Weighted Averages

A: x=x,to
B ye xA N GA combining separate measurements: what is the best estimate for x ?
: — B —YB

Prob., (x,) o A )23 assume that. m§asqremepts are governed

o, \ by Gauss distribution with true value X

1 _(,-x) /202 .

Prob, (x,) oc —e 4 probability that A finds x,

O-B
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7 ) principle of maximum likelihood
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Weighted Averages

X, Xy, ..., Xy - measurements of a single quantity x with uncertainties oy, o, ..., oy

x,fto,x,*to,, ...xy,Ltoy
wW.X. .
X, = ZZ::—W <-—— weighted average
[
1 :
W, =— -—— weights
O-z'
1 C
O, =T <-—— uncertainty i x,,,,
Z w; can be calculated

using error propagation



Example Problem

Two students measure the radius of a planet and get final answers

R ,=25,000+3,000 km and R;=19,000+£2,500 km.

The best estimate of the true radius of a planet 1s the weighted average. Find the best
estimate of the true radius of a planet and the error in that estimate.

xwav — WAXA i WBXB WA — L2 WB — L2 Gwav = 1
WA + WB O'A (TB WA + WB
R, R, 25000 19,000
o’ o) 30002 2.5007
R = f f === == = 21,459km — 21,500km
+ +
o’ o, 3,000 2,500
o = 1 - 1 =1,921km —> 1,900km

S N Lo,
o} o, \3,000° 2,500

R =21,500+1,900km




|_east-Squares Fitting

consider two variables x and y that are connected by a linear relation

y=A+ Bx
y eV

e

— X

graphical method of finding the best straight
line to fit a series of experimental points - W

The Photoelectric Effect

Xl, xZ, ceey XN

Y Vo o0y VN —— find 4 and B

analytical method of finding the best straight line to fit a series of experimental
points is called linear regression or the least-squares fit for a line




Calculation of the Constants A and B

(true value for y,) = 4+ Bx,

1 —(y;—A-Bx, )2 /2 o)

Prob, ,(y) c—e

o,

<— probability of obtaining the observed value of y,

Prob, ,(»,..., ¥y ) = Prob, ,(»,)---Prob ,(y,) <—— probability of obtaining the sety,, ..., yy

find maximum of probability

chi squared — “sum of squares”

Ocﬁez% -
y
R (yi_A_Bxi)z
Z = -
2
oy° 2
04 Gig(y’ %)
oy 2
— (yv.—A—Bx,)=0
8B O_)%IZZI:xl(yl xl)
> y,—AN-B) x,=0
——-

find minimum of y?
least squares fitting
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Uncertainties iny, A, and B

N
o, = \/ﬂz (v, — A- Bx, ) uncertainty in the measurement of y
D x L
=0y uncertainties in the constants 4 and B
given by error propagation in terms
- N of uncertainties in y,, ... , yy
B y A
y=A+ Bx

..1 '
[

g2




Example of Calculation of the Constants A and B

s % 1f volume of an ideal gas 1s kept constant,
T=~A+8BP its temperature 1is a linear function of its pressure
i P; T;

. 55 20 absolute zero of temperature 4 = ?
r N S
3 < 2 _
L oy D209 3 088
S 1S 127 A

N xy—)x)y
2 P=42g B= Z AZ Z
2 p2= 37 128§ / 2
ST = 260 A=NZX2—(ZX)
SPT=25310

A=wNsp2_(ZP)2=S,000
po ZP2ST —2P2PT

= =-263.3S o, = EZ(% —A-Bx,) temperature = — 273.15° C

NZTPT -2P2Z2T
B = A = 37‘ /GA — Gy ZX 100 -
A
67 = gy 2(TA-BR) = 67 S 7al
T V-2 2(T ) 0 20 40 60/-[/ 80 100
G, = 6. Zp2 J P (mm of mercury) —
A= Pt | 7 =18 .

-100 e
= -263.35 213°C

A=-263+18" C L

-200 g

\/ — absolute zero of

—_

T
LY

T (C)—
.

