
PHYSICS 110A : CLASSICAL MECHANICS
HW 1 SOLUTIONS

(2) Taylor 1.46

(a) The equations of motion for the puck are:

r = R− vt

φ = 0

Assuming the puck is launched from the position φ = 0. Technically with the polar coor-
dinates this should only be correct until the puck hits the origin, but let’s assume at the
origin r turns negative and the angle stays the same.

(b) Now the rotating disc only affects the φ direction. Our new equations of motion are:

r′ = R− vt , φ′ = −ωt

Figure 1: Plots for problem 2b with different z = ωR/v. Blue: z=8, green: z=4, magenta:
z=2.

(3) Taylor 2.14

We have from Newton’s second law:

dv

dt
= −F0

m
ev/V
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Separating this differential equation we come up with:

v∫
v0

dv′e−v
′/V = −

t∫
0

dt′
F0

m
;

with the result:
V
[
e−v/V

]v
v0

=
F0 t

m
.

Which reduces to: [
e−v/V − e−v0/V

]
=
F0 t

mV
.

And:
e−v/V =

F0 t

mV
+ e−v0/V .

And finally:

v = −V ln
[
F0 t

mV
+ e−v0/V

]
. (1)

(b) By setting equation (1) equal to zero we get,

1 =
F0 t

mV
+ e−v0/V .

Since ln(1) = 0. Solving this for t we have:

t =
mV

F0

[
1− e−v0/V

]
.

(c) Finally from equation (1):

dx

dt
= −V ln

[
F0 t

mV
+ e−v0/V

]
.

Separating this we have:

x∫
x0

dx′ = −V
t∫

0

dt′ ln
[
F0 t

′

mV
+ e−v0/V

]
;

and we end up with:

x (t) = V t− V 2m

F0

[(
F0t

mV
+ e−v0/V

)
ln
(
F0t

mV
+ e−v0/V

)
+
v0
V
e−v0/V

]
.

Plugging in for t we have xmax:

xmax =
mV 2

F0

(
1− (1 +

v0
V

)e−v0/V
)
.

2



(5) Taylor 3.11

(a) Similar to text we can show:

mv̇ = −ṁvex −mg.

(b) Noting that ṁ = −k we have:

v̇ =
kvex

m0 − kt
− g.

Note: m0 − kt is the solution of ṁ = −k.

The equation for v̇ is separable and we get:

v =

t∫
0

dt′
(

kvex
m0 − kt′

)
− gt.

This leads to:

v = vex ln
(

m0

m0 − kt

)
− gt.

(c) plugging in numbers we get: ∼ 900 m/s.

(d) Depending on the circumstances, as noted in the discussion section, the rocket will either
not take off at all, or will have initial negative velocity (e.g. will begin falling downward, or
stay on the ground for a rocket at lift-off) and eventually overcome the gravitational force
with its thrust.

(6) Taylor 3.13

Starting from 3.11 result:

v = vex ln
(

mo

m0 − kt

)
− gt.

This is again separable to find x (t):

x (t)− x0 = vex

t∫
0

dt′ ln
(

m0

m0 − kt′

)
− gt2

2
.

We can make this easier by expanding the natural log:

x (t)− x0 = vex

t∫
0

dt′
(

ln(m0)− ln
(
m0 − kt′

) )
− gt2

2
.
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Then

x (t) = vex

(
ln(m0) t− 1

k

[
− (m0 − kt) ln(m0 − kt) + (m0 − kt) +m0 ln(m0)−m0

])
− gt

2

2
.

Cleaning this up we get:

x (t) =
vex
k

(
(m0 − kt) ln(m0)− (m0 − kt) ln(m0 − kt) + kt

)
− gt2

2
.

Which can be written as:

x (t) = vex t−
1
2
gt2 − m(t) vex

k
ln
(
m0

m(t)

)
.

Remember that m(t) = m0 − kt.

(7) Taylor 4.2

(a)

W =

1∫
0

Fx(x, 0) dx+

1∫
0

Fy(1, y) dy =

1∫
0

x2dx+

1∫
0

2y dy = 4
3 .

(b)

W =

P∫
0

[
Fx(x, y) dx+ Fy(x, y) dy

]
=

1∫
0

dx

[
Fx(x, x2) + Fy(x, x2)

dy

dx

]
Thus,

W =

1∫
0

dx
[
x2 +

(
2x · x2

)
· 2x
]

=

1∫
0

dx
[
x2 + 4x4

]
= 17

15 .

