
PHYSICS 110A : CLASSICAL MECHANICS
HW 3 SOLUTIONS

(1) Taylor 6.6

(a)
Here we are working with ds =

√
dx2 + dy2. For a function y = y(x) we will pull out a dx

to have:

ds =
√
dx2 + dy2 = dx

√
1 +

(
dy

dx

)2

= dx

√
1 + (y′)2.

(b)
Similarly for a function x = x(y) we have:

ds =
√
dx2 + dy2 = dy

√
1 +

(
dx

dy

)2

= dy

√
1 + (x′)2.

(c)
Now for cylindrical coordinates we should remember the line element looks like:

d~l = drr̂ + rdφφ̂+ dzẑ.

So for a function r = r(φ) we have:

ds =
√
dr2 + r2dφ2 = dφ

√
r2 +

(
dr

dφ

)2

= dφ

√
r2 + (r′)2.

An alternate and equivalent way to do this is to begin from the Euclidean distance in (a)
and write x and y (and z, if needed) in the coordinate system you are transforming to. In
this case

x = r cosφ and y = r sinφ

so
dx = ∂x

∂r dr + ∂x
∂φdφ = cosφdx− r sinφdφ

dy = ∂y
∂rdr + ∂y

∂φdφ = sinφdx+ r cosφdφ

in which case, after some algebra and use of basic trig identities (which you should go
through), we have

ds =
√

(cos2 φ+ sin2 φ)dr2 + r2(cos2 φ+ sin2 φ)dφ2 =
√
dr2 + r2dφ2

which recapitulates what we have above in a completely equivalent manner. This method is
often useful when you don’t know the specific measure or line element of a specific coordinate
system.
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(d)
And for a function φ = φ(r) we have:

ds =
√
dr2 + r2dφ2 = dr

√
1 + r2

(
dφ

dr

)2

= dr

√
1 + r2 (φ′)2.

(e)
For a function φ = φ(z) we have:

ds =
√
dz2 +R2dφ2 = dz

√
1 +R2

(
dφ

dz

)2

= dz

√
1 +R2 (φ′)2.

(f)
For a function z = z(φ) we have:

ds =
√
dz2 +R2dφ2 = dφ

√
R2 +

(
dz

dφ

)2

= dz

√
R2 + (z′)2.

Finally for spherical coordinates we have:

d~l = drr̂ + rdθθ̂ + r sin θdφφ̂.

(g)
So for a function θ = θ(φ) we have:

ds =
√
R2dθ2 +R2 sin2 θdφ2 = Rdφ

√
sin2 θ +

(
dθ

dφ

)2

= Rdφ

√
sin2 θ + (θ′)2.

(h)
And for a function φ = φ(θ) we have:

ds =
√
R2dθ2 +R2 sin2 θdφ2 = Rdθ

√
1 + sin2 θ

(
dφ

dθ

)2

= Rdθ

√
1 + sin2 θ (φ′)2.

(2) Taylor 6.11

We want to find the path y = y(x) for which the integral:

x2∫
x1

√
x
√

1 + y′2dx,

is stationary.

For this we turn to the Euler-Lagrange equation:

∂f

∂y
− d

dx

∂f

∂y′ = 0, (1)
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Where f =
√
x
√

1 + y′2.

As f is not explicitly dependent on y we have ∂f
∂y′ = constant or:

√
xy′√

1 + y′2
= k.

Solving for y′ we have:

y′ =
k√

x− k2
.

Which is a separable differential equation which can be solved like:

dy =

x∫
x0

dx
k√

x− k2
.

Which has the solution:
y = 2k

√
x− k2 − C.

Where C = 2k
√
x0 − k2 + y0. So this leads us to an equation for a parabola as such:

x =
(y + C)2

4k2
+ k2.

(3) Taylor 6.22

The equation to find the area between the string and the x-axis is as so:

Area =

xf∫
0

ydx.

A hint is given to change this into the form:

Area =

l∫
0

fds, (2)

so that we can deal with something we know, l, the length of the string.

Our normal ds element is as such:

ds =
√
dx2 + dy2.

Which can be rearranged to get:

dx =
√
ds2 − dy2 = ds

√
1− dy

ds

2

= ds

√
1− y′2.
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This will give us an f in equation 2 above of:

f = y

√
1− y′2.

Now since there is no explicit dependence on s in f we can use the ’first integral’ as in
equation 6.43 of the text. So we will have:

f − y′ ∂f

∂y′ = constant.

