PHYSICS 110A : CLASSICAL MECHANICS HW 2 SOLUTIONS

(1) Taylor 5.2

Here is a sketch of the potential with $A = 1$, $R = 1$, and $S = 1$. From the plot we can see

Figure 1: Plot for problem 1.

the minimum of the potential will be at $r = R$. We can also find this by setting the first derivative of $U(r)$ equal to zero.

We have:

$$
U'(r) = -\frac{2A}{S}e^{(R-r)/S}\left(e^{(R-r)/S} - 1\right) = 0.
$$

This will be zero when $r = R$. We will call this value r_0 .

So now we expand $U(r)$ as a Taylor series around the point r_0 :

$$
U(r_0 + x) = U(r_0) + U'(r_0) x + \frac{1}{2!}U''(r_0) x^2 + \dots
$$

Right away we know the second term will be zero because $U'(r_0)$ is defined to be zero.

Finding the second derivative we have:

$$
U''(r) = \frac{2A}{S^2}e^{(R-r)/S}\left(2e^{(R-r)/S}-1\right).
$$

Plugging in $r_0 = R$ we have:

$$
U''(r_0) = \frac{2A}{S^2}.
$$

So for small values of x we can say:

$$
U(r_0 + x) = -A + \frac{1}{2} \frac{2A}{S^2} x^2 + \dots
$$

For this potential the k constant is $\frac{2A}{S^2}$.

(2) Taylor 5.13

Similar to problem 1 we have a potential and want to first take the derivative and set it equal to zero to find the potential's minimum:

$$
U'(r) = U_0 \left(\frac{1}{R} - \lambda^2 \frac{R}{r^2}\right) = 0.
$$

Setting this equal to zero we find the minimum is $r_0 = \lambda R$.

Again we want to express the potential as a Taylor series:

$$
U(r_0 + x) = U(r_0) + U'(r_0) x + \frac{1}{2!} U''(r_0) x^2 + \dots
$$

Our second derivative of the potential is as follows:

$$
U''(r) = \frac{2U_0\lambda^2 R}{r^3}.
$$

And we can write the potential as:

$$
U(r_0 + x) = 2U_0\lambda + \frac{1}{2}\frac{2U_0}{\lambda R^2}x^2 + \dots
$$

Our expression for the angular frequency is:

$$
\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{2U_0}{m\lambda R^2}}.
$$

(3) Taylor 5.38

As in example 5.3 the equation of motion for a driven damped linear oscillator is:

$$
x(t) = A\cos\left(\omega t - \delta\right) + e^{-\beta t} \left[B_1 \cos\left(\omega_1 t\right) + B_2 \sin\left(\omega_1 t\right)\right].\tag{1}
$$

For us $\omega = 1$, $\beta = .1$, and $\omega_1 = \sqrt{\omega^2 - \beta^2} = .995$.

From equations 5.64 and 5.65 from the text we have:

 $A = 2$ and $\delta = \pi/2$.

We have two boundary conditions: $x_0 = 0$ and $v_0 = 6$.

Our job is to calculate the given constants in the equation of motion and then plot the equation of motion.

From equation (1) with $t = 0$ we find:

$$
0 = A\cos(-\pi/2) + [B_1\cos(0) + B_2\sin(0)].
$$

Or:

$$
B_1=0.
$$

The velocity function can be found be taking the time derivative of the position function as so:

$$
v(t) = -\omega A \sin(\omega t - \delta) + e^{-\beta t} B_2 (\omega_1 \cos(\omega_1 t) - \beta \sin(\omega_1 t)).
$$

(Where I have dropped the B_1 terms.)

From this at $t = 0$ we have:

$$
v_0 = -\omega A \sin (-\pi/2) + B_2 (\omega_1 \cos (0) - \beta \sin (0)).
$$

And this can be reduced to:

$$
B_2 = \frac{v_0 - \omega A}{\omega_1}.
$$

Plugging in numbers we get $B_2 \approx 4$ leading to an equation of motion:

$$
x(t) = 2\cos(t - \pi/2) + 4e^{-0.1t}\sin(.995t). \tag{2}
$$

Figure 2: Plot for problem 4.