(c)

W =

1∫
0

dt

[
Fx(x, y)

dx

dt
+ Fy(x, y)

dy

dt

]
=

1∫
0

dt
[(
t3
)2 ·3t2 +2t3 · t2 ·2t

]
=

1∫
0

dt
[
3t8 +4t6

]
= 19

21

(8) Taylor 4.23

To check if these forces are conservative they must satisfy two conditions. (1) They must
only depend on position and (2) ∇×F = 0. The first is satisfied in each case here and the
second is satisfied for (a) and (b). Part (c) has ∇ × F = 2ẑ 6= 0. A great way to find the
potential energy is as follows:

U (x, y, z)− U (0, 0, 0) = −
x∫

0

Fx(x′, 0, 0) dx′ −
y∫

0

Fy(x, y′, 0) dy′ −
z∫

0

Fz(x, y, z′) dz′ .
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For part (a) this would look like:

U (x, y, z)− U (0, 0, 0) = −k
x∫

0

x′ dx′ − 2k

y∫
0

y′ dy′ − 3k

z∫
0

z′ dz′.

Which leads us to:
U (x, y, z) = U0 − 1

2kx
2 − ky2 − 3

2kz
2.

Which when taking the gradient brings us back to our given force. For part (b) we get
U (x, y, z) = U0 − kxy through similar means.

(9) Taylor 4.36
(a) The potential may be written:

Figure 2: Figure for problem 9.

U = −MgH −mgh.

Substituting h = b/ tan θ and H = (l − b/ sin θ) we have:

U = −Mg

(
l − b

sin θ

)
−mg b

tan θ
,

where l is the length of the string. This can be rearranged as:

U = −Mgl + gb

(
M −m cos θ

sin θ

)
≡ −Mgl +Mgbu(θ)

where
u(θ) =

1− (m/M) cos θ
sin θ

Taking the derivative with respect to θ we have:

∂U

∂θ
=

gb

sin2θ
(M cos θ −m) .
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Setting this equal to zero leads to θ = cos−1(m/M). Obviously in order to have a solution
we must have m/M < 1. However, there is another constraint we must acknowledge. From
the figure above it can be seen there is a minimum value for θ: θmin = sin−1(b/`). So we
see we have three conditions (see also fig. 3):

(1) If m
M <

(
1− b2

l2

)1/2
, then there is an equilibrium at angle θ∗ = cos−1(m/M).

(2) If
(

1− b2

l2

)1/2
< m

M < 1, then the angle θ∗ for which u(θ) is a minimum lies in the
forbidden region θ∗ < θmin. The lowest energy configuration then occurs at the endpoint of
the interval θ ∈

[
θmin,

π
2

]
, i.e.θ = θmin = sin−1(b/l).

(3) If m > M there is no solution to u′(θ) = 0. The equilibrium configuration is, as in case
(2), at θ = θmin = sin−1(b/l).

Note that this problem can be solved with Physics 1 logic. The tension in the string
must support both masses. For the mass m, the vertical component of the tension balances
gravity, hence T cos θ = mg. For the mass M , the tension is directed vertically and T = Mg.
Eliminating T , we have θ = θ∗ = cos−1(m/M). If θ∗ < θmin, then the mass M is pulled all
the way up to the top. The tension in the rope still exceeds the gravitational force on the
mass M . But now since the mass abuts the pulley assembly, normal forces from the upper
surface are in play, and augment gravity (pushing downward) to balance the tension in the
rope.

(10) Taylor 4.41

Starting with the potential U = krn we can take the gradient to find the force:

F = −~∇U = −nkrn−1r̂.

Now equating the magnitude of this force to mass times the centripetal acceleration (for
circular motion) we have:

mv2

r
= nkrn−1.

Manipulating this we find:
1
2
mv2 =

1
2
nkrn =

nU

2
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Figure 3: Plot of u (θ) (Taylor 4.36) for different values of m/M with b/l = 1
2 . Green:

m/M > 1; pink: m/M = 1; red: cos θmin < m/M < 1; black: m/M = cos θmin; blue:
m/M < cos θmin. The dashed line shows the location of θmin = sin−1( bl ) = π

6 .
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