-
¥ student’s value, — 260 +20

—-300 -



Covariance

0x _
Niane q(x,y)=q +0q

4 find g and og 9 =
N pairs of AaTor ()(, , y,),---; (xavr ?#)
Xi )y Xy —> X andl By

Yo, yn—> G omd By

4i = 3(x;,4;) ) 6;= L5 (4:-5
Fis-sGu—> g and By
g = 9(X.4) + %?(X;-Y)"' g—g(g.;—i) Z[ 9x (%~%) D) (#-")]

(gf) L5 x-%)° +(—g) w2 (8- 5)°

¢ 2 ;fa"” L5 (x;-X)(4i-%)
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< ><|
+

X =
Y

Mz

3i
,[3("?)*'%("' X)+ (y, :ﬂ)]
T(x-X)=0 = § =3 (x,y)

z|~ X~

]

i

o, for arbitrary o, and o,

o, and o, can be correlated —— |57 = (?—31)2 6x + (;‘f) o +2 5 9; x¢

N
covariance o, —— | ®xy= % 2, % "%)(4i-F)

. 2 2
when o, and o, are independent o, =0 —— 65 = 2-3-) Oy +—(§}-’i) by



Coefficient of Linear Correlation

N pairs 01[ values (X,,#,),..., (X,w:t,v)

4=A+Bx < do N pairs of (x;, y,) satisty a linear relation ?
r= 9 . : :
Oy by linear correlation coefficient
— - 4— 3 .
Fe ZO0R(HF) or correlation coefficient
VZ (%2 (4i-3)?

-l £ r<|

Suppose (X, 4i) all lie exactly
ou the line y=A+Bx

Yi=A+Bx;
Y = A+B¥%
41-F = B (%—%) o
. BZ(x;-i‘)z__=_§_= . if 1s close to £ 1
VZ(x-%)2822(x-%2 I8l when x and y are linearly correlated
Suppese , there ts no relatioashp if 7 1s close to 0

between x aud 4 when there 1s no relationship between x and y

Z (n-X)(4:75) >0 x and y are uncorrelated
=0



Quantitative Significance of r

calculate correlation coefficient

Student { 1 2 3 4 5 6 7 8 9 10

Homeworkx, 90 60 45 100 15 23 52 30 71 88 S (x;i-X%X)(%i-%)

Exam y, 9 71 65 100 45 60 75 8 100 8 I = ~— —
V3 (6-%)?2 (4-%)?

probability that N measurements of two uncorrelated r=0.8

variables x and y would produce r 2r) —— 1apje C N=10

Table 9.4. The probability Proby(|r| = r,) that N measurements of two uncorrelated
variables x and y would produce a correlation coefficient with Pre b” ( Irl> r'o,)

|r| = r,. Values given are percentage probabilities, and blanks indicate values
less than 0.05%.

Pr‘abw ( lr|30.3)

N 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 / = 05 %

3 100 9 8 8 74 67 59 sI 4 29 0

6 100 8 70 56 43 31 21 12 6 10 o _

10 100 78 58 40 25 14 7 2 0 it 1s very unlikely that
20 100 67 40 20 8 2 05 01 0

50 100 49 16 3 04 0 x and y are uncorrelated

!

it is very likely that
correlation is “highly significant” if Prob,(|r| > r,) is less than 1 %  x and y are correlated

|

the correlation 1s highly significant

correlation is “significant” if Prob,(|r| > r,) is less than 5 %



Example:
Calculate the covariance and the correlation coefficient » for the following six

pairs of measurements of two sides x and y of a rectangle. Would you say these
data show a significant linear correlation coefficient? Highly significant?