The function is plotted in figure 2.

(4) Taylor 5.45

(a) First we are to find the time average of the rate $P(t)$ or:

$$
\left\langle P\left(t\right)\right\rangle =\frac{1}{\tau}\int\limits_{0}^{\tau}dtP\left(t\right).
$$

The rate for which a force does work is Fv . So for this force we will have:

$$
\langle P(t) \rangle = -\frac{F_0 \omega A}{\tau} \int_0^{\tau} dt \cos(\omega t) \sin(\omega t - \delta).
$$

Where $v(t) = -\omega A \sin(\omega t - \delta)$. (Note: we get rid of the transient part of the velocity.)

Substituting here we have:

$$
\langle P(t) \rangle = -\frac{F_0 \omega A}{2\tau} \int_0^{\tau} dt \left(\sin \left(-\delta \right) + \sin \left(2\omega t - \delta \right) \right).
$$

The time average of a sinusoidal function is zero so we are left with:

$$
\langle P(t) \rangle = \frac{F_0 \omega A}{2} \sin(\delta).
$$

Note: here we take advantage of $sin(-\delta) = -sin(\delta)$.

Now we must substitute for $sin(\delta)$. From figure 5.14 on page 184 in the text we see:

$$
sin(\delta) = \frac{2\beta\omega}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\beta^2\omega^2}}
$$

And comparing with equation 5.64 from the text we see:

$$
sin(\delta) = \frac{2mA\beta\omega}{F_0}
$$

Remember $f_0 = F_0/m$. Putting this together we find:

$$
\langle P(t) \rangle = m \beta \omega^2 A^2.
$$

(b) Now similarly we will do the same for the resistive force which is $F_{res} = 2m\beta v$.

We can find this as the second term (the friction term) in equation 5.24 from the text, and from equation 5.26 $b = 2\beta m$.

So we will have $P(t) = 2m\beta v^2$ and we have:

$$
\left\langle P\left(t\right)\right\rangle =\frac{2m\beta\omega^{2}A^{2}}{\tau}\intop_{0}^{\tau}dt\sin^{2}\left(\omega t-\delta\right).
$$

But:

$$
\frac{1}{\tau} \int\limits_0^\tau dt \sin^2(\omega t - \delta) = \frac{1}{2}.
$$

This is true for the square of any sinusoidal function (you may want to check this by substituting for the $\cos^2(\omega t - \delta)$ as in part (a)).

So we are left with:

$$
\langle P(t) \rangle = m \beta \omega^2 A^2.
$$

Figure 3: Plot for problem 6.

(c) Writing this out as a function of ω we have:

$$
\langle P(t) \rangle = \frac{m \beta \omega^2 f_0^2}{\left(\omega_0^2 - \omega^2\right)^2 + 4\beta^2 \omega^2}.
$$

Plotting this for $\beta = 1, m = 1$, and $\omega_0 = 4$ we see the maximum is at ω_0 as expected. You may also find this by maximizing the function.

(5) Fall 2007 Midterm $\#1$ Question $\#1$

A particle of mass m moves in the one-dimensional potential

$$
U(x) = \frac{U_0}{a^4} (x^2 - a^2)^2.
$$
 (3)

(a) Sketch $U(x)$. Identify the location(s) of any local minima and/or maxima, and be sure that your sketch shows the proper behavior as $x \to \pm \infty$. [15 points]

Solution: Clearly the minima lie at $x = \pm a$ and there is a local maximum at $x = 0$.

Figure 4: Sketch of the double well potential $U(x) = (U_0/a^4)(x^2 - a^2)^2$, here with distances in units of a, and associated phase curves. The separatrix is the phase curve which runs through the origin. Shown in red is the phase curve for $U=\frac{1}{2}$ $\frac{1}{2}U_0$, consisting of two deformed ellipses. For $U = 2U_0$, the phase curve is connected, lying outside the separatrix.

