
Jackson 1962, pp. 21, 189) often simply takes the integrand of the integral for the energy of the fields and identifies
this as energy density. Poynting’s theorem confirms this formula for the energy density since it is there involved in
a conservation equation with a known rate of dissipation of energy acting as a sink (Joule heat term). In dispersive
but only slightly dissipative systems (Landau and Lifshitz 1960, § 61; Stix 1962, § 3-2), the energy density is
identified through an averaged form of Poynting’s theorem much like our conservation relation (62). Of course, in
the absence of dissipation (e.g., between the resonance regions), straightforward characterizations of action
density, etc., are possible through the use of variational methods involving the Lagrangian of the whole system.
Far away from the resonances, our results reduce to those (Dewar 1972) obtained by such variational methods.

For the Lindblad resonance regions, further arguments can be given which lend additional support to this
interpretation of wave action density in terms of densities of wave angular momentum and energy. These will not
be presented here because they involve detailed discussions of the functional forms of the action density, flux, and
source, and also of the formalism that generated these quantities.

V. SUMMARY AND CONCLUSIONS

For density waves in the vicinity of the Lindblad resonances, we have obtained the corresponding dispersion
relations (§ 11I) and the modified principle of conservation of wave action (§ IV). In the notation of § 11, the density
wave in question consists of density and potential perturbations of spiral form which have number of arms m and
a pattern speed of Q,. This wave interacts with stars which form the basic axisymmetric equilibrium disk. In the
epicyclic approximation, an individual equilibrium stellar orbit is characterized first of all by the motion of the
guiding center in a circle of radius r, with angular frequency Q(r) about the center of the galaxy. The deviations
from circular orbit are characterized by the epicyclic frequency «(r) (eq. [1]) and also by the small parameter a
(eq. [5]) measuring amplitude of deviation. In the guiding center frame of such an orbit, the wave peaks pass by at
the frequency m[€Q, — Q(r)]. If this is a nonzero harmonic of the epicyclic frequency «(r), then the wave is in
Lindblad resonance with the stars having this value of r (= r,, say); i.e., resonance occurs when »(r) (eq. [20])
takes on the integer value n; (# 0). The quantities n, = —1 and n, = +1 are the inner and outer Lindblad reso-
nances. Throughout this paper, we used the Schmidt (1965) model as the basic equilibrium for our Galaxy. In
this case, a two-armed wave with a pattern speed of Q, = 10.7 or 13.5 km s~* kpc~?! has the inner resonance at
r, = 4.0 or 3.2 kpc, respectively. For the particular equilibrium distribution function used (eq. [7]), the mean
epicyclic radial excursion of the stars is determined by c¢(w)/«(w), where ¢(w) is the radial velocity dispersion about
circular motion. This radial excursion is a characteristic also of the resonant stars so that the actual influence of
the Lindblad resonance extends into an annular region about radius = = r; of half-width ¢/x ~ 1-2 kpc.

a) The Modified Dispersion Relations

In the earlier discussions of Lin and Shu (1964), the wavenumber is singular as the resonance radius is ap-
proached. But, by a more careful discussion which takes into account the finite width of the resonance region, we
can obtain a finite wavenumber at the radius r;,. However, for waves that are nearly stationary, the wavenumber
k(=) is now a complex function of radial position w. In the present analysis, it is convenient to expand k =
ko + ki + - - - in orders of the epicyclic amplitude. The quantities k, and k, are determined by equations (50) and
(51), respectively. In a brief communication (Mark 1971) the dispersion relation for k, at the inner Lindblad
resonance has been recorded without proof. The properties of both k, and k; are now derived in § III.

The discussion of § III applies to all the Lindblad resonances and for both leading and trailing waves. In general,
we obtain a spatial decay of the density waves in the direction of their respective group velocities. A typical set of
values for (—k) = —(k, + k,) is illustrated in figure 1 for short trailing waves. We used Q, = 10.7 km s~* kpc~4,
r;, = 4 kpc. The dispersive velocities are obtained from

() = |8 E2 0, (74

where Z(w) is the surface mass density of the axisymmetric equilibrium and the quantity inside square brackets

