PHYSICS 110A : CLASSICAL MECHANICS
FALL 2010 FINAL EXAMINATION

(1) A point mass m, slides frictionlessly along a curve y = f(x), as depicted in Fig. 1.
Affixed to the mass is a rigid rod of length ¢, at the other end of which is a second point
mass m4. The entire apparatus moves under the influence of gravity. Choose as generalized
coordinates the set {x,y, 0}, where (z,y) are the Cartesian coordinates of the mass m,, and
0 is the angle shown in the figure. Treat the condition y = f(z) as a constraint.

Y y = f(=)

Figure 1: A mass point m; moves frictionlessly along the curve y = f(z). Affixed to this
mass is a rigid rod of length ¢ at the end of which is a second point mass ms.

(a) Find the Lagrangian L(z,y,0,4,1,0,t). [5 points]
Solution : The coordinates of the mass m, are (z 4 ¢sinf, y — £ cos 6). The Lagrangian is
L= 3my (&° + 7)) + §my (i3 + 93) — m1gy — magyy

=1 (my +my) (8% + 97) + Smy 2 02 + myl (i cos 0 + §sin ) 6 — (my + ms)gy + mogl cos b

which follows from z, = x + ¢sinf and y, = y — £ cos 0, after taking time derivatives and
squaring.

(b) Find the momenta p,,, Py, and py. [6 points]

Solution : We have

oL )
9y
Py = Z_g :m2£29+m2€(¢0089+ysin9) )



(¢) Find the forces F,, F,, and Fy. [3 points]

Solution : We have

oL
F = —— =
T Ox 0
oL
F,= BT —(my+my)g
oL . . ; .
Fy = 20 = myl (—2sinf + gycos ) — myglsinf .

(d) Find the forces of constraint Q,, @,, and Q. [3 points]

Solution : We have one constraint, G(z,y,6,t) = y — f(x) = 0, hence

06 ,
Qm—A%——Af(fﬂ)
oG
Qy_)\a—y_)\
oG

(e) Find the equations of motion in terms of x, y, €, their first and second time derivatives,
and the Lagrange multiplier . [6 points]

Solution : The general form of the equations of motion is
pO’ = FO' + QO’ )
hence

(my 4 my) & — my L02sin b + my L0 cos§ = —\f'(z)
(ml +m2)ﬂ+m25920089+m2€ésin9 = —(ml +m2)g+)\

My €0 + myl (7 cos O + §sin6) = —myglsind .

These three equations in the four unknowns (z,y, 6, ) are supplemented by a fourth equa-
tion, which is the equation of constraint y — f(x) = 0.

(f) What is conserved for this system? [2 points]

Solution : The only conserved quantity is the Hamiltonian, which is the total energy
H=FE=T+U.



(2) Treat the system described in problem (1) without the constraint formalism, using
generalized coordinates x and 6. Assume f(z) = f(—=z) is a symmetric function with a
single minimum at 2 = 0, and that f”(0) > 0.

(a) Find the Lagrangian L(z,0,#,6,t). [5 points]
Solution : The coordinates of the mass m, are (z + £sinf, y — £cos ). The Lagrangian is
L=4m (i2 +7%) + 5MMs (m% +15) — Mgy — magys

3 (my +my) (14 f(x)?) 2 + $my 0?62 + myt (cosf + f'(z)sinb) @0 — (my +ms)gf(z) +myglcost .

(b) Find the equilibrium values (z*,0*) and the T and V matrices. [5 points]

Solution : Clearly (z*,6*) = (0,0). We then have for T,
- 8217 _ ml + m2 m2 @
T 00, 00 |y mat myt?)
Note that f’(0) = 0 since f(z) = f(—z) is an even function. The V matrix is

_ 0T | ((my+my)gf'(0) 0
oo’ 8q0’ 8q0_, q* O m2 g€2 .

\Y%

(c) Consider the case f(x) = x2/2b. Define 2, = /g/b and 2, = \/g/l. Find a general
expression for the normal mode frequencies w, . Then consider the case where m; = 21m,
my = 4m, (2, = 362, and (2, = 5§2. Find w,. [10 points]

Solution : We have

o v [(my+my) (w? — £25) My £ w?
ol V_< My £ w? mg 12 (w? — 27)

The characteristic polynomial is

P(w?) = det (w*T = V) = my (my +my) 62{ (w? = 02) (w* — 02) — mmﬁ w4}
1 2

my

:mz(m1+m2)€2{ w4—(93+9%)w2+9393}.

my + my

Thus, the normal mode frequencies are

2
2 2 2 N2 2 2
o) o wi(H%)(ﬂow)i(lmw(% %) i
my 2 my 2 my + my




Using the given values for m; 5 and {2, we find

e 10
3

w_

(d) Find the eigenvectors ¥™*). You do not have to normalize them. [5 points]

Solution : From the equation (wiT — V) &) =0, we take the top component and find

(my +my) (Wi — £25) 7/’§i) +my lwh T/éi) =0,
+

(2

§i> my Wi

. (250 W . (250

e (3) e ()

(3) Two particles of masses m, and m,, interact via the central potential

“ 1/2
Urm) =ty ()

7y — 7y

we have

From this, find

(a) Find and sketch the effective potential U_g (7). Sketch the phase curves in the (r,7)
plane. Identify any separatrices and find their energies. [5 points]

Solution : The effective potential is

62 a 1/2
Ueg (1) = 2 Uy <;> :

It is useful to defined the dimensionless length p = r/a and the dimensionless effective
potential U4 (p) = Uet(ap)/U,. Then

2
- y 1
Ueﬁ(ﬂ):ﬁ—m )

where v = £ / ay/pnU, is a dimensionless quantity proportional to £. In the sketch in the top

panel of fig. 2, we have taken v = 1. Defining the dimensionless energy E=E /Uy and the
dimensionless velocity v = /U,/u, we have

2

E= o +Ualp) .