(b) Sketch a representative set of phase curves. Be sure to sketch any separatrices which exist, and identify their energies. Also sketch all the phase curves for motions with total energy $E = \frac{1}{2}$ $\frac{1}{2}U_0$. Do the same for $E = 2U_0$. [15 points]

Solution : See Fig. 4 for the phase curves. Clearly $U(\pm a) = 0$ is the minimum of the potential, and $U(0) = U_0$ is the local maximum and the energy of the separatrix. Thus, $E = \frac{1}{2}$ $\frac{1}{2}U_0$ cuts through the potential in both wells, and the phase curves at this energy form two disjoint sets. For $E < U_0$ there are four turning points, at

$$
x_{1,<} = -a\sqrt{1 + \sqrt{\frac{E}{U_0}}}
$$
, $x_{1,>} = -a\sqrt{1 - \sqrt{\frac{E}{U_0}}}$

and

$$
x_{2,<} = a \sqrt{1-\sqrt{\frac{E}{U_0}}} \quad , \quad x_{2,>} = a \sqrt{1+\sqrt{\frac{E}{U_0}}}
$$

For $E = 2U_0$, the energy is above that of the separatrix, and there are only two turning points, $x_{1,<}$ and $x_{2,<}$. The phase curve is then connected.

(c) The phase space dynamics are written as $\dot{\theta} = \mathbf{V}(\dot{\theta})$, where $\dot{\theta} = \begin{pmatrix} x \\ y \end{pmatrix}$ \dot{x} . Find the upper and lower components of the vector field V. [10 points]

Solution :

$$
\frac{d}{dt}\begin{pmatrix} x \\ \dot{x} \end{pmatrix} = \begin{pmatrix} \dot{x} \\ -\frac{1}{m}U'(x) \end{pmatrix} = \begin{pmatrix} \dot{x} \\ -\frac{4U_0}{a^2}x(x^2 - a^2) \end{pmatrix} . \tag{4}
$$

(d) Derive and expression for the period T of the motion when the system exhibits small oscillations about a potential minimum. [10 points]

Solution : Set $x = \pm a + \eta$ and Taylor expand:

$$
U(\pm a + \eta) = \frac{4U_0}{a^2} \eta^2 + \mathcal{O}(\eta^3) \ . \tag{5}
$$

Equating this with $\frac{1}{2}k \eta^2$, we have the effective spring constant $k = 8U_0/a^2$, and the small oscillation frequency

$$
\omega_0 = \sqrt{\frac{k}{m}} = \sqrt{\frac{8U_0}{ma^2}}.
$$
\n(6)

The period is $2\pi/\omega_0$.

(6) Fall 2007 Midterm $\#1$ Question $\#2$

An R-L-C circuit is shown in fig. 5. The resistive element is a light bulb. The inductance is $L = 400 \,\mu\text{H}$; the capacitance is $C = 1 \,\mu\text{F}$; the resistance is $R = 32 \,\Omega$. The voltage $V(t)$ oscillates sinusoidally, with $V(t) = V_0 \cos(\omega t)$, where $V_0 = 4V$. In this problem, you may neglect all transients; we are interested in the late time, steady state operation of this circuit. Recall the relevant MKS units:

$$
1 \Omega = 1 V \cdot s / C
$$
, $1 F = 1 C / V$, $1 H = 1 V \cdot s^2 / C$.

Figure 5: An R-L-C circuit in which the resistive element is a light bulb.

(a) Is this circuit underdamped or overdamped? [10 points]

Solution : We have

$$
\omega_0 = (LC)^{-1/2} = 5 \times 10^4 \,\mathrm{s}^{-1}
$$
, $\beta = \frac{R}{2L} = 4 \times 10^4 \,\mathrm{s}^{-1}$.

Thus, $\omega_0^2 > \beta^2$ and the circuit is *underdamped*.