¢ In particular, they contain singularities due to resonant stars. We have used instead a calculation patterned after a plasma
result of Coppi, Rosenbluth, and Sudan (1969).
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Fic. 1.—For short trailing spiral waves in the inner resonance region of our Galaxy, this figure compares the various wave-
numbers k. The real part of —k (solid curves) and the corresponding imaginary part (broken curves) are plotted versus radial distance
from galactic center. Those labeled “disk” or “cylinder” are our present results for the corresponding geometries. Shu’s previous
calculations are also given for comparison (the real part was really due to Lin and Shu). His wavenumber has a small positive
imaginary part which is plotted as a negative number Im (— k).

represents the critical radial velocity dispersion (Toomre 1964) required to suppress all axisymmetric Jeans instabili-
ties. The dimensionless constant 8 = 3.36, but this value changes somewhat if effects such as thickness corrections
are included (Toomre 1973). Q(w) is another dimensionless parameter introduced by Toomre (1969) to describe
deviations of ¢(w) from the critical value. We shall use Q = 1 unless otherwise stated. As we can see from the
curves labeled ““disk” in figure 1, k(=) is now not divergent as w — r, = 4 kpc. The sizable imaginary part repre-
sents a spatial damping of the wave as its group velocity carries it inward. This resonance damping effect was
omitted in previous calculations. For comparison, the corresponding real and imaginary parts of k as taken®
from Shu’s (1970b) earlier analysis are also plotted (the real part was actually first derived by Lin and Shu 1964).
In his result, the imaginary part of (— k) is negative and also very small so that his (— ;) curve lies just below the
k = 0 line. In §§ III and IV, we showed that our dispersion relations (50) and (51) reduce asymptotically to the
results of Lin and Shu (1966) and Shu (1970b) when |w= — r;| > c¢/«. In figure 1, this ““matching” of solutions is
more evident for the real part of k. However, in obtaining values for the illustrations given here, we have con-
sidered it to be sufficient to use a simple numerical procedure. By using the methods described in § IIla, a better
agreement can be obtained. The detailed numbers discussed in table 2 for another case are obtained by this more
accurate method.

In figure 1, the other pair of curves labeled ““cylinder” is the analogy of the simplified dispersion relation (Mark
1971, eq. [11]) in a cylindrical model. It gives a crude estimate on the geometrical aspects of the correction to finite
thickness. The thickness correction that corresponds to the change in c¢(w) is much more important and is
considered in §§ Vb and Ve.

b) The Modified Principles of Conservation of Wave Action, Angular Momentum, and Energy

The mechanism for the wave absorption process is best seen in terms of the detailed action-conservation relation
(62) which is the generalization of that of Toomre (1969) and Shu (19706). In this equation, the process of absorp-
tion is described in terms of the wave action density A(w, ), flux B(w, ¢), and source density &(w, t). The corre-
sponding quantities for wave angular momentum and energy are obtained (cf. § IVh) on multiplication by m and
by wg, respectively. In the propagation region far (jw — r;| > ¢/«) from the resonances, the flux P reduces to the
previously known form of B = ¢,2, where c, is the kinematic group velocity (¢, = — dw/dk). Close to the resonance
this reduction is no longer possible if we insist on defining the group velocity (Toomre 1969) kinematically in terms
of (—dw/dk). In fact, this latter expression develops an imaginary part comparable to its real part. However, if
we wish, we could still define a modified group velocity by the relation

cg = P/A. (75)

5 These numbers from Shu’s original expressions were kindly made available to us by Dr. S. Feldman.
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Fi1G. 2.—For short trailing waves at the inner resonance region of our Galaxy, we have plotted the negative of the wave action
density (— ) (solid curve) versus radial distance from galactic center. Also given are the flux P (dotted curve) and the source density
& (dashed curve) of wave action. The vertical scale is in arbitrary units (more accurate detailed numbers are given in table 3). For this
inward propagating wave, the peak in the magnitude of the action density is due to both the inward decrease of the flux and the
inward increase of the source. The source density also has a peak due to the competition between the outward decreasing influence
of the resonant stars as against the inward decreasing amplitude of the wave. Since wave angular momentum and energy are propor-
tional to wave action, their corresponding densities, fluxes, and sources are also represented by this diagram.

In general, the sense of group propagation as obtained from this formula applied to the Lindblad resonance regions
is the same as that obtained using the kinematic definition (— dwg/0k,), for the same wave far away from the
resonances.

