
PHYSICS 110A : CLASSICAL MECHANICS
HW 2 SOLUTIONS

(1) Taylor 5.2

Here is a sketch of the potential with A = 1, R = 1, and S = 1. From the plot we can see
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Figure 1: Plot for problem 1.

the minimum of the potential will be at r = R. We can also find this by setting the first
derivative of U (r) equal to zero.

We have:
U ′ (r) = −2A

S
e(R−r)/S

(
e(R−r)/S − 1

)
= 0.

This will be zero when r = R. We will call this value r0.

So now we expand U (r) as a Taylor series around the point r0:

U (r0 + x) = U (r0) + U ′ (r0)x+
1
2!
U ′′ (r0)x2 + ...
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Right away we know the second term will be zero because U ′ (r0) is defined to be zero.

Finding the second derivative we have:

U ′′ (r) =
2A
S2
e(R−r)/S

(
2e(R−r)/S − 1

)
.

Plugging in r0 = R we have:

U ′′ (r0) =
2A
S2
.

So for small values of x we can say:

U (r0 + x) = −A+
1
2

2A
S2
x2 + ...

For this potential the k constant is 2A
S2 .

(2) Taylor 5.13

Similar to problem 1 we have a potential and want to first take the derivative and set it
equal to zero to find the potential’s minimum:

U ′ (r) = U0

(
1
R
− λ2 R

r2

)
= 0.

Setting this equal to zero we find the minimum is r0 = λR.

Again we want to express the potential as a Taylor series:

U (r0 + x) = U (r0) + U ′ (r0)x+
1
2!
U ′′ (r0)x2 + ...

Our second derivative of the potential is as follows:

U ′′ (r) =
2U0λ

2R

r3
.

And we can write the potential as:

U (r0 + x) = 2U0λ+
1
2

2U0

λR2
x2 + ...

Our expression for the angular frequency is:

ω =

√
k

m
=

√
2U0

mλR2
.
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(3) Taylor 5.38

As in example 5.3 the equation of motion for a driven damped linear oscillator is:

x (t) = A cos (ωt− δ) + e−βt [B1 cos (ω1t) +B2 sin (ω1t)] . (1)

For us ω = 1, β = .1, and ω1 =
√
ω2 − β2 = .995.

From equations 5.64 and 5.65 from the text we have:

A = 2 and δ = π/2.

We have two boundary conditions: x0 = 0 and v0 = 6.

Our job is to calculate the given constants in the equation of motion and then plot the
equation of motion.

From equation (1) with t = 0 we find:

0 = A cos (−π/2) + [B1 cos (0) +B2 sin (0)] .

Or:
B1 = 0.

The velocity function can be found be taking the time derivative of the position function
as so:

v (t) = −ωA sin (ωt− δ) + e−βtB2 (ω1 cos (ω1t)− β sin (ω1t)) .

(Where I have dropped the B1 terms.)

From this at t = 0 we have:

v0 = −ωA sin (−π/2) +B2 (ω1 cos (0)− β sin (0)) .

And this can be reduced to:

B2 =
v0 − ωA
ω1

.

Plugging in numbers we get B2 ≈ 4 leading to an equation of motion:

x (t) = 2 cos (t− π/2) + 4e−0.1t sin (.995t). (2)
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Figure 2: Plot for problem 4.

The function is plotted in figure 2.

(4) Taylor 5.45

(a) First we are to find the time average of the rate P (t) or:

〈P (t)〉 =
1
τ

τ∫
0

dtP (t) .

The rate for which a force does work is Fv. So for this force we will have:

〈P (t)〉 = −F0ωA

τ

τ∫
0

dt cos (ωt) sin (ωt− δ) .

Where v (t) = −ωA sin (ωt− δ). (Note: we get rid of the transient part of the velocity.)
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Substituting here we have:

〈P (t)〉 = −F0ωA

2τ

τ∫
0

dt (sin (−δ) + sin (2ωt− δ)) .