(b) Suppose the bulb will only emit light when the average power dissipated by the bulb is greater than a threshold $P_{\text{th}} = \frac{2}{9} W$. For fixed $V_0 = 4 V$, find the frequency range for ω over which the bulb emits light. Recall that the instantaneous power dissipated by a resistor is $P_R(t) = I^2(t)R$. (Average this over a cycle to get the average power dissipated.) [20 points]

Solution : The charge on the capacitor plate obeys the ODE

$$
L\ddot{Q} + R\dot{Q} + \frac{Q}{C} = V(t) .
$$

The solution is

$$
Q(t) = Qhom(t) + A(\omega) \frac{V_0}{L} \cos (\omega t - \delta(\omega)),
$$

with

$$
A(\omega) = \left[(\omega_0^2 - \omega^2)^2 + 4\beta^2 \omega^2 \right]^{-1/2} , \quad \delta(\omega) = \tan^{-1} \left(\frac{2\beta\omega}{\omega_0^2 - \omega^2} \right) .
$$

Thus, ignoring the transients, the power dissipated by the bulb is

$$
P_R(t) = \dot{Q}^2(t) R
$$

= $\omega^2 A^2(\omega) \frac{V_0^2 R}{L^2} \sin^2(\omega t - \delta(\omega))$.

Averaging over a period, we have $\langle \sin^2(\omega t - \delta) \rangle = \frac{1}{2}$ $\frac{1}{2}$, so

$$
\langle P_R \rangle = \omega^2 A^2(\omega) \frac{V_0^2 R}{2L^2} = \frac{V_0^2}{2 R} \cdot \frac{4\beta^2 \omega^2}{(\omega_0^2 - \omega^2)^2 + 4\beta^2 \omega^2}.
$$

Now $V_0^2/2R = \frac{1}{4}$ W. So $P_{\text{th}} = \alpha V_0^2/2R$, with $\alpha = \frac{8}{9}$ $\frac{8}{9}$. We then set $\langle P_R \rangle = P_{\text{th}}$, whence

$$
(1 - \alpha) \cdot 4\beta^2 \omega^2 = \alpha (\omega_0^2 - \omega^2)^2.
$$

The solutions are

$$
\omega = \pm \sqrt{\frac{1-\alpha}{\alpha}} \beta + \sqrt{\left(\frac{1-\alpha}{\alpha}\right)\beta^2 + \omega_0^2} = (3\sqrt{3} \pm \sqrt{2}) \times 1000 \,\mathrm{s}^{-1} \; .
$$

(c) Compare the expressions for the instantaneous power dissipated by the voltage source, $P_V(t)$, and the power dissipated by the resistor $P_R(t) = I^2(t)R$. If $P_V(t) \neq P_R(t)$, where does the power extra power go or come from? What can you say about the averages of P_V and $P_R(t)$ over a cycle? Explain your answer. [20 points]

Solution : The instantaneous power dissipated by the voltage source is

$$
P_V(t) = V(t) I(t) = -\omega A \frac{V_0}{L} \sin(\omega t - \delta) \cos(\omega t)
$$

$$
= \omega A \frac{V_0}{2L} \left(\sin \delta - \sin(2\omega t - \delta) \right).
$$

As we have seen, the power dissipated by the bulb is

$$
P_R(t) = \omega^2 A^2 \frac{V_0^2 R}{L^2} \sin^2(\omega t - \delta) .
$$

These two quantities are not identical, but they do have identical time averages over one cycle:

$$
\langle P_V(t)\,\rangle = \langle P_R(t)\,\rangle = \frac{V_0^2}{2R}\cdot 4\beta^2\,\omega^2\,A^2(\omega)\ .
$$

Energy conservation means

$$
P_V(t) = P_R(t) + \dot{E}(t) ,
$$

where

$$
E(t) = \frac{L\dot{Q}^2}{2} + \frac{Q^2}{2C}
$$

is the energy in the inductor and capacitor. Since $Q(t)$ is periodic, the average of \dot{E} over a cycle must vanish, which guarantees $\langle P_V(t) \rangle = \langle P_R(t) \rangle$.