The source density &(w, ¢) is a new term which was not present in the previous work of Toomre (1969) and Shu
(1970b). LBK calculated the integrated source in a physical interpretation of the wave-particle interactions at
resonance. Under some approximations discussed in § IVh we were able to derive a source density using the
methods of LBK. This agreed with ours to lowest order. It is possible that at higher orders we have some additional
effects. As predicted by LBK, the sign of the source density at the Lindblad resonances is always such that it
damps the wave. The manner in which it occurs in detail is illustrated in figure 2 for the short trailing wave at the
inner Lindblad resonance. This wave carries negative action density. The solid curve in this figure is (—2). The
flux P (dotted curve) and the source density & (dashed curve) are both nonnegative. The positive flux indicates that
the negative action of the wave is carried inward in accordance with a negative group velocity if definition (75) is
used. As the wave propagates inward, the magnitude of the action density increases because the flux decreases. But
eventually the source density becomes of sufficient magnitude that the wave action decreases rapidly in amplitude
inward. Thus a peak in || occurs at about 5.7 kpc from galactic center. We may note from equations (66)—(70)
that all the quantities ¢, B, and & are proportional to the square of the wave amplitude. These all become very
small at w = r;, because the wave amplitude is small. Thus the near vanishing of & at w = r; is not due to any
intrinsic inability to absorb the waves at this radius.

In our figure 2, we have used Q, = 13.5km s~ kpc~?, r, = 3.2 kpc, and 8 = 2.35 (cf. eq. [74]). These latter
values are in accordance with the thickness correction first given by Shu (1968). Other possible corrections and a
discussion of possible values of 8 have been given recently by Toomre (1973).

¢) Density-Wave Amplitude and Distribution of Ionized Hydrogen

Using the parameters mentioned in the preceding paragraph, the solid curve in figure 3 represents the product
of the surface mass density S(w) of the wave multiplied by the geometrical factor |Re (k)|. This curve has a peak
which correlates very well with the location of a similar peak in the observed ionized hydrogen concentration—in
line with the proposal of Lin and Feldman (1970). The exact position of this peak was not known to them. In the
theory of Lin ef al. (cf. Lin 1970), star formation results from gas compression by the density wave. It is thus
reasonable to assume that the peak in wave amplitude should be associated with a corresponding peak in the
density of ionized hydrogen produced by the young stars. In plotting the wave density amplitude in figure 3, the
additional factor |Re (k)| was first introduced by Lin and Feldman to account for the crowding of wave crests. As
in their work, the observational curve in this figure is the ratio of the densities of ionized to neutral hydrogen.
It is necessary to take the ratio in order to remove the effects of H 1 concentration. Mezger’s (1969) number density
of H 11 regions is used for the ionized hydrogen (H 11), while the neutral hydrogen (H 1) density is that obtained
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FiG. 3.—The plot of observed H 1//H 1 gas density ratio versus radial distance is compared with three theoretical curves of
S-|Re (k)|. The solid curve is obtained from a disk model with pattern speed Q, = 13.5 km s~ kpc~! and radial stellar dispersive
velocity c(=w) corrected for thickness. The other two curves differ from the solid one only in the value of c¢(w) [see text].

by Van Woerden (cf. Oort 1965). The sharp decline in the number of H 11 regions® inside of 4 kpc is a good indica-
tion that resonance damping is still operative in our Galaxy. The current theoretical estimate (Contopoulos 1970)
of the saturation time is not complete, because it calculates only the response of a few stars under an imposed field.
We have reasons to believe that this method gives only a lower bound to the saturation time.

We have presumed that the spiral wave strongly compresses the gas which condenses into stars. Some of the
stars in turn create H 11 regions. Because the relation between the various quantities is most probably nonlinear,’
we should not expect the strengths of the theoretical and observed peaks in figure 3 to match exactly. In our present
incomplete knowledge concerning the details of this chain of events, it may well be useful to explore how much
change can be made on the height of the theoretical peak by reasonable adjustments of the parameters available
to us. If we assume that Q can be less than unity in some regions, the broken curve in figure 3 has a monotonically
changing Q(w) which for w « 6 kpc has Q ~ 0.86 and for = > 6 kpc has Q ~ 1.14. In contrast, the dotted curve
has Q = 0.86. Lower values of Q simulate one possible effect of a galactic halo.

d) Distinction between Leading and Trailing Spirals

Shu (1970a) has suggested that the resonances distinguish between leading and trailing spirals, but he did not
give the actual differences between these senses of windings. In § Vb we have seen that even near the Lindblad
resonances the sense of winding determines the group velocity, and that the waves decay spatially in the direction
of this velocity. Since the leading and trailing waves have opposite directions of group propagation, they also decay
spatially in opposite directions (at the same resonance). This difference characterizes the difference in behavior
of leading and trailing waves at the Lindblad resonances.

