
Louis de Broglie 1923: all forms of matter have wave as well as particle

Einstein, 1905-1906: A photon carries energy E=hf and momentum p=E/c=hf/c
Therefore, the wavelength and frequency of an electromagnetic wave are λ=c/f

Louis de Broglie, 1923: all forms of matter have wave as well as particle 
properties. The wavelength and frequency of a matter wave associated with 
any moving object are
where h is Plank’s constant, p is momentum and E is energy of the object
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Interference leads to selection of certain waves.
For example a guitar string of length L supports 
only standing waves that have nodes at each end, 

Apply this reasoning to the 
electrons in the atoms:
The allowed Bohr orbits arise 

Only certain electron radii are allowed for the

i.e. with 2L=nλ. Other wavelengths rapidly vanish 
by destructive interference

because the electron matter waves 
interfere constructively when an 
integral number of wavelengths 
fits into the circumference of aOnly certain electron radii are allowed for the 

electrons in the atom
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1st Bohr’s postulate: only those 
electron orbits occur for which
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the angular momentum of the electron 
is nh/2π, where n is an integer and h is Planck’s constant. 
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Why don’t we see the wave properties of macroscopic objects?
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For a baseball of mass 140 g traveling at a speed of 60 mi/h=27 m/s

It is too small even compared to nucleus whose size is ~10-14 m
This is why wave properties of macroscopic objects are not revealed 
and they appear as particle like

An object will reveal its wave properties if it exhibits interference or diffraction, 
which require scattering objects or apertures with a size comparable to wavelength

To observe wave properties of matter: study microscopic particles with small m → λ is large
study interference from small objects with a size ~ λ



EXPERIMENT #6
Electron Diffraction

GOALS
Physics
Determine the de Broglie wavelength for electrons, by diffracting them from parallel g g , y g p
planes of atoms in a carbon film. 

Techniques
Control the a elength of the electron b ar ing its kinetic energ KE V from anControl the wavelength of the electron by varying its kinetic energy KE = eVa from an 
accelerating voltage.

References
Serway, Moses, Moyer §5.2



Louis de Broglie 1923: a particle with momentum p possess a wavelength λ = h/p
7

Clinton J. Davisson and Lester H. Germer, 1927: direct experimental proof 
George P Thomson by diffraction experimentsGeorge P. Thomson by diffraction experiments

When an electron is accelerated through a potential difference V, it gains a kinetic energy
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Accelerating electrons in a voltage 
readily produces a beam of electrons 
with a sub nanometer wavelengthv 1 Volt2p m meV ⎝ ⎠ with a sub-nanometer wavelength

For V=50 V ( ) 1/ 2(1.23 nm) 50 0.17 nm 1.7 Å
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Wave properties of electrons can be revealed by diffraction. 
Diffraction of the electron beam form a grating requires the 
spacing between the rulings of the order the sub-nanometer 

atomic lattices have “natural” 
spacings of Ångstroms 
1Å=0 1 nm

the spacing between the rulings 
in regular gratings are of the

electron wavelength 1Å=0.1 nmsind nθ λ=

in regular gratings are of the 
order of microns (103 nm)



Conditions for constructive interference: Constructive interference will occur for the rays 
scattered from atoms if the difference in path length is a whole number of wavelengths

Scattering of waves from a plane of atoms Scattering of waves from successive planes of atoms 

1. Condition for constructive interference 
for the rays scattered from neighboring 
atoms separated by a distance d’

2. Condition for constructive interference 
for the rays scattered from successive planes 
separated by a distance d

a e − c b  =  d'cosα − d'cosθ = mλ a b + b c  = dsinθ + dsinα = nλ

These conditions can be satisfied simultaneously if θ = α. In that case m = 0 satisfies the first 
condition for any d’, and                          satisfies the second condition. 2 sinn dλ θ=
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intense peaks of scattered radiation are observed for certain wavelengths and directions 
l fl i b l

X-ray Bragg diffraction:

Bragg peaks

incident ray            reflected ray

specular reflection by a plane
implies constructive interference 
of rays scattered by individual
ions within the plane

the conditions for a sharp peak in the intensity of scattered wave
1 – the X-ray should be specularly reflected by the ions in one plane
2 the reflected waves from successive planes should interfereth th diff 2d i θ

William Henry Bragg and William Lawrence Bragg, 1912:

2 – the reflected waves from successive planes should interfere 
constructively

Bragg condition 

the path difference 2dsinθ

2 sinn dλ θ=

n – order of the corresponding reflectionθ – Bragg angle
2θ – the angle by which the 

incident beam is deflected

the same lattice, 
the same incident ray
but different direction 
and λ of the reflected rayand λ of the reflected ray

any family of planes 
produces reflections

each plane reflects 10-3 – 10-5

of the incident radiation



Most materials are polycrystalline. They are composed of a large number of small single crystals 
(crystallites) that are randomly oriented. Your electron diffraction sample is a polycrystalline 
film, thin enough so that the diffracted electrons can be transmitted through the film., g g

many randomly oriented 
crystallites in a 
polycrystalline film scatter

a beam of electrons 
of wavelength λ

polycrystalline film scatter 
the electron beam into a cone 
when the Bragg condition is 
fulfilled by planes of atoms 
di d i ll

a plane of atoms 
disposed symmetrically 
about the incident beam 

in a crystallite
2 sinn dλ θ=

the beam will be diffracted by the angle γ = 2θ

For n=1 the Bragg condition becomes 2 sin 2     d d dλ θ θ γ= ≈ =



THE EXPERIMENT
Equipment
1 El t diff ti t b ith b thi fil t t1. Electron diffraction tube with carbon thin film target.
2. High and low voltage power supplies.
3. Calipers for measuring diffraction ring diameters.

CAUTION
1. The 5kV power source can give you a very nasty shock. Verify that your circuit is 

correctly wired before turning on power. Have your instructor or TA check the circuit.
2 Check that the anode current monitoring meter is on the grounded side of the circuit as2. Check that the anode current monitoring meter is on the grounded side of the circuit as 

shown in the diagram below.
3. Never permit the anode current to exceed 0.2 mA; otherwise the target may be damaged.



The electron diffraction tubeThe electron diffraction tube

The carbon film is mounted in the anode. 
The anode voltage +V accelerates the electrons and then they hit the carbon film.The anode voltage Va accelerates the electrons and then they hit the carbon film.  
The variable anode voltage Va is provided by the 5kV dc supply. 

The electrons are emitted from a heated oxide-coated cathode. 
The heater voltage, Vf, is supplied by the 6 Volt output. g , f, pp y p

The external bias Vbias for the can surrounding the cathode serves to focus the electron beam.  

The beam current Ia varies with both anode and bias voltages. Be sure to keep the beam current a g p
below 0.2 mA. The energetic electron beam deposits its power 
as heat in the carbon target. If it’s glowing dull red, it’s too hot. To prevent surprising increases 
in current, you should stabilize the filament heater current for about a minute before turning on 
the anode voltage

0.2 mA 5 kV 1 Watta aP I V= ⋅ ≤ ⋅ =

the anode voltage.



The atoms in a carbon crystal are located on the 
corners of hexagons. The two sets of planes produce 
h diff i ithe diffraction rings

the spacings are 
d1 =  0.123 nm1 
d2 =  0.213 nm

●As you turn up the anode voltage you will see two rings on the screen. Each ring corresponds 
t f th b d i (d d )to one of the carbon d spacings (d1 or d2). 

● Calculate de Broglie wavelength of the electrons
as a function of Va

( ) 1/ 2(1.23 nm) a b
h V V
p
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● Measure the ring diameter D on the screen with calipers and calculate γ from D. 
See the geometric construction on the previous viewgraph. 

● For each ring, plot (Va –Vb)-1/2 as a function of γ for a number of values of Va. a b a
Determine d1 and d2 from the slopes of these curves using the diffraction condition derived for 
the polycrystalline carbon film

● Using error analysis, compare your values to the d spacings expected for carbon.

( ) 1/ 2(1.23 nm)  a bV V dλ γ−= ⋅ − =
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Light Matter

Wave 
t

Light interference Matter interference
property Revealed in experiments on light diffraction and 

interference (e.g. Michelson interferometer)
Revealed in Davisson-Germer 
experiments on electron diffraction

Particle 
(corpuscular)

Light carries momentum
Revealed in the Compton effect

Matter carriers momentum
Revealed e g in electron scattering(corpuscular) 

property
Revealed in the Compton effect Revealed e.g. in electron scattering 

experiments



A particle is represented by a wave group or wave packets
of limited spatial extent,

hi h i i i f i hwhich is a superposition of many matter waves with a 
spread of wavelengths centered on λ0=h/mv

The wave group moves with a speed vg – the group speed, g p p g g p p ,
which corresponds to the classical particle speed



superposition of two waves
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The Heisenberg uncertainty principle

Heisenberg, 1927:
It is impossible to determine simultaneously with unlimited precision the position andIt is impossible to determine simultaneously with unlimited precision the position and 
momentum of a particle. 
If a measurement of position is made with precision ∆x and a simultaneous measurement of 
momentum in the x direction is made with precision ∆px, then
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for a particular wave packet