The time average of a sinusoidal function is zero so we are left with:

〈P (t)〉 =
F0ωA

2
sin (δ) .

Note: here we take advantage of sin (−δ) = −sin (δ).

Now we must substitute for sin (δ). From figure 5.14 on page 184 in the text we see:

sin (δ) =
2βω√(

ω2
0 − ω2

)2 + 4β2ω2

And comparing with equation 5.64 from the text we see:

sin (δ) =
2mAβω
F0

Remember f0 = F0/m. Putting this together we find:

〈P (t)〉 = mβω2A2.

(b) Now similarly we will do the same for the resistive force which is Fres = 2mβv.

We can find this as the second term (the friction term) in equation 5.24 from the text,
and from equation 5.26 b = 2βm.

So we will have P (t) = 2mβv2 and we have:

〈P (t)〉 =
2mβω2A2

τ

τ∫
0

dt sin2 (ωt− δ) .

But:
1
τ

τ∫
0

dt sin2 (ωt− δ) =
1
2
.

This is true for the square of any sinusoidal function (you may want to check this by sub-
stituting for the cos2 (ωt− δ) as in part (a)).

So we are left with:
〈P (t)〉 = mβω2A2.
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Figure 3: Plot for problem 6.

(c) Writing this out as a function of ω we have:

〈P (t)〉 =
mβω2f2

0(
ω2

0 − ω2
)2 + 4β2ω2

.

Plotting this for β = 1,m = 1, and ω0 = 4 we see the maximum is at ω0 as expected. You
may also find this by maximizing the function.

(5) Fall 2007 Midterm #1 Question #1
A particle of mass m moves in the one-dimensional potential

U(x) =
U0

a4

(
x2 − a2

)2
. (3)

(a) Sketch U(x). Identify the location(s) of any local minima and/or maxima, and be sure
that your sketch shows the proper behavior as x→ ±∞.
[15 points]

Solution : Clearly the minima lie at x = ±a and there is a local maximum at x = 0.
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Figure 4: Sketch of the double well potential U(x) = (U0/a
4)(x2−a2)2, here with distances

in units of a, and associated phase curves. The separatrix is the phase curve which runs
through the origin. Shown in red is the phase curve for U = 1

2 U0, consisting of two deformed
ellipses. For U = 2U0, the phase curve is connected, lying outside the separatrix.

(b) Sketch a representative set of phase curves. Be sure to sketch any separatrices which
exist, and identify their energies. Also sketch all the phase curves for motions with total
energy E = 1

2 U0. Do the same for E = 2U0.
[15 points]

Solution : See Fig. 4 for the phase curves. Clearly U(±a) = 0 is the minimum of the
potential, and U(0) = U0 is the local maximum and the energy of the separatrix. Thus,
E = 1

2 U0 cuts through the potential in both wells, and the phase curves at this energy form
two disjoint sets. For E < U0 there are four turning points, at

x1,< = −a

√
1 +

√
E

U0
, x1,> = −a

√
1−

√
E

U0
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and

x2,< = a

√
1−

√
E

U0
, x2,> = a

√
1 +

√
E

U0

For E = 2U0, the energy is above that of the separatrix, and there are only two turning
points, x1,< and x2,>. The phase curve is then connected.

(c) The phase space dynamics are written as ’̇ = V(’), where ’ =
(
x
ẋ

)
. Find the upper and

lower components of the vector field V.
[10 points]

Solution :
d

dt

(
x
ẋ

)
=
(

ẋ
− 1
m U ′(x)

)
=
(

ẋ

−4U0
a2 x (x2 − a2)

)
. (4)

(d) Derive and expression for the period T of the motion when the system exhibits small
oscillations about a potential minimum.
[10 points]

Solution : Set x = ±a+ η and Taylor expand:

U(±a+ η) =
4U0

a2
η2 +O(η3) . (5)

Equating this with 1
2k η

2, we have the effective spring constant k = 8U0/a
2, and the small

oscillation frequency

ω0 =

√
k

m
=

√
8U0

ma2
. (6)