In many of the proposed mechanisms for maintenance of spiral density waves, such a difference is already suffi-
cient to suppress the short leading waves relative to the trailing ones. For example, in Lin’s (1969) mechanism the
waves are initiated in the outer regions near the corotation resonance; the short waves that propagate inward are
trailing. Subsequent nonlinear evolution results in a barlike distortion of the inner regions. If an inner resonance
exists, then the bar cannot drive the outward-propagating leading waves because these waves are immediately
absorbed in the inner resonance region before reaching the propagation region. On the other hand, the short
trailing waves propagate inward through the propagation region (which covers most of the galaxy) before they are
finally absorbed at the inner resonance.

6 In Mezger’s original presentation of the data, there were five giant H 11 regions inside or near 4 kpc. Four of these may well
be associated with the center of the galaxy. The fifth is in the 3-kpc arm (cf. Lin 1970). :

7 In our discussions with Dr. F. H. Shu, one plausible tentative conclusion is that the H 11/H 1 density ratio is proportional to
[S- Re (k)/Q2%w)? near the inner resonance.
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APPENDIX A
CALCULATION OF THE SURFACE DENSITY RESPONSE

According to equations (18), (25), and (26), we may write the nonresonant parts of the surface density response as
1)+l

SO(a) = Z S™(w) = Z 2[__n( D 3(n, w)] > (A1)
n#En n#EnL v(r) —n

where 3(n, @) is defined in equation (22). The S ™(w) involve integrals over ¢, o, and s. The parameter r depends
implicitly on %. To two orders in the epicyclic approximation (17),

r=wa(l -, (A2)

where n = O(e). Following Shu (1970b), we may expand any functional dependence on r as a Taylor series in
(=), keeping only terms up to O(=7). Using equations (19), (22), and (A1), we then find that

V(@) Z(w) n(—=1)" dIn [v(w) — n]
(n) — (n), (n) (n) ,
S (@) = [e(@)mr(@)]? W(@) — n 6™(x) + U[g™] + {g™|n) dln o (A3)
where x is defined in equation (30), and
1 . . £2 4 92
) — _ — —_= 7,
g =5— = exp [zns ikwR, 55 (w)] (A4
6™(x) = (g™[1) = (= )"L(x)e™*. (AS5)
Here I,(x) is a modified Bessel function of the first kind, of index n. The inner product <x|g) is
1 1 0 o0
Wl =g [ [ [ hedanas; (A6)
and in terms of it, the linear operator
B dln [<{g|n>ZE(=) i2mQ(wr) OR,
Ulgl = —<glm din = [sz(w)lcz(w)_ k(w) g o5 +¢
. dlink
ey g 4R~ 1R IE = (R4 R (A7)
If we note that, according to equations (23) and (A4)-(A6), we can show
Wiy = X 4w w |PRa -
@ = o, (el ey o, (A8)
8™|(3R — nRy)) = {g™|(R, + 7Ry)) = 0; (A9)

then we find

Ug™] = —

ix do™(x) dln [ k(@) X(w) d@‘"’(x)]. (A10)

wk(w) dx dlnw i K(w)v(w) — n  dx

Using this result and summing equation (A3) over all n # n,, we obtain equations (27)-(32). We may note that in
equation (A3) the &™(x) term contributes to S,”, and the other terms to .S,
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We now evaluate the resonant part of the surface density response S“(w) of equation (33). According to the
approximation (35) and using equation (A2), we may write

1 . L [° .
O f_w exp [—iy — 7r)A + yAJdA, (A11)
where
=1-7 = -5, = Al12
m=l=—r  y=-=s—u@). (A12)
We assumed |v(r)| = |wi/k(r)| < 1 already, so we need only replace r by = in »(r). Using equation (All) in

relation (33), we may similarly expand functions of » in powers of (wn). Up to O(wn), we get in analogy to
equation (A3) the result

V(@) Z(w)(— 1)L [°

5,%(w)i?(w) w3

In terms of x, y, g™, and 6™ of equations (41), (A4), and (AS5), we have

SO@w) = i

exp [(inz + ¥)ANGL(w) + U[g:]}dA. (A13)