Which for us will be:
y√

1− y′2
= k.

Where k is some constant.

This in turn leads to:
y′ =

√
1− (y/k)2.

Integrating this we have:
arcsin(y/k) = s/k;

or:
y = k sin(s/k); (3)

Now we can go back to out definition of dx from above:

dx = ds

√
1− y′2.

Integrating this we get:
x = k − k cos(s/k); (4)

Putting equation 3 and 4 together we have:

(x− k)2 + y2 = k2.

Which is the equation of a circle with radius k. If we use the boundary conditions y(s =
0) = y(s = `) = 0 and x(s = 0) = 0 we obtain k = `

π .

(4) Taylor 6.23

The integral for time takes the form:

t =

sf∫
si

ds

v
.

For us ds will be:
ds =

√
dx2 + dy2 = dx

√
1 + y′2.
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And the velocity v is:

v =
√

(v0 cosφ+ V y)2 + v2
0sin2 φ.

So we have:

t =

xf∫
xi

dx
√

1 + y′2√
(v0 cosφ+ V y)2 + v2

0sin2 φ
.

Now when φ and y′ are small we can approximate:

ds = dx

√
1 + y′2 ≈ dx(1 +

1
2
y′2),

and,
v ≈ v0 + V y.

So we have:

t =

xf∫
xi

dx(1 + 1
2y

′2)
v0(1 + ky)

.

Here our functional is:

f =
1 + 1

2y
′2

1 + ky
.

Now this is not explicitly dependent on the variable x so we may use the ’first integral’ as
we discussed in discussion section Thursday night but did not finish. There is a subtlety,
however. The first integral is as follows:

f − y′ ∂f

∂y′ = C.

For us this looks like so:

1 + 1
2y

′2

1 + ky
− y′2

1 + ky
=

1− 1
2y

′2

1 + ky
= C.

This is a first order differential equation. Now we are told the solution looks as follows:

y = λx(D − x).

Plugging in to our differential equation we get:

1− 1
2
y′2 = C(1 + ky).

Or:
1− 1

2
λ2D2 − 2λ2x2 + 2λ2Dx = C + Ck[λxD − λx2]. (5)

We get an equation for λ by matching coefficients of each power of x on either side of the
equations. Matching the x2 coefficients requires C = 2λ

k . Then matching the constant (x0)
term requires

1− 1
2
λ2D2 =

2λ
k
.
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Which has solution:

λ =
√

4 + 2k2D2 − 2
kD2

;

as advertised.

You may also do this using the Euler-Lagrange equation (equation 1) to get a second order
differential equation:

y′′[1− ky] + k − k

2
y′2 = 0.

This will lead to the same equation for λ.

(5) Taylor 6.25

Let’s start by stating the parameterized equation for x and y:

x = a(θ − sin θ),

and
y = a(1− cos θ).

Now the differential is ds =
√
dx2 + dy2 or:

ds =
√
dx2 + dy2 = dθ

√(
dx

dθ

)2

+
(
dy

dθ

)2

.

So:
ds =

√
(a(1− cos θ))2 + (a sin θ)2 = a

√
2− 2 cos θ.

And we can find the velocity using conservation of energy:

v =
√

2g(y − y0) =
√

2ga(cos θ0 − cos θ).

Where we inserted the above definition for x and where y0 = a(1− cos θ)(remember in this
picture gravity is in the positive y-direction).

Putting this together with our definition of time integral we have:

t =

sf∫
si

ds

v
=

π∫
θ0

dθ
a
√

2(1− cos θ)√
2ga(cos θ0 − cos θ)

=
√
a

g

π∫
θ0

dθ

√
(1− cos θ)√

(cos θ0 − cos θ)
.

So now we have this integral to complete. The book suggests a change of variables θ = π−2α.
With this change we can find:
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t = 2
√
a

g

α0∫
0

dα
cosα√

(sin2 α0 − sin2 α)
.

Let’s do a substitution u = sinα
sinα0

:

t = 2
√
a

g

1∫
0

du√
1− u2

= 2
√
a

g

π

2
= π

√
a

g
.

So this means no matter where you let go of the car, the time to get to the bottom is the
same. Qualitatively if you were to move the car’s initial position further up the track, the
extra distance the car needs to travel is exactly balanced by the increased slope of the track,
which gives the car greater velocity more quickly.
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