The period is 2π/ω0.
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(6) Fall 2007 Midterm #1 Question #2
An R-L-C circuit is shown in fig. 5. The resistive element is a light bulb. The inductance
is L = 400µH; the capacitance is C = 1µF; the resistance is R = 32 Ω. The voltage
V (t) oscillates sinusoidally, with V (t) = V0 cos(ωt), where V0 = 4 V. In this problem, you
may neglect all transients; we are interested in the late time, steady state operation of this
circuit. Recall the relevant MKS units:

1 Ω = 1 V · s /C , 1 F = 1 C /V , 1 H = 1 V · s2/C .

Figure 5: An R-L-C circuit in which the resistive element is a light bulb.

(a) Is this circuit underdamped or overdamped?
[10 points]

Solution : We have

ω0 = (LC)−1/2 = 5× 104 s−1 , β =
R

2L
= 4× 104 s−1 .

Thus, ω2
0 > β2 and the circuit is underdamped .

(b) Suppose the bulb will only emit light when the average power dissipated by the bulb is
greater than a threshold Pth = 2

9 W . For fixed V0 = 4 V, find the frequency range for ω over
which the bulb emits light. Recall that the instantaneous power dissipated by a resistor is
PR(t) = I2(t)R. (Average this over a cycle to get the average power dissipated.)
[20 points]

Solution : The charge on the capacitor plate obeys the ODE

L Q̈+R Q̇+
Q

C
= V (t) .
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The solution is
Q(t) = Qhom(t) +A(ω)

V0

L
cos
(
ωt− δ(ω)

)
,

with

A(ω) =
[
(ω2

0 − ω2)2 + 4β2ω2
]−1/2

, δ(ω) = tan−1

(
2βω

ω2
0 − ω2

)
.

Thus, ignoring the transients, the power dissipated by the bulb is

PR(t) = Q̇2(t)R

= ω2A2(ω)
V 2

0 R

L2
sin2

(
ωt− δ(ω)

)
.

Averaging over a period, we have 〈 sin2(ωt− δ) 〉 = 1
2 , so

〈PR 〉 = ω2A2(ω)
V 2

0 R

2L2
=
V 2

0

2R
· 4β2ω2

(ω2
0 − ω2)2 + 4β2ω2

.

Now V 2
0 /2R = 1

4 W. So Pth = αV 2
0 /2R, with α = 8

9 . We then set 〈PR〉 = Pth, whence

(1− α) · 4β2ω2 = α (ω2
0 − ω2)2 .

The solutions are

ω = ±
√

1− α
α

β +

√(
1− α
α

)
β2 + ω2

0 =
(
3
√

3±
√

2
)
× 1000 s−1 .

(c) Compare the expressions for the instantaneous power dissipated by the voltage source,
PV (t), and the power dissipated by the resistor PR(t) = I2(t)R. If PV (t) 6= PR(t), where
does the power extra power go or come from? What can you say about the averages of PV
and PR(t) over a cycle? Explain your answer.
[20 points]

Solution : The instantaneous power dissipated by the voltage source is

PV (t) = V (t) I(t) = −ωA V0

L
sin(ωt− δ) cos(ωt)

= ωA
V0

2L

(
sin δ − sin(2ωt− δ)

)
.

As we have seen, the power dissipated by the bulb is

PR(t) = ω2A2 V
2
0 R

L2
sin2(ωt− δ) .

These two quantities are not identical, but they do have identical time averages over one
cycle:

〈PV (t) 〉 = 〈PR(t) 〉 =
V 2

0

2R
· 4β2 ω2A2(ω) .
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Energy conservation means
PV (t) = PR(t) + Ė(t) ,

where

E(t) =
LQ̇2

2
+
Q2

2C

is the energy in the inductor and capacitor. Since Q(t) is periodic, the average of Ė over a
cycle must vanish, which guarantees 〈PV (t) 〉 = 〈PR(t) 〉.
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