—Syoo

u=x+ed, g =g"exp[—inl], (A14)
6.(u) = <1|g> = 6"(u) exp [—e(w)A?] . (A15)

U[g] is the same operator defined in equation (A7); and U[g,] can be evaluated if we note from equations (23),
(A4)-(A6), (A14), and (A15) that we can show

<gulny = —idP(@)6,(u) + iye(w)®,'(w), (Al6)
(affer €)= mewlom, (A1)
(GRS — 1R = g5 R, + 1R = — M@y + ASW + 36/ (AID)

The primes on the function &, (1) denote derivatives with respect to u.

The lowest approximation S, to the resonant density response corresponds to the ®,(u) term of equation
(A13). It can be put into the form of equation (38) by noting equation (A15), the transformation of the variable
of integration,

7 = e(w)(A212), (A19)

and by replacing (y; — iy) with (u;e2~%/2). This latter replacement almost eliminates approximation (35). It is
discussed in more detail at the end of this Appendix. In order to divide ;¥ into the two terms indicated in equa-
tion (39), it is more straightforward to proceed deductively by determining T'(w, k, =) from equations (39) and
(A13). Let us note that (27G)/(s .k V') times the first term of S;® (eq. [39]) is

s (=D d Ls, (°
kw? dinw |2k;we

Using this and equations (39), (41), (42), (A4)-(A7), and (A13)-(A19), we obtain, after much algebra, the formula
2n,(— 1)™s,s,L

exp [(im. + v)AI2y + e/\)@L'(u)d/\} . (A20)

—sy®

T(w, k, w) =

kp(w)w?e(w) y(w)

[ e (iuLT){%(Z”zy + 7)[1 - % . (iuL62-1(2)]@L'(u) + [T dinkry | ol ;]
X [6p(u) + 36, (w)] — 2nL%§?£6L(u) - T[H%ﬁ‘; + (1 + 2By)(u + x)]
x [6,/ () + %@L”(u)]}df. (A21)

In practice, the integrals in this formula are of the same type as that occurring in the function F* of equation
(40). Thus the manipulations that lead to the alternate form (56) of & can also be used to evaluate the function T.
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F1G. 4.—The plot of the dimensionless frequency vx(r) (solid curves) versus radial distance r for two pattern frequencies Q,.
The dimensionless frequency vy = —1 at the radius of the inner Lindblad resonance. The dashed curves are the corresponding
linear approximation (eq. [35]) for each case. This approximation to vx(r) is used only for the region about 1-2 kpc outward of the
inner resonance.

Let us also briefly discuss the accuracy of the approximation (35). The function »(r) involves the angular fre-
quency of rotation Q(r) and the epicyclic frequency «(r) through relation (20). These quantities Q(r) and «(r)
are observationally not very accurately determined. Thus we deem it sufficient to use approximation (35) so long
as it gives »(r) to within an error of a few percent. This is possible if we do not force (s,/L) to be exactly equal
to (dv/dr),, where the subscript L means “evaluated at r = r,.” Rather, we allow L to vary slightly to obtain a
good fit for »(r) in the resonance region in question. For example, consider the inner Lindblad resonance in the
Milky Way system, assuming separately two cases where we have waves of pattern speeds Q, = 10.7 and 13.5 km
s~ kpc~!. The corresponding resonance radii are r, = 3.2 and 4.0 kpc, respectively; and the influence of the
inner resonance is felt in the region 3 < = < 6 kpc. In figure 4, the solid curves represent the function vx(r) for
these pattern speeds (using the 1965 Schmidt model). The dotted lines are from the linear approximation (35) with
L~* = 0.043 and 0.065 kpc~?, respectively. It is clear that the accuracy of a few percent is maintained. Moreover,
in our final formulae (40) and (A21), we replace (n, — iy) (eq. [A12]) by (u.e2~ /), where u, is defined in equation
(42). For w ~ ry, these two terms are almost identical. But for |2Y2L(v — n,)/we| > 1, the use of u; has the effect
of removing the approximation (35) just when it begins to break down. Thus a uniform approximation is obtained
so that in fact, far away from the resonances where |2'2L(v — n.)/we| > 1, our dispersion relation (50) and
action-conservation equation (62) reduce to the corresponding relations of Lin and Shu (1966) and Shu (19705)
(cf. §§ Ila and IVb for a demonstration of this point). For exactly the same reasons, equation (A2) seems to be of
sufficient accuracy when we evaluate [v(r) — n,]~* in equation (A11). Nor does it seem necessary to include the
O(a?) correction to v(r). This latter term is important only at the corotation resonance.