The phase curves are shown in the lower panel of fig. 2.
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Figure 2: Effective potential U.g () and phase curves for the potential U (r) = —Uy (a/r)"/2.
Blue curves, for which £ < 0, are bounded by two turning points. Green curves, for which
E > 0, are unbounded. The separatrix, which lies at energy £ = 0 and which is marginally
unbound, is shown in red. The black dot shows the location of the circular orbit.

(b) Find the radius r of the circular orbit as a function of the angular momentum ¢ and
other constants. [6 points]

Solution : We set Ul;(r) = 0 and obtain the equation

2 Uyall? 202 /3
mrg o 2rg pUpva

(c) Writing r(t) = 7y + n(t), find the linearized equations of motion for n(¢). Find the



frequency w of the radial oscillations. [5 points]

Solution : We have

pij = —=Usg(ro) n + O(n?) .
Now
//(T)_3_€2_3U0a1/2_ 302 N w_\/g L
VO g 2 2 g’

(d) What is the shape of the nearly circular orbits? What is the shape r(¢) of the nearly
circular orbits? Are those orbits closed? Why or why not? [56 points]

Solution : We have 1 = —32n + O(n?), with

The shape is

r(¢) = o + 19 cos(B¢ + &)
where 77, and ¢, are constants determined by initial conditions. Since 3 is not a rational
number, the almost circular orbit is not closed.

e) What is the ratio of the escape velocity at r, to the orbital velocity at r,? [5 points]
0 0

Solution : The orbital velocity is given by

14
orb = Vorb = .

L= pryv
0 g

The escape velocity is the velocity necessary to achieve a marginally unbound orbit given
the relative coordinate is r, i.e. the velocity such that the (relative coordinate) energy is
E = 0. Thus,

1/2 1/2 1/4

a 2U, a 2/

E=0= 3} —U<—> = :<—0> <_> = =,
2 esc 0 To esc L To [ orb

(4) Provide brief but substantial answers to the following questions.

(a) For a system with kinetic and potential energies

T= %m(j:2 + w2x2) , U=U(x),

find the Hamiltonian. Under what conditions is H =T 4+ U? [5 points]

Solution : We have p = % = ma and

2
H:pab—L:;—m—%mwzx2+U(x).



Note that H # T + U. In order for H to be equal to 7'+ U, the kinetic energy 1" must
be a homogeneous function of degree k£ = 2 in the generalized velocities, and the potential
energy U must be a homogeneous function of degree k = 0 in the generalized velocities.

(b) For central force motion, what is the definition of a bounded orbit? What is a closed
orbit? What are the conditions for a circular orbit, and under what conditions is a circular
orbit stable with respect to small perturbations? Under what conditions is an almost
circular orbit closed? [6 points]

Solution : A bounded orbit is an orbit whose radial motion is bounded by two turning
points: r_. < r(t) < 7. A closed orbit is one which eventually retraces itself. Circular
orbits exist for r values which extremize the effective potential U g(r) = 2;6% + U(r),

which is to say rgU'(r,) = %. For almost circular orbits, write r = r, + 7, and the

linearized equations of motion are uij = —U/4; () 7. An almost circular orbit is thus stable
provided Ul;(rq) > 0. Almost circular orbits which are stable execute radial oscillations
with frequency w = CH (ro) u An almost circular orbit is closed when 5 = w/¢ is a

rational number, where qﬁ =0/urd.

(c¢) Write down an example of a Lagrangian for a system with two generalized coordinates
(and no constraints), and which yields two and only two conserved quantities. [5 points]

Solution : Lots of possible examples. Here’s one:
L= %m(i2+y2) - Ul(y) ,

where U (y) is an arbitrary non-constant function of its argument. The conserved quantities
here are p, = gi =mi and H = E = im (&* +y) + Ul(y).

(d) Consider the functional

Fly(@)] = 7dx [ (%) + 3 (2) + 4ot st >]

What is the differential equation which extremizes F[y(z)]? [5 points]

Solution : Setting §F = 0 we obtain

AN AN
dz? \ 0y" dx \ Oy’ oy

where L = La(y”)? + 1b(y')? + 1cy? — jy is the integrand of F. Thus, we obtain

l/l/

—by" +cy=jx) .

(e) Consider an equilateral triangle composed of three point masses connected by three
springs which moves in a horizontal plane. How many normal modes of oscillation are



there? Some of the normal modes involve no restoring force. Can you identify the type of
motion for these three ‘zero modes’? [6 points]

Solution : For each of the three point masses, there are two associated generalized co-
ordinates: x and y. Thus, there are six generalized coordinates and therefore six normal
modes. Three of these are zero modes, and are associated with uniform translation in the x
direction, uniform translation in the y direction, and uniform rotation in the (z,y) plane.