A B CDTE F
x=7172 73 75 76 77 mm y
$y=9596 96 98 98 99 mm

=74 o
7 =97

covariance o, = %Z(xl. X))y, —-y)= l((—3) X(-2)+..+3x2)=3

> (x,=-%)y, - ) 0,08
s DY -

Table C  Prob, (|r| >0.98)~0.2% therefore, the correlation is both
significant and highly significant

correlation coefficient r» =




The square-root rule for a counting experiment

for events which occur at random
but with a definite average rate N occurrences in a time 7
the standard deviation is/ N

(number of counts in time 7) = N £ JN
b

average number of counts in a time 7 uncertainty

(fractional uncertainty) = VN = ! reduces with increasing N
N N
Examples fractiongl
Photoemission: uncertainty
if average emission rate is 10® photons/s, uncertainty is v/10° =10’ photons/s 1 1
and expected number is 10° + 10° photons/s N ~ 1000

Rain droplets on a windshield:
if average rate is 100 droplets/s, uncertainty is /100 =10 droplets/s 1
and expected number is 100 £ 10 droplets/s JN 10



Chi Squared Test for a Distribution

40 measured values of x (in cm)

are these measurements

governed by a Gauss distribution ?

731 772 771 681 722 688 653 157 733 742
730 780 709 676 760 748 672 687 766 645 - Sx:
678 748 689 810 805 778 764 753 709 675 S VE 730.1 cw
698 770 754 830 725 710 738 638 787 712 _
- —‘ /| Z (Xi-X)* _
6 ——W—‘ = 45 -3 Cinm
34% 34 % e
16 % 16 % Or — Ev _ deviation 19
% M /Ew expected size of its fluctuation
| . 2
X- X X+ n (O-Ex -
i - X= 2 )" | chi squared

Bin number Observed number Expected number Difference k=1

£ O E = NProb, O ~ B 2 2 ), observed and expected distributions

1 8 6.4 1.6 agree about as well as expected

2 10 13.6 -36 ) = _

3 16 13.6 24 > n significant disagreement between

g g
4 i B Bk observed and expected distributions
4 (0c-B.)?
O,— observed number  x?-=2 -——“—E;i)-
k=1
E, — expected number 01?2, (292 | (2.4)? . (-2.4)°> no reason to doubt that the
-J/E,. — fluctuations of £, 6.4 3.6~ 136 ¢4 measurements were governed
= .80 <n » by a Gauss distribution




Degrees of Freedom and Reduced Chi Squared

a better procedure is to compare y? not with the number of bins »
but instead with the number of degree of freedom d

n 1s the number of bins

c 1s the number of parameters that had to be calculated
from the data to compute the expected numbers £,

¢ 1s called the number of constrains

od = n-C d 1s the number of degrees of freedom
N

test ter o oSS —=>C=-3{—X

dis*)‘-r, bh"'l(ﬂd GXJG (X) KG'

(6‘x pec’fca{ averoage value of ')Cz) =d = n-C

%= %?/d reduced chi squared

) =1
(expccfeof overoge value of |




Probabilities of Chi Squared

quantitative measure of agreement between observed data and their expected distribution
(ex pecteol average value of ’)(.2) =d =n-C

2= %/d
/“-’2 -
(e}tpccfeof overoge value of g e ) = |

~?=1.80

d= 4¢-3=1

X*=1.80

Proh (F221.80) =187 = Table D

probability of obtaining

d 0 025 05 075 1.0 125 15 175 2 3 4 5 6 ~7
a value of y“ greater or

1 100 62 48 39 32 26 22 19X 16 8 5 3 1 . .

2 00 78 61 47 37 29 22 17 14 5 2 o7 o0z ¢qualto Xo~ » asSuming

3 100 8 6 52 39 20 21 15 11 3 07 02 — the measurements are

5 100 94 78 59 42 28 19 12 8 1 01 — — ggverned by the expected
10 100 99 8 68 44 25 13 6 3 01 — — — T
15 100 100 94 73 45 23 100 4 1 — — — — distribution

disagreement is “significant” if Prob,(y> > y,?) is less than 5 % reject the expected
distribution

disagreement is “highly significant” if Prob,(7* > y,?) is less than 1 %