APPENDIX B

REDUCTION OF THE LYNDEN-BELL AND KALNAJS FORMULA FOR THE
SOURCE OF WAVE ANGULAR MOMENTUM

Consider the group of resonant stars corresponding to the Lindblad resonance n. For the case w; — 0—, LBK
showed that the rate of absorption or emission of angular momentum by these stars is given by (LBK, eq. [30])
dH,

dt

oF oF
= Sﬁﬂ-‘[f [na_‘]l + méz]ll/lnlza(ﬂ) - an - sz)dJlsz N (Bl)

where 8(}) is the Dirac delta function with argument A; Jy, J, are the action variables of the equilibrium orbit
corresponding to the periodicities in the radial and angular directions, respectively; Q(Jy,J5) and Qu(Jy, J5)
are the corresponding frequencies of these periodic motions; F(J;, J,) is the equilibrium distribution function;
and the ¢, are defined by

o = f Vlwawi)] exp [i(nwy + mwy — m6)ldwadwy (B2)
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where (wy, w,) are the angle variables corresponding to (J;, J;). Formula (B1) gives only the total angular momen-
tum emitted (or absorbed) at a resonance and corresponds to our integrated source [ &(w, t)2rwdw. However,
under the reasonable approximations (i)-(iv) listed in § IVh, we can obtain from the integrated source (Bl) an
approximate form for &(w, t).

In the relevant epicyclic approximation (cf. § Ila and LBK)

Ji = $x(r)ria?, Jo = Q(r)r2, (B3)
wa=r(1—aCOSW1), W2=0, (B4)
Q = «(r), Qp = Q(r). (B5)

Using also equation (12), we may now write i, as

2n

g, = meI exp [inw;, + ip(r — ra cos wy)]dw, . (B6)

0
Let us first consider the case n < 0. It is sufficient to give the derivation for trailing waves. The magnitude of the
wave potential V(=) increases rapidly outward, a fact independent of s, = sgn [dv/dr|.] (cf. table 1). Thus the

integral in ¢, is dominated by the saddlepoint w; = =, and it can be evaluated by saddlepoint techniques. Noting
equation (13), we get

Qm3 | V(r + ra)|? )

la]* = ra |k(r + ra)

(B7)

In equation (B1), the integrals over J; and J; can be more conveniently expressed in terms of epicyclic variables.
Thus

K (r)r

Sy adadr, 8 - nf, — m0;) = e —ro) (B8)

dndl, = w(r)|dv/dr |

Using the form of F given in equation (7), we also find

OF _ F(r,a) ﬂ’_@@_‘_az QF dln (xr?) B9

ol, ~  k(rrEe(r)y’  aJ,  «Pror K22 dinr (B9)
Thus clearly F/oJ, is much smaller than 9F/oJ; by O(e?) so that we need only keep 0F/oJ; in equation (B1).
Using equations (7), (35), (B7), (B8), and (B9), we may write relation (B1) as

dH, _ _ mnmLX(ry) [ exp [__gz_] |V(r, + ra)|?
2¢;

dt 2KL2I'L2 4 0 Ik(rL + rLa)I da ’ (BIO)

where the subscript L denotes quantities evaluated at r = r;,.

If we consider that the quantity (r, + r.a) is the maximum radial excursion of a star which has epicyclic ampli-
tude a, then approximation (i) of § IVb allows us to identify (r, + r.a) with =, the radius at which that star con-
tributes a fraction of its angular momentum to the wave. In that case we can write, correct to the lowest epicyclic
order,

dg" - f & (@) 2nwda (B11)
L

where

_ LmnZ(r) |V(w)|? 1 (o — r;\2
®u(®) = ~ Gt Th(@)] P [_E( P ) ] (B12)

The identification of &4(w) as the source of wave action depends crucially on approximation (i) of § IVh. This
approximation is partially justified by the fact that the contributions to the integral , (eqs. [B2] and [B6]) come
mainly from the regions when the stellar orbit is at its maximum radial distance from galactic center. Formula
(B12) evaluated for the limit w; — 0 is also approximately valid for our case where 0 # |w;| < |wg|. Equation
(73) results when we restore the factor exp (—2w;?).

We may note that equation (B11) is for sgn (n) < 0 and suggests that the source term & u(w) contributes only
for w > r;. This restriction shows up the limitations of the approximation (i) of § III5. However, it is not a very
important restriction because the wave amplitude and source density are very small when = < ry. For sgn (n) >0,
formula (B12) still holds but the integral in equation (B11) now has the limits @ = 0 and w = r;.
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APPENDIX C

WAVE ANGULAR MOMENTUM AND ENERGY

We shall now obtain formulae for $ and €, the densities of wave angular momentum and energy, respectively.
In the process we will have given an independent proof of the relations (71) between these two densities and the
density of wave action 2.

Consider the wave with real frequency wg and complex wavenumber k(=) which satisfies the dispersion relation
(50). Let us excite this wave by some system of externally driven masses which were slowly turned on at t — —co.
We assume then that this external mass system has a component of the form

oi(@, 0, 1)8(2) = Re {S(m)e"~"}3(2), (€1

where w is a complex frequency with w; < 0, |w;| < |wg]|, and S,(w) has the same rapid spatial dependence on =
as the wave density amplitude S(w=) (eq. [10]). Instead of relation (15), Poisson’s equation now implies

Siw) = = () — 5 DA 5, LMD o, ko, m) 2 s Gb D) L Do, ko), (€D)

where D, is defined in equation (45), and we have kept only the dominant terms in the epicyclic approximation
(17). Also note the fact that Dy(wg, ko, @) = 0, and that |w;| < |wg].

Noting that the wave exerts on the external masses a torque per unit area of [—o,(w, 0, )9¢(w, 0, 0, t)/00],
we may calculate the total angular momentum of the wave as

t 2 o
Ah = f J J 0u(w, 0,1) 2o (6,0, 1" yodrdlt
- Y0 0 80

= %Re { ft fzn J ® imS, (=) V*(w) exp (—2w1t’)wdwd0dt’} . (C3)
\W—-wJo 0

Here V'* is the complex conjugate of V. In reducing Ak we have used equations (9), (12), and (C1). If, in addition,
we eliminate S (=) by using relation (C2) and evaluate the time integral of equation (C3), then we find

2n poo
A = f f $wdwdo (C4)
0] 0
where the density of wave angular momentum is
- Sk”’lko(‘a’)
5 = Re {320 e,y 2 Difun, o )} (3)

Comparing this $ with 2 as given by equation (66), we see clearly that $ = mQ. Strictly speaking, formula (C5)
only determines the angular momentum density up to a term which is a divergence of some arbitrary vector field.
This freedom also occurs in the work of previous authors (Toomre 1969; Shu 1970b; Kalnajs 1971). However, the
fact that formula (C5) gives us a conservation relation (62) confirms to us that formula (C5) is the relevant angular-
momentum density (cf. § IV for the discussion of this).

Similarly, we can show that the density of wave energy € satisfies relation (71) if we note that the work done by
the wave field on the external masses is [—j. (=, 0, 1)+ Vé(w, 0, 0, ¢)]. Here j, is the external mass flux; and mass
conservation,

aoe

S+ Ve, =0, (C6)
is assumed.
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Note added in proof.—Although we have not explicitly considered this case, our work also applies to all the
- resonances that occur in axisymmetric density waves. Of course, the wave pattern rotation frequency Q, (eq. [11])
is meaningless when the number of arms m = 0. However, our previous analysis can also be used in this m = 0
case provided we now define the dimensionless frequency v(r) by »(r) = w/x(r). Results analogous to our earlier
discussions of m # 0 cases can now be obtained for axisymmetric waves at the resonances where »(r) equals a
nonzero integer (the analogy of the corotation resonance does not occur in this m = 0 situation). The same reso-
nance absorption phenomenon occurs. It is again possible to give a physical description of this process in terms of
densities, fluxes, and sources of wave action or wave energy. The corresponding quantities for wave angular
momentum vanish identically as expected. In the detailed analysis, almost all the equations of this paper are
valid when m = 0. Most notable among the few exceptions is the use of pattern speed 2, as mentioned above.
Any occurrence of the product (mQ,) or [m(Q, — Q)] should be replaced by the frequency w, for axisymmetric
waves. The quantity (Q + ny«/m) that occurs in § 1115 should now be replaced by (r.«).
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